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Abstract

Hundreds of millions of network cameras have been installed throughout the world. Each is capable
of providing a vast amount of real-time data. Analyzing the massive data generated by these cameras
requires significant computational resources and the demands may vary over time. Cloud computing
shows the most promise to provide the needed resources on demand. In this article, we investigate how
to allocate cloud resources when analyzing real-time data streams from network cameras. A resource
manager considers many factors that affect its decisions, including the types of analysis, the number of
data streams, and the locations of the cameras. The manager then selects the most cost-efficient types
of cloud instances (e.g. CPU vs. GPGPU) to meet the computational demands for analyzing streams.
We evaluate the effectiveness of our approach using Amazon Web Services. Experiments demonstrate
more than 50% cost reduction for real workloads.

INTRODUCTION

Visual data is projected to grow exponentially in the coming years. Video is expected to grow
26% annually and account for 82% of consumer Internet traffic; live video on the Internet is
expected to grow 1,500% from 2016 to 2021 [1]. Surveillance cameras are expected to see similar
growth. Today, more than 240 million surveillance cameras have been installed globally [2] and
Stratistics MRC predicts that the market will continue to grow 18.3% annually. These video
surveillance cameras can produce vast amounts of real-time data. With the rapid progress of
machine learning and computer vision, it is possible to analyze these real-time streams. Two key
technologies are essential to harness the potential of these real-time data steams: (1) analyzing
the data using computer vision, and (2) employing scalable resources to meet the demands of
computation.

This paper focuses on solving the second problem. This research group adopts both supercom-
puting and cloud computing to address the problem from different perspectives. Supercomputing
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systems are optimized for speed and I/O throughput but are limited when it comes to meeting
fluctuating demands because of job scheduling requirements. Cloud computing offers the po-
tential for high-end computing resources and also allows for on-demand operation. Proponents
of cloud computing are willing to make trade-offs when it comes to exchanging CPU and I/O
speed in favor of high availability and flexible scheduling. This paper describes our experiences
with cloud computing to analyze many video streams from network cameras.

Many factors affect the resource requirements for analyzing visual data streams, including the
complexity of the analysis programs, the content being analyzed, the size (number of pixels)
of each image or video frame, the frame rates, etc. The requirements may vary over time. For
example, a program that analyzes video streams from traffic cameras to detect congestion may
run during rush hours only. Cloud computing is the best option to meet these varying needs.
Cloud computing allows users to dynamically allocate virtual machines (called instances) on
demand. Cloud vendors, such as Amazon EC2 (Elastic Cloud Computing), Microsoft Azure, and
IBM Cloud, provide many types of cloud instances with different amounts of memory, number
of cores, and number of GPUs (graphics processing units) at different prices (US dollars per
hour). These instances reside in data centers distributed in North and South America, Europe,
Asia, and Australia. The challenge is minimizing the cost of cloud instances without sacrificing
performance.

To drive the research in cloud resource optimization for processing multiple visual data
streams, a software infrastructure named Continuous Analysis of Many Cameras (CAM2) has
been established at Purdue University [3]. CAM2 uses network cameras that provide real-
time visual data publicly available on the Internet. These cameras observe traffic intersections,
metropolitan areas, university campuses, tourist attractions, etc. Some cameras provide videos and
others show snapshots. The analysis of real-time data streams can be used in many applications,
such as urban planning and emergency response.

CAM2 is designed as a computing platform for analyzing real-time network camera data.
Network cameras capture all sorts of visual data. The examples below show a night club, a
computer classroom, a park, and a city street. CAM2 has the following major components:
(1) a camera database storing the information about the cameras’ geographical locations,
frame rates, etc, (2) a run-time system retrieving data from the network cameras and
sending the data for analysis, and (3) a resource manager allocating and releasing
computing resources to meet application demands. CAM2’s application programming
interface (API) allows the same analysis programs to retrieve and analyze data from a
diverse set of network cameras [4]. CAM2 uses only public data available on the Internet.
Readers interested in using CAM2 can register at https://www.cam2project.net.
The Terms of Use and Privacy Policy are available on the website.



