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Abstract—In this paper, we propose a new method to inpaint videos with removed regions. Our

method was developed based upon combining both short-term propagation-based inpainting

(STPI) and long-term propagation-based inpainting (LTPI) modules. The STPI module is designed

to in-fill an image from a single frame with local reference information, whilst the LTPI module

uses multiple STPI modules to inpaint the whole video, giving a high temporal consistency and a

low complexity. With both of the proposed modules, the correlated spatio-temporal information

of frames can be propagated throughout the video, offering reliable short-long-term source

information for inpainting. The experimental results demonstrate that our proposed method

provides better results when compared with the state-of-the-art.

VIDEO INPAINTING is used to in-fill missing

regions of a given video after any undesired

objects or visual artefacts have been removed.

The technique can also be used to recover dam-

aged video contents (including historical films),

making the technique particularly useful for video

editing and restoration. Video inpainting was ini-

tially developed based on image inpainting that

has been successfully applied to the masked face

completion and analysis [1-3]. Over recent years,

a variety of methods have been proposed to im-

plement video inpainting, including image patch-

based approaches, combining propagation-based

methods with deep learning-based algorithms.

The patch-based approaches [4, 5] are de-

signed to fill the missing regions by using the

available patches collected spatially or temporally

from known regions of the video. In general,

the filling of the missing regions can be imple-

mented in either a greedy fashion [4] or a global

fashion [5]. The methods effectively process the

non-stationary inpainting scenes, although search-

ing for such patches always results in rather

high computational complexity, which limits their

speed and the range of applications.

In contrast, propagation-based methods [5, 6]

have been developed based on the spatio-temporal

correlation of video frames. With the guidance

of optical flow or homography, the source in-

formation collected for inpainting is propagated

throughout the video so that the empty areas

can be filled by the composed content with a

high temporal coherence. The performance of

these approaches depends upon the propaga-

tion efficiency. Consequently, the mechanisms of

how to implement effective information propaga-

tion remains a key issue for the design of the

propagation-based inpainting.

Recently, deep learning-based methods, in-

cluding the application of convolutional neural
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networks (CNNs) [7, 8] and the attention-based

ones [9, 10], have demonstrated impressive in-

painting results for videos. Many of CNN-based

methods design the end-to-end schemes and ap-

ply the 3D convolution to fuse spatial-temporal

features for the synthesis of contents. However,

these approaches often produce coarse textural

detail due to the lack of the effective alignment

of features. Attention-based methods have also

been developed based upon the spatio-temporal

context aggregation module to compose content,

although, these approaches cannot produce fine-

grained textures and thus cannot process compli-

cated video scenes. Note that the deep learning-

based approaches suffer from high computational

cost and complexity, especially at the training

stage. Moreover, the robustness of these methods

are not as good as excepted. Their performance

highly depends upon the training dataset.

Although a number of different methods have

been proposed to implement effective inpaint-

ing for videos, there still exists key challenges

in the design of a reliable inpainting scheme.

Firstly, the camera motion induces parallax in the

video scenes, which makes that in many cases,

the captured video contains both foreground and

background. Secondly, the generated content is

not always of sufficient quality due to the lack of

spatial and temporal coherency between adjacent

frames. Finally, collecting reference information

from the whole video often results in high com-

putational complexity.

In order to tackle these problems, we propose

a combined module comprising short-long-term

propagation-based inpainting (SLTPI) to fill the

missing areas of the video with removed objects.

The proposed SLTPI is composed by both short-

term propagation-based inpainting (STPI) and

long-term propagation-based inpainting (LTPI).

Specifically, the STPI module is designed to fill

a single frame with the reference information

obtained from its adjacent neighbors. In STPI, a

depth-guided mesh-warping model with an illu-

mination adaptation algorithm and a progressive

fusion algorithm are developed to fill the missing

region with high quality information. The LTPI

module is constructed based on STPI but uses

more reference information from more distant

frames. Moreover, it is designed to inpaint the

whole video by propagating the spatio-temporal

information of frames through the video. In LTPI,

the intra group of pictures (GOP) inpainting and

the inter GOP inpainting are both developed to

reduce the computational complexity.

