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Abstract—Food image segmentation, as a critical task in food
and nutrition research, promotes the development of various
application domains such as calorie and nutrition estimation,
food recommender systems, and daily food monitoring systems.
Currently, most of the research is focused on food and non-food
segmentation, which simply segments the food and background
regions. Differently, semantic food segmentation can identify
different specific food ingredients in a food image and provide
more detailed and accurate information such as object location,
shape and class. This is a more challenging but meaningful
task, because the same food may appear in completely different
colours, shapes and textures in different dishes, and correspond-
ingly less researched. From the implementation perspective, most
previous research is based on deep learning methods with pixel-
level labelled data. However, annotating pixel-level labels requires
extremely high labour costs. In this paper, a novel single-step
dual branch network (SSDB-Net) is proposed to achieve weakly
supervised semantic food segmentation. To our knowledge, this
research is the first time proposing weakly supervised semantic
food segmentation with image-level labels based on convolutional
neural networks (CNN). It may serve as a benchmark for future
food segmentation research. Our proposal method resulted in an
mIoU of 14.79%, for 104 categories in the FoodSeg103 dataset
compared to 11.49% of the state-of-the-art WSSS used in other
domains.

Index Terms—Weakly supervised semantic segmentation, se-
mantic food segmentation, food image analysis

I. INTRODUCTION

In recent years, deep learning has been applied in food re-

search, such as, dish classification [1], [2], food image retrieval

[3] and food segmentation [4]. Deep learning-based food

segmentation has brought considerable benefits to food-related

research, such as calorie and nutrient intake computation [5],

personalised food recommendation [6] and daily food/health

monitoring systems [7], [8]. However, most of the current

research focuses on food and non-food segmentation, which

only separates food regions from the non-food regions. These

segmentation results are insufficient for further application in

accurate food classification or food recommendation [5]. In

order to obtaining more detailed and accurate semantic infor-

mation, semantic food segmentation is proposed. It classifies

food region pixels into specific food ingredients and provides

finer-grained food segmentation results [9], [10]. However,

networks of semantic food segmentation are difficult to train.

Since obtaining pixel-level labels ground truth for training

networks is time-consuming and labour-intensive. In addition,

learning to extract food features is also challenging due to the

varied features of the same food in different images [9].

Semantic segmentation algorithms based on deep learning

have achieved satisfactory results, but only in a fully super-

vised setting where the training datasets contain pixel-level

annotation [1]. These kinds of datasets are expensive and time-

consuming for specific fields. For example, labelling an image

from the Cityscapes dataset takes an average of 1.5 hours

[11]. In addition, the recently released Segment Anything

model (SAM) is trained on a dataset of more than 1 billion

masks [12]. Such datasets are difficult to afford for ordinary

companies and individuals. In order to alleviate the difficulty

of labelling, researchers have proposed weakly supervised

semantic segmentation (WSSS) methods [13], which only

needs image-level annotations or bounding box-level labelled

data for training, but outputs object masks (pixel-wise labels)

[14]. In this paper, we explore image-level annotation of WSSS

in the food domain.

Image-level annotations do not contain any information

about the target shape, size, colour, or how many instances

exist in an image. This missing information significantly

increases the complexity of the segmentation task. In the

semantic food segmentation field, there are problems such

as different foods showing similar characteristics, and certain

food ingredients showing different features under different

cooking methods. These issues further increase the difficulty

of training networks in the weakly supervised setting. In

order to better complete the weakly supervised semantic food

segmentation, we first implement the food WSSS using the

classic weakly supervised method, then we propose a new

network for better implementation of the food WSSS. The

main contributions of our research are as follows:

1 This research is the first attempt to explore WSSS in the

food domain utilising image-level annotations to achieve

pixel-level result.

2 We propose a novel single-step dual branch network

(SSDB-Net) to improve performance for food WSSS



tasks based on image-level annotation.

3 We confirm the necessity of the network retrained on the

Food101 dataset [15] to achieve better performance on

the FoodSeg103 dataset [9].

II. RELATED WORKS

A. Fully and weakly Supervised Semantic Segmentation

After fully convolutional networks were proposed, the

CNN-based algorithm became the first choice to complete

the semantic segmentation task, and achieved breakthrough

performance [16]. However, these studies require a large

amount of pixel-level annotation datasets and are difficult to be

applied in other specific domains due to pixel-level annotation.

