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Robust Watermarking for Video Forgery Detection
with Improved Imperceptibility and Robustness
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Abstract—Videos are prone to tampering attacks that alter
the meaning and deceive the audience. Previous video forgery
detection schemes find tiny clues to locate the tampered areas.
However, attackers can successfully evade supervision by destroy-
ing such clues using video compression or blurring. This paper
proposes a video watermarking network for tampering localiza-
tion. We jointly train a 3D-UNet-based watermark embedding
network and a decoder that predicts the tampering mask. The
perturbation made by watermark embedding is close to imper-
ceptible. Considering that there is no off-the-shelf differentiable
video codec simulator, we propose to mimic video compression by
ensembling simulation results of other typical attacks, e.g., JPEG
compression and blurring, as an approximation. Experimental
results demonstrate that our method generates watermarked
videos with good imperceptibility and robustly and accurately
locates tampered areas within the attacked version.

Index Terms—Video Technology, Forgery Detection, Multime-
dia Watermarking, Forensics, Robustness

I. INTRODUCTION

With the maturity of various video processing and com-
pression technologies, the Online Social Networks (OSNs)
are crowded with daily-shared videos for entertainment and
reporting. However, the popularization of video technology
also breeds malicious even illegal activities such as the gener-
ation of fake news caused by video clipping or tampering.
Manual video inspection and anomaly detection are time-
consuming, labor-intensive and usually with high latency.
Therefore, algorithm-based automatic video tampering detec-
tion has gained extensive research interest.

Traditional video forgery detection methods [1[]-[3]] include
stitching detection, copy-paste detection, image restoration
detection, etc. For example, Subramanyam et al. [2] finds
that HoG features are robust against various signal processing
manipulations. Aloraini [3] performs sequential analysis by
modeling video sequences as stochastic processes. Changes in
the parameters of these processes indicate a video forgery. In
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recent years, most of the video forgery detection work focuses
on the detection of forged faces [4]-[7]]. Li et al. [S]] considers
both temporal and spatial information, and uses 3DCNN to
discriminate forged videos. Zhang et al. [6] mined some traces
in the frequency spectrum and detected the images generated
by GAN in the frequency domain. There are also several image
manipulation detection schemes. Wu et al. [8] proposed an
end-to-end deep neural network structure, ManTraNet, which
first learns image manipulation traces through self-supervision,
then extracts local anomalies through Z-score, and detects
and locates multiple tampering by judging anomalies. Dong
et al. [9] proposed MVSS-Net to augment the differences
between the tampered and untampered regions at the boundary,
and noise inconsistency and edge supervision are monitored
to unveil image manipulation. However, universal video tam-
pering detection is still a hard issue. One reason is that the
above methods either focus on a typical distribution of videos,
such as facial clips, or cannot generalize well on compressed
videos. Another reason is that video post-processing attacks
represented by MPEG compression are complicated, and the
ways of video tampering and post-processing are indefinite.
Thus, it is extremely difficult to find a universal clue for all
kinds of tampered videos.

Active forensics based on watermarking is an important
alternative for manipulation detection. The goal is to hide a
tailored clue into the targeted videos for protection, and once
the embedded signal is destroyed by tampering, the recipient
can identify the modified areas. Meanwhile, the signal must
survive video post-processing attacks to ensure robustness.
In the image domain, Imuge [10] presents a robust water-
marking scheme that protects images from being tampered
with. After the recipient gets the tampered protected image, he
can conduct accurate tamper localization and image recovery.
Khachaturov [11] proposes a watermarking-like adversarial
method, called Markpainting that prevents images from being
inpainted. Besides, many video watermarking methods [12]-
[14] have been proposed for covert data transmission. But they
only focus on hiding as much information as possible into a
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Fig. 1: Sketch of the pipeline of RWVMD. A 3D-UNet based encoder is used to embed the watermark information into the
video. Video processing attacks in social media are simulated by the attack layer. Finally, the decoder predicts the tampering

mask from the watermarked video.

targeted video, and in comparison, there is little work that
focuses on video watermarking against tampering attacks.

