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Abstract—Effectively parsing the facade is essential to 3D
building reconstruction, which is an important computer vision
problem with a large amount of applications in high precision
map for navigation, computer aided design, and city generation
for digital entertainments. To this end, the key is how to obtain
the shape grammars from 2D images accurately and efficiently.
Although enjoying the merits of promising results on the semantic
parsing, deep learning methods cannot directly make use of
the architectural rules, which play an important role for man-
made structures. In this paper, we present a novel translational
symmetry-based approach to improving the deep neural net-
works. Our method employs deep learning models as the base
parser, and a module taking advantage of translational symmetry
is used to refine the initial parsing results. In contrast to
conventional semantic segmentation or bounding box prediction,
we propose a novel scheme to fuse segmentation with anchor-free
detection in a single stage network, which enables the efficient
training and better convergence. After parsing the facades into
shape grammars, we employ an off-the-shelf rendering engine
like Blender to reconstruct the realistic high-quality 3D models
using procedural modeling. We conduct experiments on three
public datasets, where our proposed approach outperforms the
state-of-the-art methods. In addition, we have illustrated the 3D
building models built from 2D facade images.

Index Terms—Facade Parsing, Deep Learning, Semantic Seg-
mentation.

I. INTRODUCTION

Reating 3D building models from 2D facade images has

long been desired in the computer vision community,
which has various applications in high precision map, com-
puter aided design, and city generation for digital entertain-
ments like movies and computer games.

The key of automatic 3D building reconstruction is how
to obtain the accurate facade parsing results, which is still
a challenging problem. In this paper, we propose a novel
approach to parsing building facades into shape grammars
through deep learning model with translational symmetry.
In addition, we make use of the procedural modeling to
reconstruct 3D building models.

The conventional approaches [1], [2] usually employ the
predefined shape grammars, and treat the facade parsing as
template parameters estimation problem. On the other hand,
deep learning models [3], [4] learn the rules from input images.
Most of these methods have formulated the facade parsing
as either semantic segmentation or bounding box prediction
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Fig. 1: The pipeline of our proposed approach. We first parse the
facade into semantic labels, and then reconstruct the 3D building
model using procedural modeling.

problem. As deep learning models have already shown their
outstanding performance in various computer vision tasks, we
also take the deep learning approach in this paper.

Generally, architectural rules play an essential role in the
facade parsing process due to the strong prior information in
man-made structures. One of them is the symmetry rule. There
are two typical kinds of symmetries in modern buildings,
including the reflective and translational symmetry. A single
object is usually with reflectively symmetric, such as windows
and doors. Translational symmetry means that all objects of
the same kind in a facade have the similar size and appearance.

Since neural networks tend to learn the underlying mapping
from the training data, it is an open problem on how to
add the prior information into the training and inference
process. Liu et al. [3] enforce the reflective symmetry to
train the neural network, which has improved both the parsing
accuracy and visual quality. However, the reflective symmetric
loss has two major drawbacks. One is that the symmetry is
treated as a weak constraint. It only guides the neural network
towards the reflective symmetry while cannot guarantee the
good parsing results. The other is that the reflective symmetry
constraint only works for a single object. The geometry is
optimized by its own, which does not take its neighborhood
into consideration.

To address the above issues, we propose a translational
symmetry-based refinement module for neural networks in this
paper. Differently from Liu et al. [3], we optimize the output
from deep neural network. This imposes the translational
symmetry as a strong constraint, which leads to more accu-
rate and visually satisfying results. To facilitate the effective



facade parsing, we propose a novel deep learning model
fusing semantic segmentation with anchor-free detection [5]],
[6], [7]. In contrast to the two stage neural networks [3],
the proposed approach does not rely on a region proposal
network, which makes it easier to train and faster to inference.
Moreover, it is convenient for the anchor-free approach to
incorporate different branches like segmentation and object
attributes. Therefore, our proposed neural networks is able to
use different kinds of information including segmentation map,
bounding boxes and object attributes, which outperforms a typ-
ical segmentation network with bounding box prediction [3]].

Once the parsing results are obtained, we employ an off-
the-shelf rendering engine like Blender [8] to reconstruct the
realistic high-quality 3D models using procedural modeling, as
shown in Fig.[I] We demonstrate the efficacy of our method by
comparing the state-of-the-art methods quantitatively on three
popular facade parsing datasets. Their visual results show that
our proposed method is promising for the semantic building
reconstruction.