In order to reduce data requirements, researchers began to

study training semantic segmentation networks with weakly

supervised information, whihc is called WSSS. WSSS is

usually implemented based on Class Activation Maps (CAM)

[17], but CAM only activates the most distinguished regions

of objects. For solving this problem, various training strategies

have been proposed [13], [18], [19], but these methods are

mainly based on general object categories dataset, and there

is no research on semantic food segmentation.

B. Food full and weakly supervised semantic segmentation

Food segmentation based on CNN has attracted increasing

attention in recent years. In earlier years, a method com-

bining bounding boxes and saliency maps to determine the

region of food was proposed [20]. The bounding boxes are

applied to provide the region proposal information, and the

saliency maps are applied to estimate and refine food regions.

This framework, which first roughly locates and then refines,

is also utilised by other researchers [21]. They obtained a

rough boundary of the food region from CNN and refined

the boundary via a region merging and growing algorithm.

After them, food and non-food segmentation is achieved by

segmenting the background, because researchers found that the

features of the background are easier to extract by the network

than the features of food [22]. However, the above mentioned

studies focus on food and non-food segmentation, which only

provides limited semantic information for downstream tasks.

In order to obtain richer semantic information, an automatic

food analysis system based on the DeepLab algorithm was

developed [23] [7]. Similarly, food semantic segmentation is

also implemented on the Food201 food database based on the

DeepLab segmentation algorithm [5]. Last year, Bayesian the-

ory was introduced into deep algorithms to alleviate inaccurate

predictions of CNN [24]. Recently, thermal data (RGB-T) was

introduced to achieve food image segmentation by combining

RGB food images [25]. The thermal data is obtained by the

acquisition equipment designed by the researchers themselves.

Their study provides a new perspective on how to achieve

food segmentation, which is helpful for developing food

segmentation. In addition, excellent review work has been

completed about fully supervised semantic food segmentation

[10]. The performances of different segmentation algorithms

are evaluated based on their own food dataset, which contains

5000 images of 50 different food categories.

To the best of our knowledge, there are only a few studies

on weakly supervised food segmentation [26], [27]. However,

their research is on food and non-food segments and cannot

provide detailed information about the food ingredients. In

addition, the proposed method by Wang et al. [26] was only

tested on their own unpublished dataset. This can only provide

limited help for future research on weakly supervised se-

mantic food segmentation. Our study further explores weakly

supervised semantic food segmentation on a publicly available

dataset, FoodSeg103, with 104 categories [9].

III. METHODOLOGY

A. Class activation map and pseudo ground-truth

CAM is widely utilised to generate the initial pseudo seg-

mentation ground-truth for WSSS, because it can identify the

object regions when a classification network predicts results.

Therefore, it provides an effective way to train networks

using image-level annotations but generate masks (pixel-wise

labels). Specifically, the last convolution layer feature maps,

F ∈ R
h×w×d, are weighted by the classification weights, W

∈ R
c×d, to get the activation value M. CAM is obtained

by eliminating negative activation values and scaling to [0,1]

through relu function and max normalisation. Therefore, the

CAM calculation equation for class c is as follows:

CAMc(F,W) =
relu(Mc)

max(relu(Mc))
, where, Mc =

∑

i∈d

Wc,iF:,i,

(1)

where h, w and d denote the height, width and channel of

the feature maps, respectively and c denotes the number of

classes.

The CAM obtained by Eq. (1) is the activation map of

the object class. But, it only implies the probability value of

belonging to the target classes. In order to obtain semantic seg-

mentation results, a background class score, BG ∈ R
h×w×1,

needs to be set and concatenated to the final result calculation.

Therefore, the calculation equation for masks is as follow:

yj,k =
∑

j,k∈h,w

argmax(Pj,k,:),P = concat(BG,CAM), (2)

where j, k represents the corresponding spatial point position.

The value of BG is generally set according to network

structure and empirical. The generated masks are generally

applied in subsequent training as pseudo ground-truth.

B. Our single-step dual branch network

Most WSSS methods are based on a multi-step framework.

Those methods first obtain the pseudo segmentation ground-

truth by training a network under image-level labels. Then they

train semantic segmentation based on the pseudo ground-truth.

Obviously, the quality of the pseudo ground-truth determines

the final result. The inaccurate pseudo ground-truth may

introduce too much noise during the second network training



Fig. 1. The SSDB-Net structure with separating-backbone version (SSDB-II)

process and may lead to decrease of the final performance. To

alleviate this problem we propose SSDB-Net which is trained

by the image-level label and directly outputs segmentation

results. In order to fully consider the performance of the

network in the food field and to get more conclusive study

the food WSSS, we design two versions of SSDB-Net: one

with shared-backbone (we call SSDB-I) and the other with

separated-backbone (we call SSDB-II). The biggest difference

between the two is whether they share the same backbone

network. We only show the separating-backbone version in

Fig. 1, because it performs better.