RESOURCE MANAGEMENT OF CLOUD INSTANCES

As mentioned earlier, cloud instances would be ideal solutions for meeting the varying de-
mands of video analytics. Cloud vendors provide many options; some instances have GPUs while
the others do not. Amazon EC2 has optimizers for processes, memory, and networks. IBM cloud
gives users the option of selecting virtual machines or physical machines (called “bare metal
servers”); within each category there are dozens of options with different types of processors
and amounts of memory. Microsoft Azure also has many configurations to choose from. Table I
shows the prices of several types of cloud instances at different locations.

Vendor Instance Cores Memory (GiB) GPU Price Per Hour (US$)
Virginia London Singapore

EC2
c4.2xlarge 8 15 0 0.398 0.476 0.462
c4.8xlarge 36 60 0 1.591 1.902 1.848
g3.8xlarge 32 244 2 2.280 N/A 3.340

US East West Europe East Asia

Azure D8 v3 8 32 0 0.384 0.480 0.625
NC24r 24 224 4 3.960 5.132 N/A

TABLE I. Prices of different Amazon EC2 and Microsoft Azure cloud instances at different locations.

Fig. 1. The resource manager considers many factors, including the data content, the analysis programs, and the
types and costs of cloud instances. The manager selects the most cost-efficient instances (these may have CPUs
only or they may include GPUs as well).

Because of the wide range of prices, instance types, and locations, a resource manager is
essential when optimizing large scale cloud usage. Figure 1 illustrates the role of a resource



manager. The resource manager has to consider the following factors when selecting the most
appropriate cloud instances:

• Characteristics of analysis programs. Different programs have different resource require-
ments: some programs benefit from more cores, some need more memory, and some need
GPUs.

• Desired frame rates. Some analysis programs (such as tracking moving objects) need high
frame rates. For some other programs (such as observing air quality or traffic congestion),
low frame rates are sufficient.

• Image or frame sizes, in terms of pixels. If an image has more pixels, more computation
is needed.

• Content of the data. The execution time and resource requirements depend on the com-
plexity of the content. Complex content (e.g., many moving objects in a video stream) may
require more computing resources than simple content.

• Locations of cameras and cloud instances. When analyzing video streams, the distances
between cloud instances and cameras (measured by the round-trip time) can affect the frame
rates [5]. Therefore, there may be restrictions on the location of an instance.

Based on these inputs, the resource manager selects the cloud instances. An instance’s con-
figuration (also called the type) corresponds to the number of cores, the amount of memory,
the presence of GPUs, and the geographical location. The choice is made to meet the resource
requirements at the lowest possible cost. This resource manager is dynamic and its decisions
may change over time because the demands may vary. This paper presents two optimization
strategies: one manages CPU and GPU usage, and the other manages the locations of instances.

Cloud Resource Optimization Problem
The problem: selecting the cloud instances (types and locations) for meeting the resource
requirements needed to analyze real-time streaming data at the lowest costs.

ADAPTIVE RESOURCE MANAGEMENT FOR VIDEO ANALYSIS IN THE CLOUD

A solution to handling cloud resource management, proposed by Mohan et al. [6], is Adaptive
Resource Management for Video Analysis in the Cloud (ARMVAC) . This method does the
following: (1) reads inputs necessary for modeling the problem as a Vector Bin Packing Problem,
(2) selects the locations of cloud instances to be considered for the given analysis, (3) determines
the types and number of cloud instances needed for the analysis, and (4) employs an adaptive
resource management solution to adjust resource requirements during runtime. Kaseb et al. [7]
improve ARMVAC by considering cloud instances with both CPU and GPU. Mohan et al.
[8] extend ARMVAC by considering instances’ locations. The following sections explain these
improvements.