II. RELATED WORK

Our work is related to facade parsing [1], 3D building
reconstruction [9]] and deep learning [10]. In general, facade
parsing can be categorized into two groups. Conventional
methods rely on the user-defined shape grammar rules. On the
other hand, the deep neural network-based approaches tend
to directly learn these rules from data. As for 3D building
reconstruction, the most popular approach is to conduct the
procedural modeling from shape grammars [11][9)], which
highly depends on the quality of parsing results. Thus, the
facade parsing is key to the high quality 3D building models.
We will look into these methods in the following.

A. Conventional Facade Parsing Methods

Most of conventional facade parsing methods relied on the
predefined procedural grammars, which aim at finding the best
parametric setting of a facade. It is easy for them to incorporate
the architectural rules into the inference process while they
are usually computationally demanding and tend to fail in
cluttered environments [12], [13].

Zhao et al. [14] assume most of vertical lines belong to
buildings, where the input image are parsed into building, sky
and ground. Then, they further refine the extracted shape of
each facade unit. Wendel et al. [15] and Recky et al. [16]]
try to find the repetitive patterns in facades to do the parsing.
Koutsourakis et al. [17] build the models through a set of
basic shapes with the parametric rules. A tree representation
of variable depth and complexity is used to account for
the elaborate and varying architectural styles. They employ
Markov Random Field (MRF) to optimize the parameters
of procedural grammars for a building facade. Ripperda and
Brenner [18]] also employ a tree representation, where the
reversible jump Markov Chain Monte Carlo is used in the tree
construction. Teboul et al. [19] formulate the shape grammars
using reinforcement learning, where the promising results can
be achieved if buildings conform to these grammars.

Mathias et al. [20] propose a three-layer approach to facade
parsing. They hand-crafted the prior knowledge into each
layer. With the first layer, a recursive neural network (RNN) is
trained to label facades at super-pixel level. In the middle layer,
they introduce the knowledge about distinct facade elements.
Then, they combine the output of RNN with object detectors,
and treat the merging procedure as a 2D Markov Random
Field over the pixels. Cohen et al. [21]] formulate the facade
parsing as a sequential optimization problem instead of the
usual classification task or grammar learning, where dynamic
programming is used to solve the optimization problem.

B. Deep Learning-based Methods

There are a few research efforts having been devoted to
tackling the facade parsing problem using deep learning tech-
niques. DeepFacade [22], [3] suggest a reflective symmetric
loss as a constraint to train the neural networks. In [22], Liu
et al. propose a variance-based loss, where the centers of
horizontal and vertical line segments should lie on the same
straight line for symmetric objects. Later, they employ a two-
stage object detector [3]], in which the predicted bounding
boxes are treated as the symmetry indicator. Schmitz and
Mayer [23]] train CNN on images patches to parse the facade.
John Femiani et al. [24] propose three different network ar-
chitectures to perform multi-label facade image segmentation,
where each one has a unique feature.

Our approach is also related to image segmentation, scene
parsing and object detection. Long et al. [25] are the first
to train an end-to-end deep convolutional neural network for
general image segmentation task. Chen et al. [26]][27]][28]]
employ the dilated convolution instead of plain convolution.
This approach avoids the use of a deconvolution layer, and
make the network easier to train. CRF post-processing [26] can
be applied to refine the results. Encoder-decoder models [29],
feature pyramids [30][31] and skip-connection [32] are also
important techniques in semantic segmentation. Abdulnabi
et al. [33]] propose a multi-modal recurrent neural networks
(RNNs) for indoor scene labeling. They train two RNNs at the
same time, and connect the two networks through an informa-
tion transfer layer. The recent object detection techniques can
be grouped into two stage approach and single stage method.
Two stage approaches [34]], [35], [36] first employ a region
proposal network to find the potential bounding boxes, and
then predict their labels via a classifier. Single stage meth-
ods [[7], [37]] do not rely on the region proposal networks. [38]]
combine the object detection and semantic segmentation. Zhou
et al. [5]], [6] represent the objects as points with the extendable
attributes. For example, they represent bounding boxes as the
width and height from the center point, or the corner location
of a bounding box.

C. 3D Building Reconstruction

Usually, the 3D buildings are represented by either the point
cloud or procedural models. The former relies on the geomet-
ric information while the latter focuses on the semantics.

