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Abstract—Object detectors are vital to many modern computer vision applications. However,
even state-of-the-art object detectors are not perfect. On two images that look similar to human
eyes, the same detector can make different predictions because of small image distortions like
camera sensor noise and lighting changes. This problem is called inconsistency. Existing
accuracy metrics do not properly account for inconsistency, and similar work in this area only
targets improvements on artificial image distortions. Therefore, we propose a method to use
non-artificial video frames to measure object detection consistency over time, across frames.
Using this method, we show that the consistency of modern object detectors ranges from 83.2%
to 97.1% on different video datasets from the Multiple Object Tracking Challenge. We conclude
by showing that applying image distortion corrections like .WEBP Image Compression and
Unsharp Masking can improve consistency by as much as 5.1%, with no loss in accuracy.

MUCH OF MODERN COMPUTER VISION RE-
LIES ON OBJECT DETECTORS. An object detec-
tor is a Deep Neural Network (DNN) that takes
an image as the input and then identifies the
locations and types of objects found in that image.
Across scientific disciplines, object detectors are
increasingly ubiquitous. From electronic package
sorting in e-commerce to collision detection in
traffic monitoring, from remote sensing in low-
orbit satellites to automated MRI screening in
the fight against cancer: object detectors are
driving an entire frontier of technology. With
so many critical applications, object detectors
need to be consistently accurate. Modern object
detectors use different architectures (e.g., single-
shot, R-CNN, etc.) and training methods (e.g.,
multitask loss, neural architecture search, etc.)
to achieve state-of-the-art accuracy on popular

image datasets like Microsoft COCO (Common
Objects in Context) [1].

The Consistency Problem
Even though object detectors are carefully

tested for accuracy, this article observes that con-
sistency is also a valuable metric that receives
less attention in literature. As we discuss later,
common image datasets make it challenging to
test for consistency.

Accuracy typically measures how often an
object detector is correct on average. This in-
formation is partially deficient because it does
not capture the variation in an object detector’s
performance when input images are similar. Since
accuracy is reported as an average, there could
be multiple ways an object detector achieves
a given accuracy, some of which may be less
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(a) (b)

Figure 1: State-of-the-art object detector Mask-RCNN is

inconsistent on two images taken 0.03s apart, even though

both images look alike. In (a), the woman is missed (red

dashed-line box) while the man is detected (green solid box).

In (b), the reverse is true. (All other people are detected

correctly in both images, giving an average 3/4 accuracy in

both images.)

desirable. For example, in Fig. 1, a state-of-the-art
object detector (Mask-RCNN [2]) detects three
out of four people per image. The accuracy is the
same on average (3/4), yet the detector behaves
inconsistently: it misses a different person in each
image.

Inconsistent behavior becomes cause for con-
cern in vision applications that demand strict
performance guarantees. For example, a collision
prevention algorithm with 95% accuracy that
misses the same 5% of objects allows one to
investigate the cause of the 5% error more eas-
ily, because the defective behavior is consistent.
However, an algorithm that behaves inconsis-
tently, missing different objects across each image
in the test, is much harder to troubleshoot.

This article investigates object detector con-
sistency as a method to augment existing accu-
racy metrics. Consistency measures the difference
in predictions from an object detector across
similar images. We explore different methods
to quantify consistency, ultimately choosing a
metric that tracks a detector’s behavior on time-
series images from the MOT Challenge [3]—a
dataset originally intended to benchmark object
tracking. As shown in Fig. 2, we find that state-
of-the-art detectors (Mask-RCNN, Faster-RCNN
[4], RetinaNet [5], SSD [6]) exhibit inconsistent
behavior. In our experiments, we observe up to
an average of 17% inconsistent detections. We
evaluate methods to improve consistency and
present a selection of methods (lossy image com-
pression, gamma boosting, etc.) that successfully
raise consistency by up to 5%.

(a) (b)

(c) (d)

(e) (f)

Figure 2: Different object detectors behave inconsistently

on images that look visually similar. Left images are taken

0.03s before the right. Red, dashed-line boxes are missed

detections, green solid boxes are correct detections. (a)-(b)

Faster-RCNN. (c)-(d) RetinaNet. (e)-(f) SSD.