CPU AND GPU MANAGEMENT IN THE CLOUD

Differences between CPUs and GPUs: Central processing units (CPUs) and graphics process-
ing units (GPUs, also called general-purpose graphics processing units GPGPUs) have different
characteristics and capabilities. CPUs, with several to dozens of processing cores, are the brains
of computers. CPU cores can handle complex program flows with many control statements. In
contrast, GPUs have thousands of smaller and simpler cores. GPUs can be significantly faster



when performing similar tasks on many pieces of data, such as videos and images. GPUs adopt
the SIMD (single instruction, multiple data) style parallelism: the same computation runs on
different elements of arrays.

Another key difference between CPUs and GPUs is price. For example, Amazon EC2’s
c5d.9xlarge CPU instance has 36 virtual CPUs with 72 GB of memory and costs $1.728
per hour. GPUs, however, tend to be much more expensive. The p3.2xlarge GPU instance
has 8 virtual CPUs with 61 GB of memory and costs $3.06 per hour. Another GPU instance,
p3.8xlarge, has 32 virtual CPUs and 244 GB memory and costs $12.24 per hour.



Multi-Dimensional Multi-Choice Packing Problem
Multi-dimensional multi-choice packing problems occur in everyday life. Consider

renting a truck (or trucks) for moving boxes. The trucks come in different sizes at
different costs and the boxes have different dimensions (length, width, height) as well.
The objective is to find the cheapest truck (or trucks) that can accommodate these boxes.
Some boxes, however, have more requirements than others. For example, it is possible
that a box may include frozen food and would need a truck that offers refrigeration.

This problem is analogous to the problem of finding the most cost-effective cloud
instances for analyzing the data streams. Each type of instance can be compared to a type
of truck, in that it has several dimensions: the number of CPUs, the amount of memory,
and the presence of GPUs. Each analysis program, running on one data stream, is a box
with a particular size. Some analysis programs (e.g., tracking) need GPUs to process
the data at the desired frame rates, similar to the boxes that require refrigerated trucks.
Some other programs can use low frame rates and can run on CPUs only. Finding the
most cost-effective cloud instance (or instances) to accommodate the analysis programs
for all data streams is comparable to finding the most cost-effective truck (or trucks) to
transport all boxes.

In order to explain the multiple choice vector bin packing problem, we created an
arc-flow graph like the one presented by Brandao and Pedroso [9]. In the arc-flow graph
illustrated below, the nodes weight represents the box dimensions (width, height), and
the demand represents the number of boxes. Any path from the source node to the target
node represents a viable set of boxes to pack into a truck. In this example, a truck with
dimensions (7, 3) is filled with 3 types of boxes with the following weights and demands:

A Weight: (5, 1) Demand: 1
B Weight: (3, 1) Demand: 1
C Weight: (2, 1) Demand: 2

First, box A is added as many times as the demand requires without over filling the truck.
Then, box B goes through this process. And finally, box C. Once this graph is built, a
second step is required to compress the graph. In cases where there can be hundreds of
boxes and hundreds of trucks, a compressed graph is required to reduce the number of
paths using the same set of boxes. This in turn will result in time saved when solving the
graph. After the compression is complete a Gurobi 5.0.0 branch-and-cut solver is used
to find the best path to get the maximum number of boxes into a truck. This method,
however, only solves for one type of truck. In order to solve for multiple choices of
trucks, we implemented the multiple choice method used by Brandao and Pedroso [10].
In this implementation, a graph is constructed for each truck type, and then solved using
the Gurobi solver.
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(b)

Fig. 2. (a) A three-dimensional multiple-choice packing problem. A - C represent three types of data streams
whose resource requirements are expressed in three dimensions (CPU, Memory, and GPU). The heights represent
the resource requirements, comparable to the width, height, and lengths of boxes. There are four choices of cloud
instances each offering different sizes and costs. They are comparable to different types of trucks. The heights
represent the sizes of these dimensions, comparable to the sizes of trucks. The goal is to fit the data streams (boxes)
into the cloud instances (trucks). (b) Four possible solutions to accommodate different combinations of data streams.