A mature pipeline for reconstructing 3D urban scenes
from images is generally based on structure-from-motion
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Fig. 2: Our proposed network architecture consists of two branches. One is for semantic segmentation, another one branch is for instance
detection based anchor-free framework. The facade refinement are performed by the translational symmetry during the post-progressing.

techniques [39][40][41][42]. Their output are typically point
clouds or meshes without the labels like windows and doors,
however, the semantically reconstructed 3D models are needed
in real-world applications. Martinovic et al. [12] employ CRF
to predict the labels of point clouds and meshes in order to
semantically classify the facade elements.

Muller et al. [L1], [9] propose a high quality procedural
modeling method, which is able to generate the high quality
3D building models with the predefined shape grammars.
However, the parsing capability of conventional approaches
is limited comparing to the deep learning-based methods.
Nishida et al. [4] propose an interactive tool to extract the
building grammar from a single image, where the user needs
to mark out the silhouette. Convolutional neural networks are
used to extract different components of a facade from large-
scale building mass to fine-scale windows and doors geometry.
Their method generates visually satisfied results, which mainly
depends on a window detector with the predefined shape
components allowing some deviations. In this paper, our
presented method serves as a general facade parser that aims
to recovering the accurate layout of building facades.

III. ANCHOR-FREE FACADE PARSING

In this section, we first present our proposed anchor-free
facade parsing framework, and then give the formulation on
both segmentation branch and detection head. Finally, we
describe the details on training and inference.

A. Neural Network Architecture

The conventional two-stage methods [34] first compute
potential regions using a region proposal network, and then
extract the features from neural network. Moreover, each re-
gion proposal is further classified. Therefore, two-stage meth-
ods essentially formulate the detection as a region proposal
classification problem.

In contrast to the two stage scheme [22], [3], we propose
a novel anchor-free neural network architecture by fusing the

semantic segmentation and detector within the same frame-
work. Moreover, anchor-free approach is more like semantic
segmentation rather than two-stage proposal classification,
which can not only reduce the computational cost but also
enjoys the merits of better convergence.

In this paper, we choose FRRN [43] as the backbone
network, since it does not require to be pre-trained on a large
dataset like ImageNet [44]. Thus, we can learn the neural
network model from scratch solely using the facade dataset
while still obtaining the promising results. The FRRN is a
typical encoder-decoder architecture network, where the en-
coder part downscales the feature map 16 times with respect to
the original image I € R"W > *3_ Moreover, the consecutive
transposed convolution is employed to upsample the feature
map.

Our network has two branches, as shown in Fig. |Z[ One
branch is for semantic segmentation, and another is for anchor-
free detection. We aim to predicting a semantic segmentation
response map with the keypoint detection map. The former is
a full sized map as the original image while the latter is down-
scaled with a stride of 4. Thus, the training loss is made of
five different terms as follows:

L = Lee + M Lget + AaLoyn + >\3Loff + MLcorner (D

where L., is the segmentation loss, L4 is the focal loss for
detection, L., is the size loss, L,sy is the local offset loss,
and L¢orner 1S the corner position loss. Aj, Ag, Az and Ay
are the weights for each part of the loss, respectively. Since
all the losses are normalized in our implementation, we set
A1 = Ay = A3 = Ay = 1, empirically.

B. Semantic Segmentation Branch

For the semantic segmentation branch, we use the cross-
entropy loss function [25]:

M N
Lce(xay) = _ZZch IOg(pi,c) (2)



where x is the input image array, and y is the probability
distribution of the category label of the image. M is the
number of classes of the dataset, and N is the number of
pixels in the image. ¢ is pixel index. y; . is the true probability
distribution, and p; . is the prediction.

The semantic segmentation branch is an encoder-decoder
architecture that restores the predicted heatmap to the original
image size, instead of downsampling by a factor of 4 as
the detection branch. This is because semantic segmentation
requires a finer heatmap in order to obtain the better results.
If the predicted heatmap is downsampled, then the enlarged
final results will be not accurate enough.

C. Detection Branch

Anchor-free methods [S]] detect objects by keypoint map,
where each pixel represents the potential of being the center
for an object. This is more like a segmentation response map
rather than a classification task setting. Therefore, it is natural
to fuse segmentation with anchor-free object detection.

For the detection branch, we employ the base structure
of CenterNet [5]. We represent each object in a facade as
the center point, whose size is an attribute of each point.
Besides predicting the size, we employ an auxiliary corner
point detection in the training process. The output stride
downsamples the output prediction by a factor R = 4. Such
scheme is able to reduce computational cost while retaining
the high accuracy.

