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Abstract—Image manipulation which can easily generate hard-
to-perceive fake information by image editing tools has become
a threat of spreading visual mis/disinformation. With the speed
and growth of such visual information presence in social media
with respect to the current geopolitical affairs, tools for highly
accurate verification of the authenticity of images are vital for AI-
based fact checking. This work presents an efficient convolutional
neural network (CNN) based approach for image manipulation
detection. Our method, called WCBnet, starts with extracting
learned features from the signed-value error levels (SEL) of
compressed images on hierarchical convolution blocks. This is
followed by adaptively concatenating, weighting and fusing these
multi-level features by considering self-attention over all blocks
according to different error levels corresponding to different
manipulation types. We evaluate the performance of the proposed
approach with respect to common manipulation datasets and
compare with the state-of-the-art. WCBnet trained using around
2500 images of CASIA 2.0 dataset, resulted in the best F1-score
for CASIA 1.0, Defacto, Coverage and Columbia datasets after
fine-tuning by a small portion of those datasets. On average
WCBnet improves the F1 score with respect to the second-best
performing methods by 27.5%, 34.3%, 16.2% and 6.1% for these
four datasets, respectively.

Index Terms—mis/disinformation, fact checking, manipulated
image detection, self-attention, error-level analysis, feature re-
shaping

I. INTRODUCTION

Combating the spread of visual mis/disinformation remains

a challenge in current social media fact checking services

and applications due to the fast growth of the presence of

manipulated social media images in the contexts of current

geopolitical affairs [1]. Efficient and highly accurate methods

for detecting such manipulated images and verifying the au-

thentic images from large sets of social media images are vital

for automated fact-checking purposes. The existing methods

focus on image-level [2] and/or pixel level detection [3].

Our focus in this paper is on image-level classification of

manipulated / authentic images considering an application

domain of fact-checking of large sets of images, where quick

verification of the authenticity of individual images is required.

Learning-based methods as well as hand-crafted feature-

based methods have been widely designed and refined to

expose the visually un-noticeable tampering trajectory of

specific manipulation types or the dataset properties [4]. Al-

though those data-driven approaches can achieve extremely

high classification accuracy regarding the training dataset, the

way they have learned to extract specific features for the

training task becomes less effective in the face of other types of

tampering. How to guarantee the performance of these image

manipulation detection methods to adapt to the complexity of

the image forgery dataset is still a challenge.

Several hand-crafted features that globally exist in different

image manipulation have been used for image forgery detec-

tion. Because of the complex and unique imaging process of

the pictures, any image manipulation operations, namely copy-

move, splicing and removal, inevitably leave tractable traces

due to the inconsistency of the forged area and the background

area [1]. Error-level Analysis (ELA) is known to track the

artifacts that are caused by inconsistent compression factors

or compression times of tampered regions and background

regions. An image has to be saved in certain fixed formats after

being manipulated, so the tampered area is compressed and

saved several times or compressed with different factors from

background which results in unnatural artifacts around forged

areas forming varying error levels. This JPEG compression-

based artifacts have widely been used as hand-crafted features

in image manipulation detection [5], [6].

Meanwhile in learning-based methods, CNNs are equipped

with the ability to fuse different levels of information at

different depths of the convolutional layers to cope with

the diversity and complexity of image manipulations. Those

multi-scale features that contain global and local information

are commonly combined by Feature Pyramids in which the

features maps from different layers are fused by repeated up-

sample and feature addition [7]. However, this feature com-

bination method with fixed reshaping parameters ignores the

different roles played by multiple levels of information, which

requires an adaptive architecture that can tailor convolutional

neural networks for different types of image manipulation.

To address this, this paper proposes a weighted convolu-

tional block model (WCBnet) to fuse various levels of features

extracted from different convolutional blocks, by assigning

different weights to those block outputs and computing their



Fig. 1. The five stages of proposed WCBnet, and different colors of features in the figure represent different weights

co-relationship. Before that, individual peak-shaped reshaping

is performed on each convolutional block, which could adapt

the shape and channel number of combined features according

to the dataset properties. As opposed to using an RGB as the

input to the learned feature extracting backbone, we compute

signed-value error levels (SEL) to use the corresponding error

level data as the input to the backbone, which emphasizes the

artifacts caused by inconsistent compression process between

forged and background areas. The proposed model is evaluated

on two common image manipulation types with shared and

independent traceable tampering traces, namely copy-move

and splicing, in order to verify its adaptation ability.