We propose an end-to-end Robust Watermarking network
for Video Forgery Detection (RWVFD). We jointly train a 3D-
UNet-based encoder for imperceptible watermark embedding
and a decoder for tampering localization. We design an attack
simulation module that combines simulated video encoding,
real video encoding, and other obfuscation attacks to improve
the robustness of watermarking. Considering that there is no
off-the-shelf differentiable video codec simulator, we propose
to mimic video compression by ensembling simulation re-
sults of other typical attacks, e.g., JPEG compression and
blurring, as an approximation. The experimental results on
the dataset YouTube-VOS demonstrate that our watermarking
scheme simultaneously achieves satisfactory imperceptibility
and robustness, and the accuracy of tampering localization is
much higher compared to existing passive forensics methods.

Our contributions are mainly as follows: 1) We use deep
networks for video watermarking against tampering; 2) We
propose a tailored attacking layer for enhanced robustness
against typical video post-processing attacks; 3) Our method
can achieve higher accuracy in locating tampered regions and
is robust against multiple kinds of post-processing attacks.

II. METHOD
A. Approach Overview

Fig. [T)illustrates the network design of the proposed method.
Our watermarking scheme follows the traditional data hid-
ing pipeline, which mainly contains three phases, namely,
watermark embedding, attacking simulation and forgery de-
tection. We use two independent three-dimensional U-shaped
architecture [15] to hide auto-generated watermark into an
original video, and localize the tampered areas on receiving the
attacked version, respectively. In detail, given an original video
V, we transform the original video V into the watermarked
video Vg using the encoder. The attacking layer performs
both tampering and benign video post-processing attacks on
Vg to generate Vurk. In this stage, the hidden information

might be globally or locally destroyed. On the recipient’s side,
the decoder produces the predicted tampering mask M to see
which parts of the video are tampered with. The architectures
of the encoder and decoder are shown in Fig. 2]

The objective functions include the embedding loss L.
and the localization loss L;,.. We respectively employ the
Mean Squared Error (MSE) loss and the Binary Cross-Entropy
(BCE) loss as their implementation.

Lemp = ||V — VE]|2, (D
Lioe = —(MlogM + (1 - M)log(1-M)), (2

where M represents the groud-truth tampering mask. The total
loss is listed in Eq. (3), where « is a hyper-parameter.

L= ‘Cemb +a- Elov (3)

B. Attack Simulation

Attack simulation plays a critical role in robustness training.
To simulate the video redistribution stage, we first perform
tampering on Vg, and afterwards, common video post-
processing attacks are performed to generate the attacked
video V7x. To begin with, we select some critical areas
within the original video X to form M. In our scheme, we
use binarized segmentation masks as IM. We then tamper the
watermarked video Vg as V,,, by replacing contents within
M with that within R, a randomly-selected video frame from
an irrelevant video. Next, we implement typical video post-
processing attacks using IP(-) to simulate that V,,, must be
lossily processed during transmission and storage, where the
attacker wants to conceal the tampering behavior. In sum, the
attacked video V47 is generated according to Eq. (@).

Vg = IP(X - (1 — M) + R - M). 4)

The video post-processing attacks implemented in our
scheme, i.e., IP(-), include the following attacks. (1) Median
filtering, where each output pixel is computed as the median
value of the input pixels under a 5 x 5 window. (2) Gaus-
sian blurring, which convolves the image with a Gaussian
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Fig. 2: Architectures of the encoder and decoder, which are
based on the 3D-Unet [15].

5 x b-sized kernel. (3) Rescaling, which randomly scales
the video frames up or down and back to the original size.
(4) Image lossy compression, which lossily compresses the
video frame by frame. (5) Video compression and decom-
pression (codec), which lossily compresses the video using
both spatial and temporal characteristics of the video. These
attacks might introduce missing or distorted higher-frequent
details in the ultimate videos compared to the original ones.
For example, JPEG compression is a widely used compres-
sion that includes DCT transformation, quantization on the
coefficients and lossless encoding, in which the quantization
process discards many details for file size shrinkage, and can
cause chess-board artifacts. Video codec attack is similar yet
more complicated than the other attacks. The decompressed
video might have lower quality than the original video because
there is insufficient information to accurately reconstruct the
original video. Typical video codec standards are MPEG,
H.264, HEVC (H.265), etc.