The training objective is a focal loss [30]:

1H§{u4w%m%> if Yig=1
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where N is the number of instances in image. Y;; € [0,1]
denote the predicted probability for the position (4, 7). o and
[ are the hyper-parameters.

The object size is predicted by estimating the width and
height of the bounding box. (z1,y1,x2,ys2) is denoted as the
bounding box of an object with the size of (w, h), where w =
x9—x1 and h = yo—y;. Therefore, we employ an L1 regressor
to predict the size for each object:

=1 j=1

N
Lwh:%2|ﬁ)+ﬁf(w+h)| 4)
k=1

During the inference, discretization error usually occurs due
to the offset drifting. To tackle this issue, we predict a local
offset O € R X & *2 for each center point with the following
loss function:

1 A _
Logs = 5 2. 105 = (55 — D) 5)
p

where p € R? denotes the center point of ground truth, and p
is computed with | % |.

We can add corner points as the additional attribute of an
object. Although we only need to predict the location and
size of the window in a parametric setting, estimating the
corner location still greatly improves the training process.

Such scheme provides the extra supervision information for
the network during training, which leads to better convergence
and promising prediction results. Moreover, corners are not
needed in the inference stage, which do not incur the extra
computational cost in prediction.

As the previous offset head [S)], we only need to add a
few channels to represent each corner of the object, where
four corners are estimated for each subject with a feature map
C € RT*%*8 Each point takes two channels, and there
are four corners for each object center point. Thus, we have
8 additional channels in total. Then, the corner loss can be
derived as follows:

1 A q .
Lcorner = N ; |C(? - (E - Q)| (6)

where ¢ = | £]. The loss only occurs at each corner ¢, and
other locations are ignored in our implementation.

IV. TRANSLATIONAL SYMMETRY-AWARE REFINEMENT

In this section, we first define the translational symmetry in
building facades, and then describe the evaluation metrics for
translational symmetry. Finally, we present a novel facade re-
finement method based on translational symmetry constraints.

A. Motivation
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Fig. 3: Motivation for the facade objects refinement using transla-
tional symmetry.

In general, translational symmetry exists almost in every
facade of modern urban buildings. This means that the prop-
erty of an object stays invariant under translation. For a
building facade, the same kind of objects are with the similar
appearance and size. In particular, objects of the same category
share the same shape and size, whose centers usually fall on
a straight line. Typically, translational symmetry in facades
have a direction of either horizontal or vertical. A facade is
translational symmetric in horizontal means that the elements
are same in the horizontal direction. It is also true for the
vertical direction. Some facades are translationally symmetric
in both directions, while others are only symmetric in one
direction. This makes it necessary for us to decide in which
direction the building is symmetric. Thus, we need to know
how symmetric a facade is.

B. Translational Symmetry Metric

We define a quantitative metric to evaluate the symmetry
of a facade. For building facades, translational symmetry
relies on two aspects. Firstly, the objects are translational
symmetric, whose center coordinates have equal distances
in the symmetric orientation and share the same value in



the orthogonal direction. Secondly, the sizes are invariant
in the symmetric direction. Based on these assumptions, the
translational symmetry metric 7" is composed of two terms:

T =T +1T )

where T, represents the score of how symmetric the centers
are, and Ty is the score of how symmetric the sizes are.
Since T has an orientation, we denote 7" as the measure
for horizontal direction and T for vertical one.

We take horizontal translational symmetry as an example,
which should satisfy two conditions: 1) their vertical coor-
dinates need to be as close as possible; 2) the distances
between horizontal coordinates should be the same. Therefore,
we derive the following formulation for 7:

1 . = R
T. = NZ(% —9)° + N_1 Z(Al”i*AI) ®)
=1 =1

For T, all objects may have the same size. Thus, the bigger
the variance of sizes, the less the symmetry is. We formulate
Ts as below:

TS = (Si - é) . (Si - é) (9)
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where s; = (w;, h;) represents the width and height of object
i, and N is the number of objects.
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C. Facade Refinement by Translational Symmetry

Based on the above formulation, we find that the lower T'
leads to the higher degree of translational symmetry. We aim
at solving the following minimization problem:

argmin T' = argmin(7T, + T)
x,y,S Y,

(1)

where x = {x1, 22, ..., 2y} are the horizontal coordinates of
all the objects, y = {y1,%92,...,yn} denote all the vertical
coordinates, and S = {s1,s2,...,sy} represents all the sizes.
Our goal is to find a configuration to minimize 7.