What accuracy measures
Accuracy is determined by comparing the pre-

dictions of an object detector against the ground
truth in a dataset of images. Standard accuracy
metrics like mean Average Precision (mAP) usu-
ally consider two factors simultaneously: (1) how
much of the ground truth the detector successfully
predicts, and (2) how many of the detector’s pre-
dictions were incorrect. To get perfect accuracy,
each of the predictions an object detector makes
must be correct: it cannot blanket the image with
guesses.

The mAP accuracy metric is defined in terms
of precision and recall using true/false positives
and negatives (see Tab. 1). Precision and recall
are defined in Eqn. 1 and 2, respectively. mAP is
calculated for a given image dataset by integrating
the area under the precision-versus-recall curve
with respect to recall (Eqn. 3).

precision p =
TP

TP + FP
(1)

recall r =
TP

TP + FN
(2)
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Table 1: Terminology used for calculating object
detection accuracy.

Object detected Object not detected

Object exists True Positive
(TP)

False Negative
(FN)

Object does
not exist

False Positive
(FP)

True Negative
(TN)

(a) (b)

(c) (d)

Figure 3: Accuracy does not capture consistency. For object

detections shown in similar-looking images, (a)-(b) has the

same average accuracy (i.e. 1/2 correct) as (c)-(d). (a)-(b) has

consistent detections (same object detected in both images),

but (c)-(d) is inconsistent (different objects detected in both

images).

accuracy =

∫ 1

0

p(r)dr (3)

Accuracy does not measure
consistency

When accuracy is not 100%, there may be
more to the story (for context, the state-of-the-art
Mask-RCNN reaches 63% mAP on the COCO
dataset). Accuracy does not describe whether the
detector is consistent. Consider an object detector
that achieves 50% accuracy on a set of images,
where each image is slightly different but still
contains the same objects. One might hope that
the detector would predict consistently as shown
in Fig. 3a-b. However, it is still possible for other
detector predictions (Fig. 3c-d) to achieve the
same 50% accuracy, albeit inconsistently.

Additionally, simply reporting fine-grained
accuracy statistics does not capture consistency. It
is true that we can infer more information about
the neural network’s consistency by reporting
additional statistics like the standard deviation or
variance of per-image accuracy across a dataset of

similar images. However, reporting the standard
deviation still does not reveal the Fig. 3c-d case
discussed above, where the detector inconsis-
tently detects and misses different objects in each
frame even though the number of objects remains
the same.

As we showed earlier in Fig. 2, inconsistent
behavior exists even in popular object detectors.
Thus, accuracy does not always communicate
the full picture of a detector’s performance be-
cause it does not explicitly describe consistency.
Inconsistency may have severe consequences in
applications that involve safety.

Related work
There is a growing number of studies to im-

prove computer vision, but they do not focus on
consistency. These efforts can largely be grouped
into two categories: (1) adversarial attacks and (2)
synthetic image distortions.

Adversarial attacks
Adversarial attacks present a significant chal-

lenge to neural networks. Goodfellow, et al. [7]
demonstrate that a well-trained image classifier
can be tricked into misclassifying an image by
slightly perturbing the values of the pixels. In
a typical adversarial attack, an algorithm makes
minute, calculated adjustments to the pixels of a
correctly predicted image until the neural network
makes an incorrect prediction. The final image,
known as the adversarial sample, appears to hu-
man eyes as very similar to the original image.
Several different adversarial samples are shown
in Fig. 4.

Existing methods to defend against adversar-
ial attacks often involve some combination of
(1) including adversarial samples during network
training [7], (2) transforming input images into
a lower-dimensional space before feeding the
neural networks [10], and (3) filtering adversarial
samples through a custom neural network before
they reach the main network [11].

Synthetic image distortions and data
augmentation

Computer vision models can make incorrect
predictions on images from natural sources (i.e.,
not manipulated for adversarial attacks) [12]. Two
images of the same scene can be captured by
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(a) (b) (c) (d)

Figure 4: Similar-looking adversarial samples generated

from an image in the MNIST handwriting dataset. (a) Original

image. Correctly classified as “8” with 0.9 confidence. (b)

Fast-Gradient Sign Method adversarial sample. Wrongly clas-

sified as “4” with 0.9 confidence [7]. (c) Jacobian Saliency

Map Attack adversarial sample. Wrongly classified as “9”

with 0.6 confidence [8]. (d) DeepFool adversarial sample.