RELATED WORK

Before deep learning was applied to video

inpainting, most inpainting approaches were de-

veloped by filling the missing regions with the

available patches collected spatially or temporally

from the known regions, as so-called patch-based

methods, which can be implemented in either

a greedy or a global fashion. The greedy-based

solutions [4] are used to fill the regions pixel by

pixel, but often produce inconsistent results. To

solve this problem, Huang et al. [5] introduced

a global objective function with optical flow to

optimize the patch searching and accordingly

enforce temporal coherence of the result.

Propagation-based inpainting approaches fo-

cus on how to complete the whole video by

propagating the correlated spatio-temporal infor-

mation of frames through the video. For instance,

Huang et al. [5] formulated a propagation-based

algorithm for a joint color and flow optimization

problem. By solving this, appropriate content

was synthesized. However, this method produces

over-smooth flow, which often results in blurred

regions and boundaries in the most complicated

scenes. To obtain the reliable flow for the con-

struction of missing regions, Gao et al. [6] com-

pleted the flow estimation with edge guidance to

improve inpainting performance.

Most recently, deep learning-based video in-

painting has become increasingly popular. Lee

et al. [7] constructed encoder-decoder models to

aggregate information from multiple frames to

inpaint the target frame. Oh et al. [9] proposed an

asymmetric attention block for progressive region

filling. Ouyang et al. [8] applied an internal learn-

ing to process challenging or complex scenarios

which contain ambiguous backgrounds or long-

term occlusion. Li et al. [10] proposed an end-to-

end video inpainting by propagating features with

the guidance of flow. Moreover, Zhang et al. [11]

constructed a flow-guided transformer model for

video inpainting.
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Figure 1. Schematic showing the pipeline of our proposed method. Firstly, the input video is divided into several

GOPs. Then, the intra and inter GOP inpainting are sequentially performed to compose the LTPI module and

both are constructed based on the STPI module. The STPI module consists of source region acquisition,

illumination adaptation and progressive fusion, which are employed to obtain the reliable source region and

seamlessly transfer it to target region. The final refinement, which is composed by spatial inpainting and STPI,

is carried out if the frames cannot be completely filled by LTPI.

Overview

The pipeline of SLTPI is illustrated in Fig. 1,

where both the STPI and LTPI modules collect

the correlated spatio-temporal information to fill

the missing areas of video frames. More specif-

ically, the STPI module is designed to inpaint

a single frame with the reference information

provided by its adjacent neighbors. The LTPI

module is designed to inpaint the whole video,

with the aim of reducing complexity and main-

taining high temporal consistency. The pipeline

of activity is constructed based on STPI but can

obtain more reference information from the long-

distance frames. In addition, the final refinement

adopted in SLTPI is used to inpaint the frames

which cannot be completely filled by LTPI.

The STPI module consists of source region

acquisition, illumination adaptation and progres-

sive fusion. To acquire reliable source regions, we

designed the depth-guided mesh-warping model

to predict the motion for missing regions, which

can be divided into single-layer and multi-layer

alignments. Then we adujust the illumination of

source regions to adapt to the target frame and

seamlessly transfer them to target frame with

progressive fusion.

The LTPI module is implemented by progres-

sively applying STPI to video frames. In LTPI,

all the frames of a video are firstly divided into

GOPs. Then, STPI is performed on the frames of

each GOP along both the forward and backward

directions, achieving the intra GOP inpainting.

Subsequently, STPI is applied to the frames of

two adjacent GOPs, implementing the inter GOP

inpainting. If some frames of a video cannot

be completely inpainted by LTPI, the spatial

inpainting coupled with STPI is performed to

complete them, which accordingly achieves the

final refinement.