Our SSDB-Net contains two branches, the first is the clas-

sification branch, which realises the multi-label classification

of food images. The other is for segmentation. In training

processing, the classification and segmentation branches are

trained simultaneously based on image-level annotations. In

the inference stage (the green dotted line part), the classifica-

tion branch outputs the category results and multiplies them

with the segmentation branch results to obtain the CAM of

target categories. The final result is obtained according to Eq.

2. Each part of the network will be described in detail in the

following sections.

1) backbone network: ResNet-38 is a wider but shallower

network than the original ResNet (e.g. ResNet-18, ResNet-

50 and ResNet-200), which achieves satisfactory results in

both classification and semantic segmentation tasks [28]. The

network parameters are modified to adapt the WSSS task.

The convolutional layers in the last five blocks are replaced

by à trous convolutional layers with stride equals to 1, and

padding number and dilation rates are modified to ensure the

output stride equals to 1. Moreover, the global average pooling

(GAP) layer and the fully connected (FC) layer are removed.

Finally, the network output stride equals to 8. This setting

ensures the final output feature map is large enough, which

is conducive to returning to the original size. It also increases

the receptive field of the network to effectively collect the

contextual information of the image.

Fig. 2. The channel attention and spatial attention module, the [GAP, GMP]
means doing global average pooling and global max pooling Operation to a
feature map in channel dimension respectively, and concatenate these result.

2) Attention module and classification loss: An attention

module is added to improve the classification branch per-

formance. This module mainly consists of channel attention

and spatial attention modules as shown in Fig. 2. The input

features F ∈ R
h×w×d are fed into GAP and global maximum

pooling (GMP) layer to obtain F1 ∈ R
1×1×d and F2 ∈

R
1×1×d, respectively. These pooling layers are followed by

two trainable convolutional layers. The channel ratios of input

and output are 16 and 1/16, respectively. The spatial attention

can highlight the value of the object location and suppress

the value of the non-target location. The spatial attention

mechanism performs a global average operation and a global

maximum operation on the input features respectively in the

channel dimension. After pooling operation, a convolutional

layer with both kernel size and padding equal to 7 is utilised.

After the attention module, a global average layer and 1*1

convolutional layer is added to the classification branch to

achieve food classification with multi-label soft margin loss.

The loss equation is as follows:

lcla(z, l) = −
1

C

C∑

c=1

[lclog(
1

1 + e−zc
)

+(1− lc)log
e−zc

1 + e−zc
],

(3)

where z is the predicted result vector, l is the image label and

C is the foreground object category number.

3) Self-supervised equivariant attention mechanism: The

Self-supervised equivariant attention mechanism (SEAM) is a

classic method in the WSSS domain [19]. It utilises equivariant

visual priors, which refers to the same image outputs different

CAM at different sizes, to obtain a more complete and accurate

CAM. During the training process, the image Io is fed into the

network, and the classification results PREo is obtained after

a 1*1 convolutional layer (the green cube in Fig. 1). PREo

indicates the classification result of the image and is applied

to obtain the original CAMo
o. The multi label soft margin loss

is calculated based on the global average of PREo. On the

other hand, the two intermediate layer features F4 and F5

are extracted from block 4 and block 5, respectively. They

are input into 1*1 convolutional layers (the purple cube) to

obtain F
′

4 and F
′

5 respectively. These feature will concatenated

and fed into other 1*1 convolutional layer (the gray cube).



The result after convolution is multiplied by its own transpose

to obtain the similarity matrix Mo. This similarity matrix is

multiplied with the result of the original CAMo
o to obtain the

refined result CAMr
o. In addition, Io is scaled to 0.3 times

its original size to get Is. The corresponding result, such as

classification result PREs, original CAMo
s, and refine CAMr

s,

is obtained. The multi label classification loss is also calculated

by PREs. In addition, L1 loss between CAMo
o and CAMo

s,

CAMr
o and CAMo

s, and CAMo
o and CAMr

s is computed. This

module greatly improves the accuracy of CAM.

IV. PERFORMANCE EVALUATION

A. Experimental setup

We use two datasets, Food101 and FoodSeg103, to im-

plement semantic food segmentation. Food101 is a food

classification dataset, and FoodSeg103 is a semantic food

segmentation dataset. Food101 contains 101 food categories,

and each category contains about 1000 images. 75% of data

is utilised as the training set, and 25% of the data is test set.