Wrongly classified as “4” with 0.83 confidence [9].

(a) (b)

(c) (d)

Figure 5: Examples of synthetic image distortions. (a)

Original image. (b) Increased brightness. (c) Motion blur. (d)

Artificial fog.

the same camera less than a second apart, yet
the predictions of a neural network on those two
visually similar images can differ dramatically.
The small differences between the two images are
called image distortions, and they can be caused
by a range of factors, including ambient light
level and camera sensor noise [13].

To make neural networks more robust against
image distortions, data augmentation is widely
used. The networks are trained on datasets that are
modified, or synthetically distorted, to emulate
the natural distortions. Common synthetic image
distortions (shown in Fig. 5) include perturbing
the pixels with Gaussian noise, adding artificial
motion blur, adjusting color saturation and bright-
ness, and even adding computer-generated fog,
snow, and rain. [12]

The discussed previous work uses only accu-

(a) (b) (c)

Figure 6: Consistency is only meaningful when measured

across images that look similar (a), (b) (where (b) is taken

a second later and camera autofocus is slightly blurred).

Consistency is meaningless on images that look different (a),

(c). Popular datasets use images that look different, making

them appropriate for measuring accuracy, but less suited for

measuring consistency.

racy as the metrics, without explicitly measuring
consistency. Although some publications [14],
[15] explore ways to measure the robustness of
a neural network beyond accuracy, they neither
concretely define consistency nor propose solu-
tions. This article aims to do both.

Considerations when measuring
consistency

In this article, we define consistency as a met-
ric of how differently an object detector behaves
on similar images:

If images appear similar to the human eye, an
object detector should consistently detect the

same objects.

Since accuracy does not always quantify
consistency, we now discuss the considerations
needed to properly capture consistency.

Use Video/Time-Series Data: consistency
measurements require similar test images

A meaningful metric for consistency should
use input images that are already consistent. Con-
sider Fig. 6a, b. Those pictures appear similar to
the human eye, so we would expect consistent
performance from an object detector. However,
if the images are significantly different (Fig. 6a,
c), it is meaningless to use them to make claims
about consistency.

As Tung, et al. [13] observe, popular image
datasets (e.g., ImageNet, Microsoft COCO) are
filled with visually dissimilar images. Thus, those
datasets are largely unsuitable for consistency
testing. Instead, those authors recommend con-
secutive frames from videos as a better source
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Quantifying image similarity
This article emphasizes the importance of
using similar-looking images to test for
consistency. We use consecutive frames
from videos in the MOT Challenge be-
cause such frames are taken up to 30 times
per second, ensuring that adjacent frames
look similar.
Beyond the scope of this article, other
popular image similarity measurement
methods attempt to relate two images
beyond raw pixel value differences. The
Structural Similarity Index (SSIM) [16]
identifies structural details about the im-
ages and then compares the details. This
means that SSIM identifies a noisy version
of an image as similar to the original, even
though raw pixel values are very different.
Beyond SSIM, techniques such as the
Feature Similarity Index (FSIM) [17] and
deep-learning driven comparison extract
low-level features to better approximate
the way humans compare images.

of visually similar images. Although adversarial
attacks and artificial image transformations can
also be used to generate consistency test data
from such popular datasets, Gu, et al. [15] report
that such techniques do not well represent image
distortions that would occur naturally. Instead,
this paper uses consecutive frames from video to
test consistency - this way, any inconsistencies
would be caused by natural image distortions.

Use MOT Ground Truth: Consistency
measurements need additional labels

When benchmarking an object detector,
bounding box and class ground truth labels are
sufficient to report accuracy, but they cannot re-
veal all inconsistencies. In particular, that ground
truth cannot show whether the same objects were
detected between two similar images (the above
Fig. 3c-d problem): the ground truth is identifier-
agnostic. Thus, we need a way to check whether
objects from two images are the same, so that
consistency can be measured.