Select Instances with CPU and GPU: The significant differences in price and performance of
CPU-only and GPU-equipped instances makes it critical to select the most cost-effective instances
when analyzing many real-time data streams. To effectively select CPU and GPU instances for
this task, Kaseb et al. [7] formulated the problem as multi-dimensional multi-choice packing
problem (please see the sidebar for explanation). This is illustrated in Figure 2 (a). In this figure,
there are three types of data streams and four types of cloud instances. The goal is to fit the
streams so that they completely fit inside the cloud instance and as little space is wasted as
possible. Figure 2 (b) shows possible solutions to effectively pack different combinations of the
data streams.

Kaseb’s solution organizes the resource requirements into four dimensions: CPU, memory
size, GPU, and GPU memory size. The method considers the frame sizes and frame rates of
the video streams for determining the resource requirements needed to run analysis on different
data streams. Due to the fluctuations in executing the analysis programs, the study discovers that
when any dimension is more than 90% utilized, the performance starts to degrade. Thus, the



method keeps the utilization of each dimension below 90%. This multi-dimension, multi-choice
optimization solution demonstrates considerable cost savings in different experimental settings.

Evaluation results from [7] are shown in Figure 3. The experiments use ten network cameras
from CAM2’s database, with frame rates varying from 0.2 frames per second to 8 frames per
second. Two object detection programs are used to analyze the data: VGG16 [11] and ZF [12].
At the highest frame rates, GPUs can accelerate these two analysis programs up to 16 times.
At the lowest frame rates, the improvement falls below 5%. In other words, the benefits of
GPUs are apparent only when the frame rates are high. At low frames rates, CPUs are preferred
because of the lower costs. This solution can reduce the costs by as much as 61% by matching
the resource requirements of the analysis programs and the cloud instances’ capabilities.

Fig. 3. Consider three scenarios and three unique instance selection strategies. Each scenario runs two analysis
programs, VGG16 and ZF, at a different combination of frame rates and number of cameras. Strategy 1 (ST1) uses
instances with only CPUs, strategy 2 (ST2) uses instances with only GPUs, and strategy 3 (ST3), Kasab’s method,
selects between GPU and CPU instances.

This study provides deep insights on how to offer computer vision services at lower costs
as they become widely available in the cloud. This study, however, does not consider the
geographical locations of network cameras. The next section explains how cameras’ locations
impact network distances and the cloud resource management of different types of instances.

OPTIMIZING INSTANCE TYPE AND LOCATION

In order to determine the most effective configuration of resources, the resource manager
considers the cost of an instance in the context of its location. To make these considerations in
practice, the location and type are first evaluated independently as follows.

Local Optimization: Table I shows that the same type of cloud instance at different locations
can have different costs. Sometimes this cost disparity can exceed 60%. For example, the Azure
D8 v3 instance costs 63% more in Singapore than in Virginia USA (0.625

0.384
= 1.63). A natural

question is whether the data from network cameras should be sent to the cloud instances with
the lowest prices. A prior study [5] shows that the observed frame rate is reduced when the
distance (measured by network round-trip time) between a network camera and a cloud instance
increases. Thus, when analyzing data streams from worldwide network cameras, the locations
of the cameras and cloud instances must be considered.
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Fig. 4. Consider six network cameras geographically distributed in America, Europe, and Asia. Amazon EC2 offers
cloud instances in many locations (shows as the cloud icons). In (a), if high frames are required, the data must be
analyzed by instances that are closer to the cameras. The circles mark the maximum distances the data can travel.
As a result, six instances are needed. In (b), the required frame rates are lower and the circles are larger. One
cloud instance can analyze multiple data streams and only three instances are needed. The three selected instances,
marked with black boxes, are one potential solution.