The FoodSeg103 dataset is a very challenging semantic food

segmentation data, which has 104 categories with background.

However, there are 7118 images in total, including 4983 in

the training set and 2135 in the test set. Each image includes

different food categories and instances.

Firstly, the backbone network is retrained on Food101,

then the weakly supervised semantic food segmentation is

implemented on the Food103 database. Resnet-38 is chosen

as the backbone network in this research as mentioned before.

During retraining, common data augmentation methods such

as flipping, rotation, Gaussian blur, and colour dithering are

applied. Food images are cropped and resized to 448*448.

The batch size is 16 and the learning rate is 0.001. In the

WSSS training process, the same data augmentation method

is adopted and the learning rate is 0.005 and weights decay

rate is 0.0005. The networks are all trained on a 3090 GPU.

B. Evaluation metrics

The mean intersection over union (mIoU) is utilised as the

main evaluation metrics for semantic segmentation. Besides,

F1-score, Precision and Recall are performed as the classifi-

cation evaluation metrics.

mIoU =
1

k + 1

k∑

i=0

pii∑k

j=0
pij +

∑k

j=0
pji − pii

, (4)

where, pii represents the number of true positive pixels of

i category; pij represents the sum of true positive and false

negative pixels; pji represents the sum of true positive and

false positive pixels; and k represents the number of categories.

C. Experimental Results

Tab. I shows the performance of the proposed methods in

different evaluation metrics. These methods include the SEAM

method [19], the proposed SSDB-I and SSDB-II. The first

four columns represent the CAM and final results of the three

methods under different values for BG equalling to 0.1, 0.15,

0.2 and 0.25 respectively. The CAM of the SEAM method

TABLE I
THE SEMANTIC FOOD SEGMENTATION RESULT AND FOOD

CLASSSIFICATION PERFORMANCE

Model name
Semantic Segmentation Results (mIoU) Classification results

BG=0.1 BG=0.15 BG=0.2 BG=0.25 Precision Recall F1-score

SEAM [19]
CAM 27.68 26.98 25.87 23.92

- - -
Fina result 11.49 10.75 10.12 9.06

SSDB-I
CAM 29.62 26.84 23.74 20.92

72.28 47.85 54.42
Fina result 13.07 12.04 11.02 10.05

SSDB-II
CAM 27.8 27.68 26.19 24.29

71.47 48.35 54.72
Fina result 14.79 14.53 13.77 12.75

represents the pseudo segmentation ground-truth obtained by

the first step network. The CAM in SSDB-I and SSDB-II refer

to the segmentation results in the case of the classification

label of the ground truth. This result implies that the best

results can be achieved by these two frameworks when the

output of the classification head is perfectly accurate. The

final results represent the real result of these methods. The

final result of the SSDB-II is 4.56 % more than the SEAM

under BG = 0.15, and 2.49% more than the SSDB-I. Under

other BG conditions, the results of SSDB-II are also higher

than the other two methods. To implement food WSSS on

FoodSeg103, it would be better to choose two branches to

output classification and segmentation results respectively. In

addition, the classification results of SSDB-I and SSDB-II are

validated by F1-score, Precision and Recall. The performance

of SSDB-II classification head is 0.5% and 0.3% higher than

the SSDB-I in Recall and F1-score. This further implies that

independent branches, especially if the backbone networks are

all separated, would be better.

The SSDB-II outperforms the other two structures mainly

due to two reasons. Firstly, the SSDB-II can effectively

isolate the influence of noise in the data on network train-

ing. The first step of the SEAM is able to produce better

pseudo-segmentation ground-truth compared to the SSDB-I

and SSDB-II (according to the first, third and fifth rows in Tab.

I). However, the SEAM method has the worst final results. We

believe that training on noisy pseudo-segmented ground-truth

has a large impact on network performance. Differently, the

SSDB-I and SSDB-II do not have this problem, because both

networks are trained on manually labeled image-level ground-

truth, which accurately expresses the food categories in the

sample images. Although the image-level data cannot provide

the shape and location information of the objects, it also avoids

introducing a large amount of noise in the network training

process and guarantees the performance of the network.