We choose to use per-image object identifier

(Object ID) ground truth labels to keep track of
objects during measurement. Each unique object
is assigned the same Object ID across the dataset.

Proposed method of measuring
consistency

Based on our prior discussion of accuracy vs.
consistency, we present a method that specifically
tracks whether an object detector detects the
same objects, given visually similar, time-series
images. Our source of visually similar images is
the Multi-Object Tracking (MOT) Challenge [3],
consisting of high-quality videos from various
datasets.

The pairwise consistency Ci,j refers to the
object detector’s consistency on a pair of images
Ii and Ij . It is calculated as shown in Eqn. 4. If
the detector is perfectly consistent, Ci,j is 1. If it
is entirely inconsistent, then Ci,j is 0. As shown
in Fig. 7, consistency looks to capture whether
objects were detected in one image and missed
in another.

Ci,j =
|Gi ∩Gj| − |Mi,j| − |Mj,i|

|Gi ∩Gj|
(4)

Eqn. 4 is explained using the example in Fig.
8. Fig. 8a is image Ii, and Fig. 8b is image Ij . Gi

is the set of Ii’s ground truth Object IDs {A, B,
C}, and Gj is the set of Ij’s ground truth Object
IDs {D, A, B}. Mi,j,Mj,i captures the objects
that were inconsistently detected as follows: Mi,j

is the set of ground truth Object IDs that satisfy
the following conditions: (1) the ground truth box
is present in both images Ii, Ij (i.e. in Gi ∩Gj),
(2) the object detector detected the object in frame
Ii, and (3) the object detector missed the object
in frame Ij . So Mi,j is object B, while Mj,i is
empty.

If an object is present in both images, yet is
detected in only one of the images, than consis-
tency should decrease. Taken together, Mi,j,Mj,i

captures consistency decreases in Ii, Ij . This also
implies that if both |Mi,j|, |Mj,i|=0, the detector
can be said to be consistent.

Bounding boxes predicted by the object de-
tector are eligible for consideration in Mi,j,Mj,i

calculations only after being filtered through non-
maximum suppression (we use the common IoU
threshold = 0.5) and a confidence threshold of
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 7: Consistency tracks whether an object is de-

tected in one image and missed in another similar-looking

image. This complements accuracy measurements. (a)-(b)

100% accurate (all objects correctly detected in both images),

100% consistent (nothing was missed in one image and

detected in another). (c)-(d) 50% accurate (only one of two

objects detected in each image), 100% consistent (nothing

was missed in one image and detected in another). (e)-(f) 50%

accurate (only one of two objects detected in each image),

0% consistent (any objects detected in one image was missed

in the other). (g)-(h) 0% accurate (nothing detected), 100%

consistent (nothing was missed in one image and detected

in another). Improving accuracy does not necessarily imply

improving consistency and vice versa.

0.7 (see sidebar: “IoU and non-maximum sup-
pression”).

We measure consistency across a given video
V with N frames by measuring pairwise con-
sistency between each pair of adjacent frames in
the video, and then averaging the results across
all N − 1 pairs. This is expressed in Eqn. 5.

CV =
1

N − 1

N−1∑
i=1

Ci,i+1 (5)

As shown earlier in Fig. 7, consistency and

(a) (b)

Figure 8: Visualization of Eq. 4, where (a) is Ii, (b) is

Ij and the green boxes indicate object detections. Gi ∩ Gj

contains objects A and B since they appear in both Ii, Ij .

Objects C and D are not included in calculations because they

do not appear in both images. Because object B is detected

in Ii but missed in Ij , so Mi,j contains object B. No shared

boxes are detected in Ij and missed in Ii, so Mj,i = ∅. Thus,

consistency Ci,j = (2− 1− 0)/2 = 0.5.