The main contributions of this paper include:

• Proposal of a CNN-based model called WCBnet that can

adjust the use of the multi-level features from hierarchical

convolution blocks, which is achieved by a cross-block

attention module; This self-adaptive model performs the

best on multiple image forgery datasets containing two

manipulation types;

• Design of a flexible feature reshaping module, named

peak-shaped reshaping, to customize the uniform shape

of those multi-level features according to the needs of

different image manipulation detection tasks;

• Proposal of a pre-processing method to extract

compression-based artifacts of manipulated images,

by normalizing and retaining the signed values of

compression error levels to enhance the representation

of small error values, which we call signed-value error

levels (SEL).

The rest of the paper is organised as follows: The related

work is briefly discussed in Sec. II. The details of the proposed

method are presented in Sec. III, followed by a thorough

evaluation of performance in Sec. IV and the concluding

remarks in Sec. V.

II. RELATED WORK

The related work includes methods based on handcrafted

or learned features, which have shown to be superior in

performance compared to that of the former. In order to

combine features extracted by different convolutional layers,

a U-shaped process was applied to reshape those features and

generate a prediction map in umUNET [8] and U-2NET [4]

for pixel-level manipulation detection and localization.

Self-attention modules have been applied in CNN struc-

tures to detect or locate image manipulation, as a tool to

strengthen the interrelationship among separated information

located in different locations or channels of extracted high-

level features. Dense position attention modules (PAM) and

channel attention modules (CAM) were applied serially on

each convolutional block, in order to generate the interaction

between image points of the feature map and improve the

performance of Xception on face image forgery datasets [9].

CAM and PAM were conducted in parallel as dual-attention

module to refine the distance between ground-truth mask

and generated manipulated feature mask in MVSSnet [10].

However, those attention modules are applied as self-adaptive

feature enhancement on each feature map of convolutional

block or on single combined feature. In the proposed method,

CAM is extended on five reshaped features of convolutional

blocks to adaptively generate relationship among different

level of information contained in those features.

Error-level analysis (ELA) has been used as a hand-crafted

method in detecting different types of image manipulations.

A dense layer and flatten layer are used as a classifier for

ELA results of forged face images [11]. Input images were

pre-processed by ELA and classified by a simple two-layer

or three-layer convolutional neural network, regarding splicing

and copy-move respectively [12]. ELA was applied on UNet to

achieve pixel-level image forgery detection, and improved the

pixel-level F1-score to 0.686 [13]. For above methods, CNNs

were used as a classifier for ELA-based input images. In the

proposed method, a pre-processing method called signed-value

error levels (SEL) is applied to expose image manipulation

traces, the local or global features which are then learned and

adatptively used by the proposed WCBnet.



Fig. 2. Three examples of pristine, splicing and copy-move images, and their
corresponding ground truth, ELA maps and SEL maps; Forged areas in similar
positions are marked with red boxes and zoomed in

III. PROPOSED METHOD

As shown in Fig. 1, the proposed model consists of five

stages. They include 1) Signed-value error-level analysis (SEL)

image pre-processing; 2) Leaned feature extractor module; 3)

peak-based adjustable feature reshaping process; 4) block-wise

feature attention module; 5) classification module. The details

of each stage will be introduced in this section.

A. Signed-value error levels (SEL)

Instead of using RGB images with excessive image fea-

tures and background distractions as network input, error-level

analysis (ELA) is applied as pre-processing to concentrate on

the artifacts generated by inconsistent compression process

between forged area and background. So the ELA result,

extracted from a given RGB input x of size W ×H × 3, is

fed into the learnt feature extractor. Conventionally the ELA

x′ of an RGB image x is computed by taking the absolute

difference between the original x and its corresponding JPEG

encoded and decoded image with respect to the compression

factor f as follows:

x′ = |x− JPEG(x, f)| . (1)

However, the sign information of image difference which

might contribute to important features corresponding to manip-

ulations, is ignored in the above conventional ELA calculation.