Short-term Propagation-based
Inpainting (STPI)

The STPI module consists of source region

acquisition, illumination adaptation and progres-

sive fusion. For source region acquisition, we use

the single-layer and multi-layer alignment-based

techniques to obtain source region according to

whether the frame includes multiple layers.

Source Region Acquisition

In our proposed STPI module, the inpainting

of a target frame relies upon the source infor-

mation collected from its neighboring reference

frames. However, varied motion for different lay-

ers often induces misalignment between frames,

often resulting in difficult acquisition of reliable

information for inpainting. To tackle this prob-

lem, we firstly align the reference frame Fr to

the target frame Ft. Then, with the user-specified

mask, we obtain the source region from the

aligned Fr to fill the missing region of Ft. In

addition, we design two source region acquisition

methods based on the single-layer alignment and

multi-layer alignment for two scenarios. Different

alignment is adopted according to the continuity

2023 3



(a)

(b)

Figure 2. Examples of single-layer and multi-layer

scenes from DAVIS dataset. The discontinuous depth

boundary detected by Canny is highlighted in red

color. (a) Single-layer scenes. First row: video frames.

Second row: depth maps. (b) Multi-layer scenes. First

row: video frames. Second row: depth maps.

of the depth map [12], where the existence of

discontinuous object edges in the depth map

indicates the existence of different layers in the

frame. In our work, a Canny edge detector [13] is

used to detect the discontinues edge in the depth,

as illustrated in Fig. 2.

Single-layer alignment-based source re-

gion acquisition For the video whose frames

do not contain obvious foreground and back-

ground layers, i.e., composed by only one layer,

we design a single-layer alignment-based method

to acquire the source region.

Single-layer alignment: For the single-layer

scenario, we adopt the mesh-warping model [14]

to align the reference and the target frames. This

model warps a frame with local homography for

alignment and introduces mesh grids to optimize

the homography. Moreover, it does not separate

the frame into different planes, which makes it

applicable for the alignment of frames with single

layer and continuous depth.

To construct the mesh-warping model, the

matched features of Ft and Fr should be obtained

first. Before generating features, we initially fill

the missing regions of Ft and Fr by using the

inward interpolation and the available boundary

pixels. This processing constructs a smooth re-

gion to avoid the matched features of Ft and

Fr falling around the boundaries of missing re-

gions. After the initialization, we generate the

SURF features [15] of both Ft and Fr. Then,

we gather the matched features of these frames

and apply an RANSAC algorithm [16] to remove

undesired features. Finally, we use the remaining

features to construct the mesh-warping model,

which produces optimal local homography and

accordingly guarantees a low warping loss for

frame alignment.

In the mesh-warping model, assuming that

F̂r is a warped reference frame, let V̂i =
[v̂1i , v̂

2
i , v̂

3
i , v̂

4
i ]

T represent the vertex vector of a

grid cell of F̂r. The optimal warping is deter-

mined by minimizing

E(V̂ ) = Ed(V̂ ) + ηEs(V̂ ) (1)

where V̂ is composed by all the warped grid ver-

tices, Ed and Es are the data term and similarity

term, respectively, and η is the weighting factor.

By performing the bilinear combination on a

mesh grid cell of F̂r, we obtain the feature f̂i
of F̂r as f̂i = ciV̂i, where ci = [c1i , c

2
i , c

3
i , c

4
i ]

is the bilinear weighting vector. The above mini-

mization problem is quadratic and can be readily

solved using a standard sparse linear solver as

suggested in [14]. Then, the data term is defined

Ed(V̂ ) =
∑

i
‖f̂i − fi‖

2
2

=
∑

i
‖ciV̂i − fi‖

2
2.