IoU and non-maximum
suppression
IoU (Intersection-over-Union) is a com-
mon measurement in object detection,
used to determine if two bounding boxes
overlap sufficiently to be counted as the
same object. It is calculated by dividing
the area of two bounding boxes’ over-
lap by the area of the union of the two
boxes. If IoU = 1, then the boxes perfectly
overlap. If IoU = 0, the boxes have no
overlap. In literature, an IoU threshold of
0.5 is typically used [13] to decide if two
bounding boxes sufficiently overlap.
Non-maximum suppression is a common
application of IoU to filter an object de-
tector’s predictions so that only the “best”
ones remain. It finds all overlapping pre-
dicted bounding boxes (determined by the
IoU threshold) and then filters out the ones
that have the same object class and lower
confidence scores.

accuracy can work together to supply more infor-
mation about object detection performance than
either could on its own. Improving accuracy does
not necessarily imply improved consistency and
vice versa. Colloquially, one might say that con-
sistency indicates how similarly an object detector
behaves on two similar images, while accuracy in-
dicates whether that behavior is desirable (detects
everything consistently) or undesirable (misses
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everything consistently).
Finally, note that we choose to compare

bounding box object IDs instead of output feature
maps to calculate consistency. This is because
comparing feature maps requires arbitrary sim-
ilarity metrics - selecting an appropriate metric
is itself an open problem. Additionally, bounding
boxes are already used for accuracy measure-
ments; re-using boxes for consistency will make
it more convenient for researchers to take consis-
tency measurements.

Consistency of modern object detectors
We present the consistency of several state-

of-the-art object detectors, showing that they ex-
hibit inconsistent behavior. We demonstrate us-
ing highly accurate two-stage object detectors
(Faster-RCNN and Mask-RCNN) as well as the
faster, but less accurate, single-shot detectors
(RetinaNet and SSD). We use Facebook’s official,
pretrained models from their torchvision
Python package. Measurements are taken on the
videos found in the MOT Challenge.

As shown in Fig. 9, all object detectors exhibit
some inconsistent behavior, ranging from 83.2%
to 97.1% consistency (CV as calculated in Eqn.
5). We also see that the two-stage models are
more accurate and more consistent.

Toward consistent object detection
Object detector inconsistency is caused by

the detector missing an object. As described in
Related Work, missed detections can be caused by
adversarial attacks and image distortions. Because
the MOT Challenge is not an adversarial dataset,
we expect the inconsistencies to be caused by
image distortions naturally present in the dataset.
Therefore, we apply different image distortion
corrections from literature to compare their ef-
ficacies at improving consistency.

1) Gaussian Denoise (GD). Random sensor
noise and shot noise can decrease detection per-
formance. As demonstrated by Kang et al. [20],
we apply a normalized Gaussian filter to all
images in the dataset in an attempt to reduce the
noise.

2) Horizontal Flip (HF). Zhang, et al. [14]
note that the slight translation of an object in
an image could cause a previously misdetected
object to become correctly detected. Further, Yin,

(a)

(b)

Figure 9: Object detector consistency (our method, (a))

and accuracy (mAP, (b)) measured on the different videos in

the MOT Challenge. Videos are: AR-6: ADL-Rundle-6, AR-

8: ADL-Rundle-8, E-B: ETH-Bahnhof, E-P: ETH-Pedcross2,

E-S: ETH-Sunnyday, K-13: KITTI-13, K-17: KITTI-17, P-

S: PETS09-S2L1, T-C: TUD-Campus, T-S: TUD-Stadtmitte,

V-2: Venice-2. State-of-the-art object detectors exhibit incon-

sistent behavior, ranging from 83.2% to 97.1% consistency.

The two-stage models are both more consistent (a) and more

accurate (b) than their single-shot counterparts.

et al. [21] observe that horizontally flipping an
image can mitigate the detrimental effects of
noise on a neural network. Thus, we horizontally
flip all images.

3) WEBP Compression (WC). Compressing
an image using the lossy JPEG format is already
known to defeat adversarial attacks [12]. Yin, et
al. [21] find that because WEBP compression
introduced loop filtering, it is even better suited
to breaking down the structures in an image that
result from synthetic image distortions. Thus, we
apply WEBP compression to the dataset images
using a compression quality factor of 30 (Yin,
et al. find that lower quality factors allow neural
networks to perform better).