In order to preserve the sign information and enhance those

small values, we propose a normalisation approach as follows

leading to signed-value error levels:

x′ = 255×
x− JPEG(x, f)

max(|x− JPEG(x, f)|)
. (2)

This allows those decimal values that represent manipula-

tion artifacts to be normalized to the maximum range that can

be stored in a pixel (-255 to +255). The difference of value

distribution between ELA and SEL is shown in Fig. 3(a). Three

example images of CASIA2.0, regarding pristine, splicing and

copy-move respectively, are compared in Fig. 2.

(a) ELA histogram (b) SEL histogram

Fig. 3. The histograms of ELA and SEL, extracted from the same image

B. Learned feature extractor module

The pre-processed signed-value error levels result x′ is then

fed into the any learned feature extractors, in order to extract

multi-dimensional information from SEL maps. The common

CNNs divide its convolutional layer into several convolutional

blocks according to different kernels sizes and conceptional

field. In the proposed model, ResNet50 with five convolutional

blocks is selected as the learned feature extractor, and the

output of each convolutional block y1,y2,y3,y4,y5 with

different feature shape 256×256×64, 128×128×256, 64×
64 × 512, 32 × 32 × 1024, 16 × 16 × 2048 are extracted in

order to obtain different levels of detailed information and

global information in the image. The extracted feature yi

of convolutional block i of CNN extractor is determined as

Equation(3):

yi = CNN(x′, i). (3)

C. Peak-shaped feature reshaping

Next, the height and weight of convolutional block fea-

tures y1,y2,y3,y4,y5 need to be unified in order to be

acceptable by concatenation layer of any self-attention al-

gorithm. The common reshaping process in most learning

methods like UNet and FCN is achieved by a U-shaped

workflow, which decreases the feature shape by convolutional

blocks and increases it by block-by-block interpolation or

transposed convolution T . The size-increasing process of U-

shaped structure is operated as:

y′

i =

{

T (yi+1) + yi, if i = 4,

T (y′

i+1) + yi, if i = 1, 2, 3.
(4)

The aim of this repeated reshaping process is to obtain the

feature map y′

1 with the same size as the original image for

pixel-level classification and avoid the pooling operation from

destroying the image tampering traces. However, for different

image tampering types or datasets, the importance of each

information level is different resulting in the requirement of

different perception domains. We propose an adaptive struc-

ture that different reshaping algorithms, instead of repeated

transposed-convolution and addition, are performed on each

convolution block outputs individually to construct the feature

of the target size, as shown in Fig. 4. To achieve this, one of

the convolution blocks is selected as ’peak’ block yp while

the rest of features are reshaped to the its size by dense layers

or transposed convolution T , where r represent the ratio of



Fig. 4. Proposed Peak-shaped reshaping process

reshaped feature size to the target feature size, which defines

the neuron number of dense layer and kernel size of transposed

convolution. The peak-shaped reshaping process is described

as:

y′

i =











dense(yi, r), if i < p,

T (yi, r), if i > p,

yi, if i = p.

(5)

The selection of peak block number peak is adjustable due

to different manipulation types or image characteristics, and

decides whether to increase feature size without loss of de-

tail information or decrease feature size with more delicate

perceptual field. Moreover, in order to avoid the large gaps

in the number of channels of different block output features,

the channels are respectively adjusted to the same order

of magnitude through the dense layers. Then the combined

feature Y is obtained by concatenating the independently

reshaped features:

Y = Concat(y′

1,y
′

2,y
′

3,y
′

4,y
′

5). (6)

D. Cross-block attention module (Cross-BAM)

The concatenated feature Y is then processed by a cross-

block attention module, which enables the model adjusting the

weights of convolutional blocks according to various manipu-

lation types and digital characteristics of input images. Cross-

BAM consists of two core parts, including a self-attention

algorithm along channels to generate channel-wise weights for

each convolutional block and two fully-connected layers on

all weighted channels to obtain the inter-relationship between

blocks. The detailed workflow of cross-BAM is as follows:

• The feature Y of size Wi × Hi × C0, concatenated by

reshaped block features according to the size of peak

block Wi×Hi (convolutional block i), is globally pooled

along the height and width to a vector Awith the same

length as channel number of Y;

• The vector A of size 1× 1×C0 is connected to a ReLu

activation layer, in order to generate trainable weights for

all convolutional block channels;

TABLE I
THE COMMON IMAGE FORGERY DATASETS USED IN THE EXPERIMENTS.