Existing video cameras are designed for human viewing. For this purpose, 30 frames per
second provide seamless experience. When video streams are analyzed by computers, the needed
frame rates depend on the purposes. Though high frame rates are needed for tracking fast moving
objects, low frame rates are sufficient for observing phenomena such as weather. Mohan et al. [13]
study the necessary frame rates to track objects such as people walking, jogging, cycling etc. The
study discovers that for cameras watching pedestrians walking, the frame rates can be reduced
to as low as six frames per second. For objects that are far away from the cameras, even lower
frame rates suffice.

Figure 4 illustrates the relationships between frame rates and geographical locations. In this
figure, a small circle indicates a high frame rate. When a high frame rate is desired, the data
stream can be sent only a short distance - measured by the round-trip time (RTT). This requires
the resource manager to analyze the data stream at a cloud instance near the network camera.
In Figure 4 (a), six separate cloud instances are needed because the circles do not overlap. If



a lower frame rate is acceptable, the acceptable RTT is higher and the circles can be larger, as
shown in Figure 4 (b). One cloud instance is capable of analyzing multiple data streams. As a
result, only the three boxed instances are needed and the cost can be reduced.

Fig. 5. There are 3 possible cloud instances, each with a different size and cost.

Instance Type Optimization: Typically, when multiple data streams are analyzed at one
instance, additional cores, memory, or the presence of GPUs are required. This results in higher
costs. Thus, to effectively optimize cloud instance usage, the resource manager has to consider
the number of instances as well as their capabilities. Consider the example in Figure 5. Here, data
from eight network cameras is analyzed, and the cloud manager must decide which instances
to use. The cloud manager has the options to choose three types of instances at $1, $2, and $3
per hour. The first instance has the fewest cores and the least amount of memory; consequently,
it can analyze only two data streams. The third type of instance, despite the higher cost, can
analyze eight data streams at the lowest cost per stream.

Fig. 6. Consider three different cloud resource managers: Nearest Location (NL), Adaptive Resource Management
for Video Analysis in the Cloud (ARMVAC), and Globally Cheapest Location (GCL). A cost comparison between
each resource manager is shown at various target frame rates.



Considering instances’ types and locations simultaneously makes cloud resource management a
complex optimization problem. Mohan et al. [8], [6] propose to first eliminate instance locations
that are outside the acceptable RTT range. This method, named ARMVAC, then selects the
lowest-cost instances from the remaining pool, and sends as many data streams to this instance
while meeting the desired frame rates. This strategy performs well for high and low frame rates;
streams with higher than 20 frames per second perform well since few instances can meet the
processing requirements. Analyzing data streams with lower than one frame per second also
performs well since there are few restrictions on instance requirements. The method does not
perform well, however, when the desired frame rates are between one and twenty frames per
second. In this range there are too many instance selections that can analyze the data. Mohan et
al. [8] resolve this issue by formulating it as the multi-dimensional, multi-choice packing problem
that accounts for the camera to cloud instance price ratio. This method, named Globally Cheapest
Location (GCL), can reduce cost by as much as 56% compared with a resource manager that
always selects the Nearest Location (NL) instances, and 31% compared with the ARMVAC
method. An evaluation of the relationship between cost and frame rates is shown in Figure 6
which compares ARMVAC, GCL, and NL solutions. As explained earlier, the analysis programs’
resource demands may vary due to a wide range of reasons. These methods can make resource
decisions quickly and be applied during runtime. An experiment shows the adaptive solutions
implemented in Amazon EC2 responding to the changing needs is presented in [14].

SUMMARY

With the rise of the “Internet of Video Things” [15], comes the possibility to make use of the
massive amount of visual data. Analyzing the data requires a large amount of cloud computing
resources. With the variety of cloud services available, it is important to optimize cloud-instance
utilization to save money. This work proposes a cloud resource manager to make cost-effective
use of both the real-time video data available on the Internet and the wide variety of cloud services
available. The resource manager determines cost-effective ways to analyze video streams using
cloud instances. It considers the geographic location of an instance relative to a camera, as well
as the resources available in particular instances. By taking these factors into consideration, more
than 50% cost can be saved when using a commercial cloud vendor.
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