4) Unsharp Mask (UM). Tung, et al. [13]
explain that if an object is moving, the motion
blur can make it harder for a network to extract
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Improving consistency via training
Common training techniques such as data
augmentation and dropout are known to
improve a model’s robustness to image
transformations and distortions. Despite
these techniques being employed to pro-
duce our pretrained models, we find that
inconsistencies still persist. To improve
consistency, we use post-training image
distortion corrections because of their ac-
cessibility. However, emerging training
methods appear promising for improving
consistency. Zhang et al. propose weakly-
supervised, context-based techniques [18],
[19] that gather context for the scene (e.g.,
optical flow and prior knowledge) to pro-
vide additional information to an object
detector - this information could stabi-
lize the detector and improve consistency
over time-series data from videos. Other
techniques project neural network features
into low-dimensional representations dur-
ing training [10] - this could improve
consistency on images of similar objects
taken from different angles, lighting, etc.

features along the object’s edges. The Unsharp
Mask is a linear image processing technique
commonly used to remove blur. The technique
first identifies a set of blurry details by subtracting
a further-blurred image from the original. The
details are then emphasized in the original image.
We apply the Unsharp Mask to the dataset to
reduce the blur on object edges.

5) Gamma Correction (GC). Yeu, et al. [22]
show that artificially increasing an image’s con-
trast and perceived brightness can help object
detectors like Faster-RCNN perform better, par-
ticularly when the detectors are trained on day-
time images. Gamma Correction is a common
brighten/contrast technique that is driven by the
Power Law expression; we use it on the dataset
as well.

Tab. 2 shows the average improvement across
the MOT Challenge in terms of consistency per-
centage points (i.e. a table entry of Y% means that
it raises consistency from X% to X+Y%), when

Table 2: Avg. Consistency Improvements
Faster-
RCNN

Mask-
RCNN RetinaNet SSD

GD 0% -0.3% 0% -0.6%
HF -5.3% -5.4% -7.3% -10.1%
WC 0.6% 0.5% 0.7% 0.4%
UM 3.6% 2.6% 3.0% 1.1%
WC+UM 5.1% 3.0% 3.2% 1.3%
GC 0.1% 0.1% 0.4% 0.1%

Table 3: Avg. Accuracy Improvements
Faster-
RCNN

Mask-
RCNN RetinaNet SSD

GD 2.1% 2.4% -0.6% -1.1%
HF -19.3% -19.4% -25.5% -28.4%
WC 1.5% 1.8% 0.5% 0.5%
UM 2.0% 3.2% 8.3% 3.6%
WC+UM 3.2% 4.1% 8.6% 3.9%
GC 0.1% -0.5% -0.7% -0.1%

the different distortion corrections are applied.
Similarly, Tab. 3 shows the accuracy improve-
ment.

We see that both WEBP Compression (WC)
and Unsharp Mask (UM) improve both consis-
tency and accuracy for all object detectors. Ap-
plying both effects at the same time (WC+UM)
gives a further overall improvement. In fact, the
example inconsistencies in Fig. 1 and 2 are re-
solved using WC+UM. Gaussian Denoise (GD)
and Horizontal Flip (HF) both degrade consis-
tency and accuracy (likely because applying these
effects on relatively un-noisy images degrades the
feature structure of the images [17]).

Finally, we note that improvements in consis-
tency do not always equate to improvements in
accuracy. Gamma Correction (GC) improves con-
sistency, but degrades accuracy: in other words,
the detector is consistently worse on the GC data,
as described earlier in Figure 7.

Conclusion and Future Work
Object detectors are vital to many mod-

ern computer vision applications. However, even
state-of-the-art object detectors exhibit inconsis-
tent behavior when the input undergoes small
changes. This inconsistent behavior is not fully
captured by existing measurement tools; accu-
racy metrics and popular image datasets cannot
measure whether the same objects are detected
consistently. We devise a consistency measure-
ment method that uses images from videos and
object ID labels. Our method compliments accu-
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racy measurement. Using this method, we show
that object detectors have consistency ranging
from 83.2% up to 97.1%, depending on the input
data. Additionally, applying image distortion cor-
rections like WEBP Compression and Unsharp
Masking can improve consistency by as much
as 5.1%. There is still room for improvement
by the community. We only explore post-training
methods to raise consistency. Future exploration
should explore training-aware consistency im-
provements and further investigate the relation-
ship between accuracy and consistency.
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