Manipulation Dataset Image size
Image number

(forged/pristine)

Copy-move,

splicing

CASIA1.0 [14] 400×400 to 300×400 921/800

CASIA2.0 [14] 900×600 to 160×240 5063/7491

Defactos [15] 640×426 to 240×320 124000/

Splicing Columbia [16] 1152×768 to 757×568 183/180

Copy-move
Coverage [17] 752×472 to 253×340 100/100

NC2016 [18] 4329×3240 to 640×480 1124/847

• Two consecutive dense layers with different neuron fac-

tors are then applied to compute the channel-wise inter-

relationship, in other words, to comprehensively combine

weighted multi-level information of all convolutional

blocks. Two different dense layers are used to generate

non-linear connection among channels, compared to lin-

ear single dense layer.

• Finally the element-wise multiplication of block-wise

inter-related weights A and the input feature Y is com-

puted as feature Y′, to assign the vector weights to

the block output features in corresponding channels. The

parameters in cross-BAM are updated during training,

in order to change the model’s utilization of different

convolutional block outputs according to the properties

and manipulation types of the training dataset.

E. Classification layer

After the block-wise attention module, a global average

layer and a dense layer with Sigmoid activation map the

weighted feature Y′ to a single value of size 1× 1× 1 which

indicates the possibility of the input image belonging to the

positive class (pristine). Based on the most possible predicted

class and given ground-truth image-level label, binary cross-

entropy loss is calculated batch by batch and back-propagated

to update weights of model parameters along the direction of

loss drop.

IV. EXPERIMENTS

In this section, the experimental setup and the applied

image manipulation datasets are introduced first, followed by

the ablation study and performance evaluation of proposed

WCBnet.

A. Experimental setup

a) Hardware: The model is built and implemented by

TensorFlow2.5, on a PC with NVIDIA GeForce RTX 3090 Ti,

12th Gen Intel(R) Core(TM) i9-12900K 3.20 GHz processor

and 32.0 GB RAM.

b) Datasets: Six commonly-used image forgery datasets

are applied for training and evaluating proposed WCBnet.

The details of their manipulation types, image size and image

number are summarised in Table I.

c) Training details: The SEL of each dataset is extracted

first and manually split into training set, validation set and test

set as the ratio of 7:2:1. The training and ablation experiments

of proposed WCBnet are based on a large-scale datset CA-

SIA2.0, and the other image manipulation datasets are used for



TABLE II
ABLATION STUDY OF PEAK-SHAPED FEATURE RESHAPING, WHERE THE DATA IN THE TABLE REPRESENTS F1-SCORE

Channel 15 Channel 21 Channel 30 Channel 45 Customized Channel
Spling Copymove Mixed Splicing Copymove Mixed Splicing Copymove Mixed Splicing Copymove Mixed Splicing Copymove Mixed

Peak1 0.941 0.922 0.893 0.931 0.890 0.929 0.931 0.924 0.939 0.926 0.914 0.933 0.929 0.920 0.940

Peak2 0.943 0.930 0.936 0.946 0.929 0.909 0.948 0.926 0.939 0.938 0.926 0.928 0.940 0.920 0.910

Peak3 0.968 0.934 0.771 0.952 0.945 0.941 0.953 0.918 0.905 0.924 0.930 0.937 0.961 0.960 0.949

Peak4 0.951 0.933 0.941 0.951 0.879 0.912 0.955 0.910 0.947 0.940 0.926 0.951 0.953 0.939 0.908

Peak5 0.959 0.938 0.936 0.972 0.916 0.952 0.955 0.957 0.936 0.956 0.944 0.941 0.962 0.946 0.912