The issue mainly lies in how to effectively simulate video
codec attack, since the leading three kinds of attacks can
be easily implemented by simple differentiable methods [16].
As for image compression, many effective JPEG simulators
have been proposed in the past literature, such as Dift-
JPEG [17], MBRS [18] and HiDDeN [16]. In contrast, there
is no off-the-shelf differentiable video codec simulator so
far. The reason is that many internal steps, such as motion
estimation and compensation, are hard to be differentiated.
However, we find that JPEG and H.264 compression both
share the process of DCT-based coefficient quantization, sug-
gesting that losses introduced by video codec might share
some common characteristics with those made by the rest of
the attacks. Therefore, we are motivated to design a video

codec simulator by ensembling the attacked videos generated
by blurring, scaling, JPEG compression, etc. First, we use
a real video codec to compress Vg according to different
coding standards and Constant Rate Factors (CRFs), i.e
Vf\‘;‘}fc = Real_Codec(V ,, CRF), where Real_Codec is the
H.264 codec, and CRF = {17,23,29}. Note that CRF is
a tunable content-specific offset to the frame’s quantization
parameter, with lower values indicating less compression and
higher quality. We select the H.264 codec for its overwhelming
popularity. The attacked video by the video codec attack
simulation is generated according to Eq. (3).

Ve =aq - Resize(Vip) + an - Med(V )
+ g - Gauss(Vymp) + az - JPEG(V yyp, OF ) (5)
+ oy - JPEG(Vtmpa QFS)a

where QFg € {40,50,60} and QFy, € {70,80,90}, respec-
tively represent strong and weak JPEG compression attack.

= {ap,...,a4} are learnable parameters that weight the
generated results of the five attacks to let V47 more close to
Vr. For V§3éee with totally three different combinations of
codec and CRF, we employ three different sets of parameters
a. On training the simulator, given a V,,,, we randomly
sample a codec and CRF and generate V5§54, we let the
simulator update the corresponding o to make closer Vc"dec
and Vf“}%“ We use the MSE loss Ly, as the supervision on
the simulator.

Lyima = V57 = VETEl2- (6)

Then, in the training phase, the benign attack IP(-) is
evenly and iteratively switched within the range of the above
attacks. Empirically, we find that robustness against video
codec simulation is much more important than robustness
against the rest of the attacks. Therefore, we further propose
two strategies in our adversarial training mechanism. First,
we observe that the blurring results produced by median
filtering and Gaussian blurring are close. We again use the
ensembling strategy to linearly combine Gauss(Viy,) with
Med(V,y,) as the mixed filtering operation. The benefit is
that we moderately lower the importance of robustness against
blurring, and further introduce randomness within the model.
Second, in some cases, we directly let V§99e¢ = V5odee and
address the non-differentiable problem by using the noise-
addition strategy proposed by Zhang et al. [19]. That is, the
residual e = V§94¢ — V,,, is detached and directly added
onto V,,,. Therefore, V a7k in different training iteration iter
is as follows.

Resize(V ), iter%4 =0
B - Med(V ) + v - Gauss(Vyyy,), iterfod =1
VATK = \ 7codec . ’
Vark iter%4 = 2
stop_grad(e) + V p, iter%4 = 3
(7

where 3,7 € [0,1], 8 +~ = 1. The reason for using hybrid
real-world and simulated video codec is to reduce temporal
complexity, where real video codecs are much slower than the
proposed video simulator.
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TABLE I: Results of the learned parameters of the codec
simulator under different attacks. Compression-based at-
tacks are more preferred than the rest kinds of attacks. The
highest and lowest value are respectively marked red and blue.

- Strong ~ Weak  Meadian  Gaussian

CRF  Resize  yppG  JPEG  Bluming  Blurring
17 -0.7575  1.0723 14917  -1.3091 -0.8802
23 -0.7568  1.0685  1.3155  -0.8185 -1.1666
29 -0.1529  1.1229  0.5848 -0.2182 -0.7920

III. EXPERIMENTS
A. Experimental Setup

We empirically set the hyper-parameter as o = 0.9. The
batch size is set as four. We use Adam optimize [21]] with the
default parameters. The learning rate is 1 x 10~* with manual
decay. The default frame rate of the video is set to 25 frames
per second. We binarize the prediction mask by setting the
threshold 7h as 0.5.