(2)

The similarity term is defined to constrain the

warping with small deformations. Note that each

grid cell can be split into two triangles [14]. For

each △vv1v2 whose vertices are v, v1 and v2,

v can be represented by v1 and v2 in a local

orthogonal coordinates system as

v = v1 + (u1 + u2R90)(v2 − v1) (3)

where u1 and u2 are the coordinates of v in

the local coordinate system and R90 is the 90◦

rotation matrix for v [14]. Based on Eq. (3), the

similarity term is defined as

Es(V̂ ) =
∑

v̂
‖v̂ − [v̂1 + (u1 + u2R90)(v̂2 − v̂1))]‖

2

(4)

where v̂, v̂1 and v̂2 represent three vertices of

the triangle in the optimized mesh grid. After

substituting Eqs. (2) and (4) into Eq. (1), we

can minimize the resulting E(V̂ ) with a sparse
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Figure 3. Source region acquisition with single-layer

alignment.

linear system solver, which accordingly generates

optimal mesh grid.

Once the optimized mesh grid is obtained,

we can generate the local homography for each

grid cell. To achieve a low complexity, we warp

the local area rather than the whole reference

frame to form the source region for the target

region. The corresponding procedure is illustrated

in Fig. 3. Firstly, based on the user-specified

mask, we produce the warped reference sub-mask

for each grid cell with its homography. Secondly,

we form the warped reference mask Ω̂r with all

the resulting sub-masks. Thirdly, we generate a

binary mask Ωo to determine whether we need

to warp local area or not. In addition, Ωo is used

to obtain the reference information for inpainting

from the warped local area. In this work, Ωo is

obtained as

Ωo = Ωt ⊙ (I − Ω̂r) (5)

where Ωt is the target mask, ⊙ is the element-

wise product, and I is a mask whose elements

are all ones.

Source region acquisition: Finally, if Ωo is not

an empty mask, i.e., the mask whose elements are

all zeros, we will use it to obtain the source region

from the local reference area. To obtain this area,

we firstly form a regular mask, denoted ΩR, with

the grid cells of the given mask of the reference

frame. Then, we get the reference region Rr

Rr = ΩR ⊙ Fr. (6)

Next, we warp Rr with the local homographies

and obtain the source region for inpainting as

Figure 4. Source region acquisition with multi-layer

alignment.

Rs = Ωo ⊙ warp(Rr). (7)

If Ωo is an empty mask, it indicates that we

cannot get source region from neighboring frame.

For this scenario, the LTPI module is adopted and

it collects source region from long-distance frame

for inpainting, which will be introduced in the

construction of LTPI.

Multi-layer alignment-based source region

acquisition method Single-layer alignment

is used to obtain source region for inpainting

the video whose frames do not contain obvious

foreground and background, i.e., with contin-

uous depth. It works well in the single-layer

scenario because all the objects within a frame

have similar motions. However, in the multi-layer

scenario, the foreground and background produce

a discontinuity in the depth, so resulting in dif-

ferent motions between them. If the single-layer

alignment is applied to this scenario, the features

of foreground are always treated as outliers and

accordingly eliminated. Therefore, applying the

single-layer alignment to multi-layer scenarios

cannot achieve desired alignment. To tackle this

problem, we separately warp different layers of

the reference frame to implement the multi-layer

alignment. With this alignment, we can obtain the

reliable source region. The multi-layer alignment-

based source region acquisition consists of depth

estimation, depth-guided separation and source

region acquisition, as illustrated in Fig. 4.

Multi-layer alignment: We adopt a monocular

depth estimation method [12] in our work to

obtain the depth map which is used to separate

foreground and background.

We designed a depth-guided method to sepa-

rate the foregrounds and backgrounds of frames.

Depth map is obtained in depth-aided alignment

2023 5



decision. After separation, we aligned the corre-

sponding layers of the reference and target frames

to acquire the appropriate source information.

To implement the layer separation, the frame is

firstly split into a number of super-pixels. Then,

according to the depth and color information,

these super-pixels are clustered into two classes.

With this classification, the frame is finally sepa-

rated into foreground and background.