Secondly, the SSDB-II alleviates the contradiction between

the semantic segmentation task and the classification task

under the same training information. In the fully supervised

setting, the pixel-wise masks may force the semantic segmen-

tation network to retain more detailed and correct information

of objects. However, the network is not provided with explicit

supervision information in the weakly supervised setting. This

may cause the network to incorrectly activate pixels, and affect

both branches. The SSDB-II approach alleviates this problem

due to separate semantic segmentation task network and clas-

sification task network, which extract features according to



TABLE II
THE IOUS OF TOP 10 CATEGORIES AND MIOU FOR THE OVERALL DATSET.

THE BEST VALUES ARE SHOWN IN BOLD FACE FONT

Class name
IoU

SEAM [19] SSDB-I SSDB-II

Background 68.32 64.77 64.5

Corn 50.09 58.42 51.81

Green beans 48.61 52.79 51.2

Broccoli 48.3 58.67 50.94

Seaweed 1.63 0 44.59

noodles 30.84 39.39 44.37

Strawberry 36.79 44.55 43.98

Rice 28.81 43.71 43.4

Asparagus 28.27 37.35 40.9

French beans 35.37 38.88 37.86

mIoU of Top 10 classes 37.7 43.85 47.36

mIoU of all classes 11.49 13.07 14.79

their own tasks.

Since FoodSeg103 dataset has 104 classes (including back-

ground), it is difficult to show intersection over union (IoU)

of each class due to lack of space. We show IoUs for top

10 of food categories and the overall averages for all 3

methods with BG equal to 0.1 in Tab. II. The IoUs of some

categories are satisfactory. However, Tab. II also shows some

categories, such as, the Seaweed category, are not recognized

during the segmentation process. The IoU of Seaweed category

based on SEAM and SSDB-I are 1.63% and 0%, respectively.

Differently, its IoU is 44.59% under SSDB-II method. This

may be because the features of the Seaweed category are

similar to other categories, and Seaweed can be correctly

classified during SSDB-II training, but the SSDB-I and SEAM

methods classify Seaweed class to another. In addition, some

visualisations of semantic food segmentation results are shown

in Fig. 3.

We verified the effect of the attention module in food

WSSS and the results are shown in Tab. III. Overall, the

attention module has a positive impact on the network,

whether in sharing-backbone (SSDB-I) or the separating-

backbone (SSDB-II). However, attention-based networks have

not achieved the best results. Since the attention module

focuses on only one category of images and suppresses the

simultaneous appearance of multiple categories due to the

maximisation operations in the channel attention and spatial

attention modules. We believe this problem can be improved

by adding multiple attention modules. Compared to the impact

of attention modules, sharing the same network for two tasks

has a worse impact on achieving food WSSS. This further

confirms the previous analysis.

Moreover, We found that pre-trained weights have a large

impact on food WSSS. Tab. IV shows the segmentation results

of the network after retraining on Food101 dataset and the pre-

trained only model. The retrained model performs significantly

better than the model without retrained, it is possible that the

representations learned by retraining may be more suitable

for FoodSeg103 than the general representations learned from

ImageNet [29]. In addition, the variability of food features may

TABLE III
SEGMENTATION RESULTS OF SSDB-I AND SSDB-II NETWORKS WITH

AND WITHOUT ATTENTION MODULE, WHEN BG=0.1

Model name mIoU

SSDB-I
w/ attention 13.07
w/o attention 11.39

SSDB-II
w/ attention 12.7
w/o attention 14.79

TABLE IV
NETWORK SEGMENTATION RESULTS AFTER NON RETRAINING AND

RETRAINING

Framework name mIoU

Non-Retraining
SEAM 2.24
SSDB-I 4.14
SSDB-II 4.66

Retraining
SEAM 10.75
SSDB-I 12.04
SSDB-II 14.53

further increase the difficulty of network training, when labels

do not provide enough information. Therefore, we suggest that

retraining is a good training strategy when implementing the

food WSSS task.

V. CONCLUSIONS

In this paper, we have proposed a novel approach for

WSSS in food images with image-level annotations to obtain

pixel-wise results. Considering the characteristics of the food

domain, we have proposed SSDB-Net to better realise food

WSSS. We have designed two versions of SSDB-Net: one

with shared- backbone (SSDB-I) and the other with separated-

backbone (SSDB-II). Our two networks resulted in mIoU of

13.07% and 14.79%, respectively for 104 categories, compared

to 11.49% of the state-of-the-art SEAM. Based on the ex-

perimental results, we find that weakly supervised semantic

food segmentation can be best accomplished by implementing

segmentation tasks and classification tasks in branches that do

not share weights. Moreover, we have verified the benefit of

retraining the network on Food101 to achieve better weakly

supervised segmentation on FoodSeg103.
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