The straightforward solution is to set z; = Z,y; = ¢,8; = S,
however, which has some issues. As the facade may not always
be symmetry in both directions, we have to estimate the sym-
metric direction first. Assuming that a facade has symmetry in
one direction and use it as the refinement target. If Th < TV,
we apply the horizontal refinement. Otherwise, we refine the
vertical direction. Another problem is that the windows may
have slightly different sizes even in the symmetric direction.
Practically, we introduce a weighted sum to allow one object
to keep the size of its initially predicted result.

Tpew =T -z + (1 —T)&
snew:T~si+(1—T)é

12)
13)

where T = o(T) € [0,1] is the result of T being scaled to
[0,1], and o is the sigmoid function. ., is the new center
locations, and s,.,, are sizes of objects after refinement. x;
and s; are the corresponding values before refinement, & and
§ are the mean.

V. EXPERIMENTS ON FACADE PARSING

In this section, we conduct the intensive experiments on
three popular datasets to demonstrate the efficacy of our
proposed anchor-free facade parsing approach. Moreover, we
not only provide the quantitative evaluation but also show the
facade parsing results.

A. Experimental Setup

To facilitate the fair comparison against the state-of-the-art
methods, we evaluate our presented method on three typical
facade datasets, including the Ecole Central Paris (ECP)
dataset [46], the RueMonge dataset[12], and the ArtDeco
dataset [47]).

The ECP dataset is a popular 2D facade parsing testbed with
a total number of 104 annotated building images. All annota-
tions are pixelwise-labeled semantic segmentation maps. This
dataset has 8 classes, including window, wall, balcony, door,
shop, sky, chimney and roof. All the images in ECP dataset
contain the rectified and cropped facades of Haussmannian
style buildings in Paris. The original annotation labels the im-
ages using a Haussmannian-style grammar. This often results
in the imprecise or even wrong annotations. Therefore, we
employ the labels provided by [1l], where the annotations can
better fit the ground truth. Some methods [23]] only focus on
windows and walls, which do not use full annotations. In this
paper, we make full use of all the labels.

The Ruemonge dataset has 428 facade images in total,
where only a portion of them are annotated. The training set
has 113 images, and the testing split contains 202 images.
For a single building, it may have several pictures from
slightly different perspective. This is because the images are
taken from a camera moving down a street. Thus, overlapping
occurs frequently. Differently from ECP dataset, Ruemonge
dataset has 3D point clouds and mesh annotations. Previous
method [12] has explored both 2D and 3D information, where
the 3D method runs much faster than the 2D approach with
the higher accuracy. Our method is a pure 2D approach.

The ArtDeco dataset consists of 80 rectified facade images
with similar style. In contrast to other datasets, some of images
have occlusions due to vegetation. This makes it ideal for
testing the inference of architectural elements in the presence
of large occlusions, as it provides the hand-annotated ground
truth for the labels behind vegetation.

We train our network from scratch on each dataset. Our
proposed framework has single neural network with multiple
heads. Such scheme is much easier to train comparing against
DeepFacade [3]], where they have to train two networks si-
multaneously. Usually, our training process is able to converge
within 140 epochs. We conducted our experiments on a PC
with 4-GPU at a initial learning rate of 2.5e-4.

B. Annotations for Facade Object Detection

As the facade datasets only provide the semantic segmenta-
tion labeling, i.e., heatmap for the images, we have to generate
object detection annotations from these labels. We employ the
automated labeling method in order to avoid introducing new



Class 201" | @017 | @' [ @217 [ @21° | @3] | 24] [| FCN-8s | DeepFacade [3] | DeepFacade [B]C | Ours | Ours®U
Window 76 78 68 87 85 62 | 95.6 86.8 97.6 80.3 97.8 825
Wall 90 89 92 88 90 82 | 91.7 96.0 97.9 89.8 97.5 91.6
Balcony 81 87 82 92 91 58 | 96.0 92.4 96.2 852 96.3 872
Door 58 71 Y] 82 79 47 | 988 86.0 923 63.1 97.6 70.6
Roof 87 79 85 92 91 66 | 97.7 92.7 97.7 75.6 97.3 76.2
Sky 94 96 93 93 94 95 | 98.9 96.6 98.2 842 98.0 88.4
Shop 97 95 94 96 94 88 | 98.4 95.6 96.0 80.3 95.4 843
Chimney - - 54 90 85 - 96.9 85.3 90.5 64.6 90.8 68.5
total acc. | 88.0 | 88.0 | 86.7 | 89.9 | 903 | 747 | 96.7 93.7 97.3 77.9 97.1 81.2

TABLE I: Comparisons on ECP dataset(%). [20]" and [20]* denote two variants of [20]. [21]', [21]°, and [21]° are three variants of [21].
FCN-8s directly employ Fully Convolutional Networks [25] on ECP dataset. Then, we compare our results with DeepFacade on both pixel

accuracy and IOU.

supervision in the experiments, which may not be fair to other
methods for comparisons.