The super-pixel represents an irregular-shaped

area which contains adjacent pixels with similar

texture, color and depth. In our work, we firstly

use the simple linear iterative clustering [17] to

convert an H × W frame into an H/n × W/n
super-pixel map, where n is the size of a super-

pixel. Then, the mean values of both the color

and depth of each super-pixel cluster are used

to determine the classification of super-pixels,

which makes a low complexity for layer separa-

tion. Based upon these mean values, a Meanshift

method [18] is used to classify super-pixels.

In our work, we combine the color and depth

of a super-pixel to form a classification parameter

ti = |colormean−colori|+λ|depthmean−depthi|
(8)

where colormean and depthmean denote the

mean values of color and depth of a cluster,

respectively, colori and depthi are the color and

depth values of a specific super-pixel, respec-

tively, and λ is the depth weight. By comparing

ti with a given threshold T , we can accordingly

divide all the super-pixels into two clusters. With

these clusters, we separate the frame into fore-

ground (ti > T ) and background (ti ≤ T ).

Furthermore, according to the resulting layers

of a reference frame, we can divide the user-

specified mask into the corresponding foreground

and background masks.

Source region acquisition: After the depth-

guided layer separation, the reference frame is

divided into foreground and background. Then,

we separately apply the single-layer-based acqui-

sition to these layers to obtain the corresponding

source regions for them. Finally, we combine

these regions together to form source region for

target frame.

To verify the effectiveness of multi-layer

alignment-based acquisition, we applied the

methods to the frames with multiple players and

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 5. Results for the verification of multi-layer

alignment. (a)-(b) Target frame and reference frame

of Goat video from DAVIS dataset; (c) single-layer

alignment result; (d) multi-layer alignment result; (e)

single-layer alignment error; (f) multi-layer alignment

error; (g) inpainting with single-layer alignment; and

(h) inpainting with multi-layer alignment.

compared the result with those obtained using

the single-layer alignment. The corresponding re-

sults, including the aligned reference frames, the

alignment errors and the final inpainting results

are all given in Fig. 5. The results presented

in Fig. 5 indicate that using the multi-layer

alignment-based methods provides reliable source

information, which accordingly generates better

inpainting results.

Illumination Adaptation

Any illumination change during video cap-

ture often induces brightness variation between

frames. If we directly migrate the acquired source

region to the target frame, it will result in ap-

parent boundary effects in the inpainted frame.

To tackle this problem, we designed an illumi-

nation adaptation algorithm and applied it to the

obtained source region before transferring it to

6



(a) (b) (c)

Figure 6. Results for the verification of illumination

adaptation. (a) Selected local region for broken frame

of Bmp-bumps video from DAVIS dataset; (b) with

illumination adaptation; and (c) without illumination

adaptation.

target frame. The illumination adaptation occurs

in the LAB color space and the source region is

converted from the RGB color space to the LAB

space. After the color conversion, the L channel

of the source region, denoted Ls, is adjusted as

L̂s = αLs + βµ (9)

where α is the scaling factor , β is the compen-

sation term and µ = [1, ..., 1]T . In our method,

the optimal (α,β) is determined by minimizing

the difference between the source region Ls and

the target region Lt in the LAB space. However,

the target information is not available in the

inpainting task. To solve this problem, we deter-

mined (α,β) based upon the common available

information around Lt and Ls. Then, we used

the resulting (α,β) to adjust Ls.

Let L̄s and L̄t represent the available neigh-

boring areas for Ls and Lt, respectively. In our

work, L̄s and L̄t are obtained by performing a

specific mask ΩL on the source region and the

target region, respectively, where ΩL = (I −
Ω̂r)⊙ (I −Ωt). Meanwhile, due to the existence

of local difference and warping error, some corre-

sponding pixels of L̄s and L̄t are quite different to

each others, which always degrades the accuracy

to find optimal (α,β). To solve this problem, we

used the absolute deviation-based method [19] to

exclude these pixels. After that, the optimal (α,β)

was determined by

(α̂, β̂) = argmin
(α,β)

‖L̄t − (αL̄s + βµ)‖22. (10)

The closed-form solution to Eq. (10) is ob-

tained by using the least squares estimation, i.e.,























α̂ =
L̄T

s L̄t − L̄T
s µ

L̄T
s L̄s − (L̄T

s µ)
2

β̂ =
(L̄T

s L̄s)(L̄
T
t µ)− (L̄T

s L̄t)(L̄
T
s µ)

L̄T
s L̄s − (L̄T

s µ)
2

.