We use two popular object segmentation datasets, namely,
Davis [22] and YouTube-VOS [23] in the experiment. During
training, the original videos V are prepared by selecting the
data from the whole Davis dataset and YouTube-VOS train
set. We use the YouTube-VOS test set to test our model. The
tampering masks are the annotation images corresponding to
the video frames in the object segmentation datasets.

We compare RWVFD with two passive methods for tamper
detection, which detect universal manipulations or deepfake,
namely, MVSS-Net [9] and Xception [20]. We employ the
peak signal-to-noise ratio (PSNR) and the Structural Similar-
ity [24] to evaluate the image quality. The value of SSIM
ranges from zero to one. A higher structure similarity is
indicated by a high SSIM closer to one. We employ the

Ground-truth mask Predicted mask

Tampered frame

e

Fig. 3: Performance against tampering with FFMPEG compression (CRF = 17). The average PSNR and SSIM on
YouTube-VOS dataset are 37.78 dB and 0.987, respectively. The difference between the original video and the watermarked
video cannot be perceived by the human eye, and the tampered area can still be accurately detected in the compressed video.

Precision, Recall, and F1 score to measure the accuracy of
tamper localization. Higher F1 value indicates more accurate
result.

B. Imperceptibility of watermark embedding

In Fig. B] we showcase the first frames from three ran-
domly selected test videos from YouTube-VOS dataset. We
can observe that the differences before and after watermark
embedding are almost imperceptible, and the overall quality
of the watermarked frames is satisfactory. The watermark
information is distributed in the whole set of video frames,
mainly hidden in the higher frequencies. The embedded wa-
termark is robust to video processing attacks and can be used
for tampering localization. Instead of finding a ubiquitously
existing trace to unveil video modification behavior, in our
scheme, tampering will result in local pattern inconsistencies,
allowing the network to efficiently detect and locate the tam-
pered regions. We have conducted the embedding experiments
on the entire test dataset of YouTube-VOS and the average
PSNR and SSIM are 37.78 dB and 0.987, respectively.

C. Accuracy and robustness of tampering localization

In Table we clarify the robustness of RWVFD with
the presence of different video processing attacks. It can be
seen from the results that RWVFD has strong robustness to
common video processing behaviors. Even if there is a high-
intensity H.264 video compression attack, the performance
will not be significantly degraded. It proves the effectiveness of
our codec simulator for improving watermarking robustness.
From Fig. B] RWVFD can accurately detect forged regions
even under compression attacks. In addition, RWVFD is also
robust to typical temporal attacks such as frame deletion and
frame rate transformation.

Table [[] shows the learned parameters of the video codec
simulator. On simulating a video codec, the simulator prefers
the simulated images of JPEG compression, and those
of blurring attacks will be suppressed, indicating that the
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Fig. 4: Comparison of tamper localization under FFMPEG compression (CRF = 17) among RWVFD and several state-
of-the-art passive schemes. RWVFD can accurately localize the tampered areas even with the presence of post-processing
attack. In contrast, many passive schemes have low detection accuracy and are reported to not have robustness.

TABLE II: Performance comparison for tamper detection among our scheme and the state-of-the-art passive methods.

NA: No-attack, GB: Gaussian Blur, MB: Median Blur, VC:

Video Compression, FD: Frame Dropping, FRC: Frame Rate

conversion, CRF: Constant Rate Factor, DN: Dropping Number, FR: Frame Rate.