We manage to generate the bounding boxes for windows,
balconies and doors by extracting each facade object instance
from the semantic segmentation map. We find that all pixels in
the same object are connected, and all the different connected
regions are objects. Thus, we compute the convex hull of
the object region, and then find the minimal bounding box
containing this convex hull. Therefore, we can easily generate
the bounding boxes for each facade objects from the semantic
segmentation map.

For the four corner locations of each object, we find them
through a sorting algorithm. If we set the top left corner of the
entire image as the origin, then the top left corner of object is
the point having the least distance to the origin in an object.
Similarly, the other three points can be found by setting the
origin to the top-right, bottom-right and bottom-left corners of
the image. Thus, we can directly extract the corner locations
from the segmentation map without resorting to the manual
labeling.

C. Quantitative Evaluation

We conduct the quantitative experiments on three datasets
to demonstrate the efficacy of our method.

1) Evaluation metrics: Two performance metrics are used
to evaluate the facade parsing results, including Pixel accuracy
and Jaccard Index. The latter is also known as Intersection
Over Union (IOU), which is a more reasonable and widely
used metric for evaluating semantic segmentation results. Pixel
accuracy is defined as follows:

TP

pZZL’el_aCC = m (14)
and Jaccard Index (per class) is defined as below:
TP
I = 1
OUe TP+ FP+FN (15

where TP means true positive, FN denotes false negative and
FP is false positive. The mIOU is the average of the IOUs for
all classes:

N
1
mlol = + ; I0U. (16)

Although pixel accuracy is a popular evaluation metric in
the previous facade parsing methods [20], [21], [45], [24], [31,
it is easy to incur overfitting of one class, especially for those

classes with large weight. On the other hand, Jaccard index
can better reflect the prediction results. This is because high
pixel accuracy usually has high recall, yet not necessarily high
accuracy for all classes. The class with more pixels play a more
important role in the final pixel accuracy. Thus, it is unfair
for other classes. As pixel accuracy does not account for the
false positives, this metric tends to over-label positives, which
is not the optimal results. We prefer to IOU metric in our
experiments. Moreover, we report pixel accuracy in order to
compare the results with other methods, which rarely provide
IOU scores.

2) Results on ECP dataset: Table [l| reports the results of
different approaches on the ECP dataset. Most of previous
methods report the pixel accuracy on this dataset. DeepFa-
cade [3]] is the state-of-the-art approach, which is the only
method having reported IOU scores. It can be observed that
our presented method has achieved higher overall IOU on
the ECP dataset than DeepFacade. Moreover, we outperform
the state-of-the-art methods on each class, especially on those
important categories like window, balcony and door, where the
significant improvement have been achieved.

Class
mIOU

TABLE II: Quantitative results on the RueMonge dataset(%). We
compare our method against Martinovic [12] and DeepFacade [3]. For
Martinovic [12], we compare with both the 2D and 2D+3D setting.

[12] 2D
57.53

[12] 2D+3D
63.32

DeepFacade [3]
63.78

Ours
65.35

3) Results on Ruemonge dataset: Table [[I] shows the ex-
perimental results on Ruemonge dataset. We compare our
proposed approach with two state-of-the-art methods, includ-
ing DeepFacade [3] and Martinovic et al [12]. Martinovic et
al. [[12] have several different settings. As this dataset has both
2D and 3D data, they have reported mIOU scores obtained by
reasoning in 2D or 3D spaces only and combining both 2D
and 3D results together. Their best accuracy is obtained by
combining 2D and 3D output. Our presented method only
make use of the 2D image data and do not exploit the
3D scatter points. The experimental results demonstrate that
our proposed 2D method has outperformed the 2D method
in [12] at a large margin. Moreover, we obtain better results
than the 2D+3D method using point cloud. Additionally, our
proposed approach perform better than the recent DeepFacade
method [3] on this dataset.