(11)

We adjust Ls according to Eq. (9) and then

convert it with the chrominance components to

the RGB space. The converted result was finally

used to fill the target region.

We present exemplar results in Fig. 6 to

demonstrate the effectiveness of our proposed

illumination adaptation, where the inpainting re-

sults with and without the adaptation are both

given. According to these results, it is found that

the illumination adaptation effectively reduces

boundary effects and produces more pleasant in-

painting result.

Progressive Fusion

To guarantee the continuity of the filled region

and its neighboring area, we designed a pro-

gressive fusion algorithm to seamlessly transfer

the neighboring area of the source region to the

neighboring area of the target region. Specially,

we combine those pixels around the boundary of

the source region with the pixels at the same lo-

cations in the target region to fill the neighboring

area of the target area. Let d denote the city

block distance between a selected neighboring

pixel ps(i, j) and the boundary of the source

region. In this work, we select a number of

neighboring pixels with different distances, i.e.,

d = 1, 2, ..., dmax, to progressively fuse them

with the neighboring pixels of the target region,

where dmax is the biggest range to collect pixels.

With this distance, we define a weighting factor

for each selected pixel as ω = 1−d/dmax. Then,

we combine ps(i, j) with the corresponding pixel

pt(i, j) in the target region to generate a fused

pixel p̂t(i, j)

p̂t(i, j) = ω · ps(i, j) + (1− ω) · pt(i, j). (12)

We demonstrated the effectiveness of the pro-

gressive fusion by comparing the inpainting re-

sults obtained with and without it. The corre-

sponding results are given in Fig. 7. It is seen

from Fig. 7 that adopting the progressive fusion

in our method produces smoother result.

2023 7



(a) (b) (c)

Figure 7. Results for the verification of progressive

fusion. (a) Selected local region for broken frame of

Flamingo video from DAVIS dataset; (b) with progres-

sive fusion; and (c) without progressive fusion.

Long-term Propagation-based
Inpainting

In this section, we designed the LTPI module

based upon our proposed STPI to inpaint the

whole video. This module can collect reference

information from the long-distance frames. As a

result, it may potentially obtain more available

information for inpainting. Moreover, it was de-

signed to rapidly deliver source information over

frames and guarantee the temporal consistency of

the inpainted video.

To implement LTPI, we firstly divided all

the frames of a video into several GOPs, i.e.,

{G1, G2, ..., Gn}, where each GOP contains m
frames. Then, we independently inpainted each

Gi by using its inside reference information,

which constructs the intra GOP inpainting. After

all the GOPs were processed by the intra inpaint-

ing, we further filled the remained empty regions

of the frames of Gi with the reference informa-

tion offered by the other groups, which composed

the inter GOP inpainting. Moreover, both the intra

and inter GOP inpainting methods consisted of

the forward propagation-based inpainting (FPI)

and the backward propagation-based inpainting

(BPI), where FPI and BPI were implemented

based upon our proposed STPI. To implement

FPI, the given frame F (j−1) was selected as

the reference frame for its next frame F (j). In

contrast, to implement BPI, F (j+1) was used as

the reference frame for its previous frame F (j).

We designed the GOP-based inpainting for LTPI

so that we can avoid the propagation of inpainting

errors over the whole video.