Attack MVSS [9] Xception [20] RWVMD

Precision Recall Fl1-score Precision Recall F1-score Precision Recall Fl1-score

NA 0.05 0.00 0.01 0.64 0.59 0.57 1.00 0.99 0.99

GB 0.06 0.00 0.01 0.55 0.21 0.25 0.99 0.95 0.96

MB 0.05 0.00 0.01 0.64 0.60 0.58 0.99 0.99 0.99

CRF =17 0.05 0.00 0.01 0.66 0.46 0.49 0.95 0.83 0.87

VvC CRF =23 0.05 0.00 0.01 0.67 0.45 0.49 0.95 0.80 0.84

CRF =29 0.05 0.00 0.01 0.68 0.42 0.46 0.90 0.70 0.75

FD DN =1 0.05 0.00 0.01 0.64 0.59 0.57 0.93 0.98 0.95

DN =2 0.05 0.00 0.01 0.64 0.59 0.57 0.97 0.99 0.97

FR =20 0.05 0.00 0.01 0.67 0.46 0.49 0.96 0.92 0.93

FRC FR =30 0.05 0.00 0.01 0.66 0.55 0.55 0.87 0.87 0.84

FR =35 0.05 0.00 0.01 0.66 0.55 0.55 0.88 0.86 0.84

video coding distortion shares more characteristics with two-
dimensional JPEG compression, such as chess-board artifact.

In comparison, passive forensics methods, e.g., MVSS and
Xception, do not perform well on the test sets. We use the
pre-trained models provided by the authors of MVSS, and
find that the model fails to detect forged regions when there
exist video codec attacks. The reason is most likely that video
frames after codec attack are out of distribution of natural
images that MVSS detects. We train Xception using the same
training dataset as RWVFD. We also equip the scheme with
the attacking layer proposed by us for adversarial training.
However, the accuracy is still not high. Fig. f] showcases
the experimental comparison of tamper localization among
RWVFD, MVSS, and Xception.

D. Ablation Study

We explore the influence of 3D-Unet and codec simulator
in our scheme. In the first experiment, we changed the 3D-
Unet architecture into 2D-Unet as RWVMD without 3D-Unet.

In the second experiment, we train the network without using
the codec simulator. For fair comparisons, we separately train
the model from scratch until it converges, perform the same
video post-processing attacks and the same tampering attack
in each test.

We summarize the average results on the test dataset in
Table The results show that the complete implementation
of RWVEFD has higher PSNR and F1 scores than the ablated
versions. In comparison, RWVMD without 3D-UNET cannot
perform forgery detection when we apply video codec attacks.
It suggests that considering video frames as independent
images and embedding temporarily-inconsistent watermarks is
less effective in countering typical video attacks. RWVMD
without the proposed codec simulator also performs worse in
the overall accuracy under video compression. This shows that
applying Zhang et al. [[19] alone is not enough, and proves the
necessity of applying the codec simulator.



TABLE III: Ablation study of RWVFD using varied partial settings.

RWVMD w/o 3D-Unet RWVMD w/o codec simulator RWVMD
Attack (PSNR = 34.95dB, SSIM = 0.958) (PSNR = 35.82dB, SSIM = 0.987) (PSNR = 37.78dB, SSIM = 0.987)
Precision Recall Fl-score Precision Recall Fl-score Precision Recall F1-score

CRF =17 0.72 0.94 0.80 0.76 0.86 0.80 0.95 0.83 0.87

vC CRF =23 0.66 0.94 0.75 0.71 0.87 0.77 0.95 0.80 0.84
CRF =29 0.49 0.95 0.61 0.44 0.89 0.56 0.90 0.70 0.75

FD DN =1 0.98 0.98 0.97 0.44 0.99 0.56 0.93 0.98 0.95
DN =2 0.98 0.98 0.97 0.49 0.99 0.61 0.97 0.99 0.97

FR =20 0.90 0.96 0.92 0.31 0.97 0.42 0.96 0.92 0.93

FRC FR =30 0.90 0.96 0.93 0.21 0.99 0.31 0.87 0.87 0.84
FR =35 0.91 0.96 0.92 0.21 0.99 0.31 0.88 0.86 0.84

IV. CONCLUSION

In this paper, we propose a deep learning-based video
watermarking method RWVFD for video forgery detection.
We encode the original video into a watermarked video, in
which the tampering attack area can be accurately located. To
improve performance, we propose a video codec simulator
along with simulation of other typical attacks to enhance
the robustness against common video post-processing attacks.
We conduct experiments on a popular video dataset and the
results demonstrate the effectiveness of RWVFD in tampering
localization.
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