4) Results on ArtDeco dataset: Table [I1l| gives the quanti-
tative results on the ArtDeco dataset. We compare with four



Class Cohen [48] | Kozinski [13] | Cohen DeepFacade [3] | DeepFacade [3]™°Y | Ours | Ours®©U
Roof 84 82 85 83.4 72.8 83.9 79.3
Shop 97 97 97 97.6 92.3 97.7 93.7

Balcony 85 87 86 87.3 64.6 88.2 71.8
Sky 94 97 95 96.8 93.8 96.9 93.6

Window 82 82 82 95.4 70.7 96.2 80.1
Door 56 57 65 98.7 82.3 98.7 85.0
Wall 88 88 88 84.7 82.2 86.0 82.2

Overall 85.3 88.8 88.3 92.9 79.8 93.5 83.7

TABLE III: Results on the ArtDeco dataset(%). Numbers represent pixel accuracy except DeepFacade™ and Ours™U. We compare with

Cohen [48]], Kozinski [13]], Cohen and DeepFacade [3]]. Note tha

t only DeepFacade [3]] reported IOU scores on this dataset.

Method | Window | Wall | Balcony | Door | Roof | Sky | Shop | Chimney | mIOU
Before 80.3 89.8 85.2 63.1 75.6 | 884 | 83.8 68.5 79.3
After 82.5 91.6 87.2 706 | 762 | 88.4 | 843 68.5 81.2

TABLE IV: Ablation study on the ECP dataset(%). Before means before the translational symmetry based refinement, the same goes for

After.

Fig. 4: Visual results on the ArtDeco dataset. From left to right in e
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ach group, we show the input image, visual results predicted by the

neural network, segmentation map after the translational symmetry refinement, respectively.

recent methods, including Cohen [48], Kozinski [13], Co-
hen [49] and DeepFacade [3]]. It can be seen that our approach
achieves the best pixel accuracy of 93.5%. In particular, our
method clearly performs the best on window and balcony. As
for IOU scores, our proposed approach outperforms DeepFa-
cade [3] over 4 percent.

The above quantitative results demonstrate the efficacy on
facade parsing of our presented method.

D. Ablation Study

The proposed neural network architecture consists of several
components. Moreover, we are interested in examining the
efficacy of translational symmetry refinement. To this end, we
conduct a series of ablation study to analyze how each part

will affect the final results.

Our network consists of two branches, namely semantic
segmentation and object detection. It is interested to study
how each head of our network affects the accuracy of final
results. We conducted the ablation study on the RueMonge
dataset. Specifically, we train our network with three different
settings, semantic segmentation head only, detection head only
and both heads simultaneously.

Table [V] shows the IOUs scores for each setting. The
‘Segmentation’ column is the result obtained by training with
the semantic segmentation head only. The ‘Detection’ column
is the result training with only anchor-free detection results.
The ‘Fusion’ column is the full network training with both
heads. Since the detectors are only trained with the classes of



Fig. 5: Visual results on the ECP dataset. From left to right are the input image, the result before refinement and the result after refinement.

window, balcony and door, we only report the accuracy for
these three classes in the ‘Detection’ column.

Class Segmentation | Detection | Fusion
Window 60.58 60.71 60.94
Wall 78.83 - 79.63
Balcony 72.09 72.31 72.66
Door 26.69 27.15 27.19
Roof 65.51 - 66.08
Sky 86.68 - 87.16
Shop 63.32 - 63.81
mIOU 64.81 - 65.35

TABLE V: Ablation study of neural network(%). We have tested our
method in three different settings on the RueMonge dataset, including
semantic segmentation head only, detection head only and both heads
simultaneously.

It can be seen that semantic segmentation alone can not
yield the optimal results on the RueMonge dataset. The IOUs
of the window, door and balcony are slightly lower than the
results of training with the detection head. When training them
together, the fusion method achieves the best accuracy. This
demonstrates the efficacy of our method, and the anchor-free
detection head indeed improves the accuracy.

To study the effectiveness of translational symmetry-based

refinement, we conduct ablation study on the ECP dataset
with two different settings. One directly outputs of the neural
network while another refines the inference results. Table [V]
shows that the refinement module generally increase the IOU
score at around 2 percent. This demonstrates the effectiveness
of our proposed method.

E. Qualitative Evaluation

In the following, we show the qualitative results of our
method on different testbeds.