TABLE III
ABLATION STUDY OF PEAK-SHAPED FEATURE RESHAPING, WHERE THE DATA IN THE TABLE REPRESENTS AUC

Channel 15 Channel 21 Channel 30 Channel 45 Customized Channel
Spling Copymove Mixed Splicing Copymove Mixed Splicing Copymove Mixed Splicing Copymove Mixed Splicing Copymove Mixed

Peak1 0.991 0.989 0.982 0.993 0.987 0.989 0.989 0.989 0.992 0.990 0.987 0.991 0.991 0.989 0.990

Peak2 0.995 0.993 0.994 0.995 0.991 0.991 0.993 0.988 0.994 0.991 0.991 0.992 0.989 0.992 0.985

Peak3 0.990 0.993 0.920 0.991 0.986 0.993 0.990 0.985 0.989 0.989 0.990 0.993 0.983 0.991 0.989

Peak4 0.983 0.985 0.980 0.988 0.971 0.978 0.984 0.982 0.981 0.980 0.989 0.981 0.983 0.985 0.986

Peak5 0.981 0.986 0.985 0.987 0.980 0.983 0.989 0.982 0.970 0.984 0.987 0.977 0.989 0.994 0.981

comprehensive performance evaluation. The model is trained

on the split training set of copy-move or splicing subsets and

pristine subsets for 200 epochs and evaluated on the unseen

split testing images. For the experiments, ResNet50 with five

convolutional blocks, is selected to be the learned feature

extractor. The JPEG compression factor of ELA and SEL is

set to 90 as an empirical choice.

d) Evaluation metrics: Image-level accuracy, F1-score,

and AUC (area under curve) are selected as the evaluation

metrics for forged-or-pristine binary classification task.

B. Ablation studies

Ablation studies, including signed-value error levels and

peak-shaped feature reshaping, were conducted to show the

effectiveness of the core components of WCBnet and optimize

its structure.

a) Effectiveness of peak-shaped feature reshaping: Since

the shape and channel-number of target feature in peak-shaped

reshaping module are flexible, several ablation experiments

are conducted on three subsets of CASIA2.0, regarding SEL

inputs only. Each convolutional block is selected as peak-

block in turns (from Peak1 to Peak5), in which Peak1
is equivalent to classic U-shaped reshaping structure. The

channel number of these features is also be unified into one

of 15, 21, 30, and 45 in turn. As shown in Table II and III,

the performance of networks combining different peak blocks

and channel numbers varies. Considering AUC, the network

based on Peak1, Peak2 or Peak3 can achieve a value of

about 0.990 under all conditions, and the average difference

between the three is only 0.006. When considering F1-score,

the network based on Peak3 and customized channel numbers

achieves the most stable and high performance on the three

subsets which are 0.961, 0.960, 0.949. The customized chan-

nels {21, 15, 15, 30, 21} are defined according to the optimal

channel selection of different peak-blocks.

b) Effectiveness of signed-value error levels: The effec-

tiveness of SEL is evaluated by comparing the performance of

WCBnet on RGB, ELA and SEL inputs of three forged subsets

TABLE IV
PERFORMANCE OF WCBNET ON THREE SUBSETS OF CASIA2.0,

REGARDING THREE DIFFERENT INPUT TYPES

Subset

Type

RGB ELA SEL

Acc F1 AUC Acc F1 AUC Acc F1-score AUC

Splicing 64.84% 0.702 0.811 92.58% 0.891 0.982 95.33% 0.928 0.991

Copymove 71.15% 0.616 0.794 92.31% 0.867 0.983 95.33% 0.913 0.989

Mixed 82.69% 0.695 0.913 94.51% 0.912 0.987 95.88% 0.935 0.992

TABLE V
PERFORMANCE OF THE PROPOSED METHOD AND THE STATE-OF-ART

MODELS (THE BEST AND THE SECOND BEST METHODS FOR EACH

DATASET ARE SHOWN IN RED AND BLUE, RESPECTIVELY).