Fig. @] shows the visual results of our presented method on
the ArtDeco dataset, which consists of occlusion caused by
vegetation. As in the upper-left group, there are trees in front
of buildings. It can be observed that our method has predicted
the rough position of windows behind the trees. Although the
guess is not perfectly accurate, it is an acceptable prediction.
After the translational symmetry refinement, the overall visual
result has improved significantly. Occlusions may affect the
translational symmetric score, and the refinement process
tends to keep the original size of the objects. In case of
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Fig. 6: Mesh generation for a 3d building model. We start from the silhouette of each floor, and then gradually add its elements.

no occlusions, the sizes are more evenly distributed than the
occluded cases.

Fig. [5] shows the visual results on the ECP dataset. It can
be seen that the sizes of windows, balconies are more unified
than before the refinement, which is more visual pleasant and
closer to the ground truth. As the facades in this dataset are
more translational symmetric than the ArtDeco, we can obtain
better results.

The above experimental results demonstrate that our method
not only obtains the high parsing accuracy, but also show the
promising visual predictions.

F. Computational Time Evaluation

Method
Test Time

[12] 2D
379min

[12] 2D+3D | DeepFacade [3] | Ours
470min 30s 17s

TABLE VI: Testing time cost comparison with state-of-the-art meth-
ods. The time cost in each entry is the total time cost to predict the
whole test set.

Table m shows the testing time for different methods,
where each entry is the total time of predicting all images
in the testing dataset. Martinovic et al. require the
highest computational cost, since it involves the complex
CRF inference stage. Their 2D method costs 379 minutes
for testing, and the 2D + 3D approach needs 470 minutes.
Deep learning-based methods are relatively fast in inference.
DeepFacade [3]] processes the whole testing set within 30s
while our presented method only needs 17s. This is because
our anchor-free framework just computes the feed-forward
network pass once rather than twice for the two stage method
in DeepFacade.

As for the training time, DeepFacade [3] has to train two
different kinds of networks while our proposed approach only
needs to train a single network. This means that our network
costs half the time of DeepFacade during training if both
methods use the same backbone network. In practice, the
training of our presented neural network can be done within
two hours due to the small scale of the dataset.

The above experiment indicates that our proposed approach
is highly efficient.

VI. 3D BUILDING RECONSTRUCTION

Once the facade is parsed into semantic grammars, we
can reconstruct their 3D model by procedural modeling. In
this paper, Blender [8]] with Python API is employed in our
implementation.

The first step is to reconstruct the geometric meshes of the
building facade. We adopt a modular way to achieve this goal.
Each facade is divided into the modular components that can
be assembled. As shown in Fig. |6} we start from building each
floor of the facades, and then gradually add windows and other
elements to it. Each object is a four-tuple obj = (z,y,w, h),
where (x,y) is the center location and (w, h) is the size. Note
that we have a predefined shape template for each object. In
this process, we actually scale the template to target size, and
then place the scaled template into the target location.

After generating the meshes of a facade, we need to estimate
the materials of 3D building model. Therefore, we have to
predict the material from 2D images. Since our goal is to
perform the semantic-level reconstruction, we do not seek to
restore the building facade perfectly without any error. In this
paper, we focus on the overall semantic result instead. In
particular, we employ the average color as the material for
wall, balcony, door, frames and roof. For window glasses, we
use a kind of blue color that is close to the original image.
After obtaining the materials, we finish the modeling process
and render the result.

Fig. [T] illustrates the pipeline of our proposed approach for
a single building. Fig. [7] shows more reconstruction results
and their street view. For aesthetic reasons, we omit balconies
that are too small during rendering and only render those with
large size. This makes the model look more promising. Fig. [§]
compares the reconstruction results using different parsing
methods. We compare our result with DeepFacade [22]]. It can
been seen that the better parsing results will yield a more
unified and visually satisfied 3D model.
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Fig. 7: 3D building reconstruction results. From top to bottom are the input images, facade parsing results and reconstructed 3D models,

respectively.

VII. CONCLUSIONS

In this paper, we have proposed an anchor-free neural net-
work fusing semantic segmentation and facade object detection
for 3D building reconstruction. Moreover, we have introduced
a novel translational symmetry-based refinement module to
refine the predicted segmentation map. Furthermore, we have
presented a procedural modeling pipeline to reconstruct the
3D building from the facade parsing results. Finally, we
have performed both quantitative and qualitative experiments
on three popular facade parsing datasets, whose promising
results demonstrate the efficacy of our proposed translational
symmetry-aware approach.

For future work, we may explore the techniques to directly

regress the parametric procedural models from the image
rather than resorting to the pixel-labeled segmentation map.
This will further improve the parsing accuracy and simplify
the 3D building reconstruction pipeline.
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