Model
Testing set

CASIA1.0 Defactos Columbia NC2016 Coverage
F1 AUC F1 AUC F1 AUC F1 AUC F1 AUC

ManTra-Net [19] 0.297 0.141 0.000 0.543 0.621 0.681 - - 0.484 0.491

CR-CNN [20] 0.361 0.766 0.397 0.567 0.392 0.783 0.939 - 0.131 0.566

FCN-16 [21] 0.775 0.796 0.458 0.551 0.481 0.762 - - 0.180 0.541

MVSS-Net [10] 0.752 0.839 0.404 0.573 0.802 0.980 - - 0.244 0.731

umUNET [8] 0.565 - - - 0.761 - - - 0.423 -

U2-Net [4] 0.557 - - - 0.756 - 0.911 - 0.400 -

WCBnet 1.000 1.000 0.801 0.818 0.863 0.950 0.751 0.560 0.646 0.503

of CASIA2.0. As shown in Table IV, the most obvious differ-

ence is that all error-level-based inputs are superior than RGB

input. More precisely, the classification accuracy of model

with ELA input on splicing, copy-move, and mixed subsets is

increased by around 28%, 21%, and 12% respectively, and the

F1-score is also increased by 0.21, 0.25 and 0.22, compared

to the performance of same models with RGB input. The

model with SEL input achieves even better results, compared

to the number regarding ELA input, which increased the

accuracy of the three subsets by 3% on average, and reached

an average accuracy of about 95.5%, average f1-score of 0.925

and average AUC score of 0.990, on all three subsets.

C. Performance comparison with the state-of-the-art methods

The performance of proposed WCBnet is compared to

several state-of-the-art methods, including MantraNet [19],

CR-CNN [20], FCN-16c̃itelong2015fully, MvssNet [10],

Modified-CNN [8] and U2-Net [4], via two evaluation metrics

that are AUC and F1-scores. The result is shown in the

Table V. The proposed WCBnet achieves the best performance

on CASIA1.0 with highest AUC of 1.000 and highest F1-score



of 1.000, Defactos with highest AUC of 0.818 and highest F1-

score of 0.801, Coverage with highest F1-score of 0.646 but

fourth highest AUC, Columbia with highest F1-score of 0.863

and second-best AUC of 0.950 among all the state-of-the-

art models, and was also ranked second best on the NC2016

dataset achieving 0.751 for F1-score. The results indicate that,

in the face of several datasets with different characteristics

and manipulation methods, the proposed model can adapt its

structure to distinguish well between those forged images and

pristine images.

D. Discussion and limitations

The three core components of proposed WCBnet, namely

SEL, Peak-based reshaping and Cross-block attention, have

been proven to optimize the model performance over different

image manipulation types and datasets, compared to results of

RGB or ELA inputs, fixed-shape reshaping and block feature-

fusion modules. But the limitation of the current WCBnet is

that it works comparatively poorly on small-scale and fine

post-processed image manipulation datasets, such as CMFDdb

and Coverage with only dozens of images. Those specific

datasets are also challenging for other state-of-art methods,

on which WCBnet still achieves the best results (F1-score of

0.646 on Coverage, higher than the second performance of

ManTra-Net by 0.162) but does not achieve enough satisfac-

tory results.

V. CONCLUSIONS

In this paper, we propose a novel approach for detection

of manipulated images. Main core components of WCBnet

include signed-vale error level analysis (SEL), Muti-level

learned feature extraction, individual feature reshaping and a

cross-block attention module. The novel cross-block attention

module in WCBnet adapts to different image manipulation

types and dataset variables, by making adaptive use of the

multi-level information extracted by convolutional blocks.

The performance of WCBnet shows superior performance

on commonly-used image forgery datasets and proven to be

resulting the best performance in terms of f1-scores compared

to those of the state-of-the-art methods showing improvements

ranging from 6.1% to 34.3 % with respect to the second-best

methods. The use of SEL showed superior model performance

by 23% and 4%, compared to RGB-based and conventional

ELA-based results, respectively. The proposed block-wise

attention module consisting of self-generated weights and non-

linear interrelation achieved the best performance on RGB,

ELA, and SEL input modes for all subsets of CASIA2.0

(87.07% on average classification accuracy and F1-score of

0.879).
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