Intra GOP Inpainting

The intra GOP inpainting occurs inside each

Gi, where FPI was firstly performed on the

Algorithm 1: Intra GOP inpainting

Input: Input video

Output: Inpainted GOPs

{Ĝ1, Ĝ2, ..., Ĝn}
Initialization: Dividing S into GOPs

{G1, G2, ..., Gn}
Processing frame F

(j)
i ∈ Gi:

for i = 1 : n do
Forward propagation-based inpainting

(FPI):

for j = m : 2 do

Set Ft = F
(j)
i and Fr = F

(j−1)
i ;

Update F
(j)
i :

F
(j)
i = STPI(Ft, Fr).

end

Backward propagation-based

inpainting (BPI):

for j = 1 : m− 1 do

Set Ft = F
(j)
i and Fr = F

(j+1)
i ;

Update F
(j)
i :

F
(j)
i = STPI(F

(j)
i , F

(j+1)
i ).

end

Composing Ĝi with the updated F
(j)
i .

end

frames of Gi and then BPI was applied to them.

To implement the intra FPI, our proposed STPI

was used to fill the frames of Gi from the first to

the last. In contrast, to implement the intra BPI,

STPI was carried out from the last frame to the

first frame of Gi. The implementation of the intra

GOP inpainting is summarized in Algorithm 1.

Inter GOP Inpainting

After the intra GOP inpainting was applied to

all the groups, each frame of a GOP has been

fully or partially filled by using the source infor-

mation collected from its neighboring frame(s).

After that, if there were still empty areas in the

frames of an inpainted GOP Ĝi, the inter GOP

inpainting was applied to it to fill the areas. In the

inter GOP inpainting, the source information was

collected from the other GOPs and propagated

gradually from the close groups to the distant

ones. This strategy guarantees that all of the

available information of the adjacent frames but

different groups can be used with high priority.

It also avoided the accumulation and propagation

8



Algorithm 2: Inter GOP inpainting

Input: Intra GOP inpainted GOPs

{Ĝ1, Ĝ2, ..., Ĝn}
Output: Inpainted video

Processing {Ĝ1, Ĝ2, ..., Ĝn}:

for k = 1 : n− 1 do

for i = n : −1 : 1 + k do

if Ĝi is not completely inpainted

then

Update Ĝi:

Ĝi = FPI(Ĝi, Ĝi−1)
else

Skip
end

end

for i = 1 : n− k do

if Ĝi is not completely inpainted

then

Update Ĝi:

Ĝi = BPI(Ĝi, Ĝi+1)
else

Skip
end

end

end

Composing video with the updated Ĝi.

of inpainting errors over the whole video.

The inter GOP inpainting was implemented

in an iterative manner. In each iteration, FPI was

firstly performed on the specific frames of the

video, and then BPI was carried out. Both FPI

and BPI were applied to two adjacent GOPs,

where one GOP offered reference frame for the

inpainting of frames of the other. Specifically, FPI

starts from the last two GOPs, i.e., (Ĝn−1, Ĝn),
while BPI starts from the first two GOPs, i.e.,

(Ĝ1, Ĝ2). To fill an incomplete GOP, when FPI

was carried out, the last frame of Ĝi−1 and all the

frames of Ĝi were firstly gathered according to

the temporal order. Then, STPI was sequentially

performed on these frames, i.e., from the first to

the last frame. To implement the inter BPI, all the

frames of Ĝi and the first frame of Ĝi+1 should

be collected firstly.

Subsequently, STPI was carried out from the

last frame to the first one over the stored frames.

After one iteration was accomplished, the first

(a) (b) (c)

Figure 8. Results for the verification of inter GOP

inpainting. (a) Selected local region for broken frame

of Horsejump-high video from DAVIS dataset; (b)

without inter GOP inpainting; and (c) with inter GOP

inpainting.

(a) (b) (c)

Figure 9. Results for the verification of final refine-

ment. (a) Selected broken frame of Camel video from

DAVIS dataset; (b) before final refinement; and (c)

after final refinement.

two adjacent GOPs will be removed from the

FPI procedure in the next iteration and the last

two adjacent GOPs will also be removed from

the BPI processing in the next iteration. With the

increment of iteration, the participated GOPs in

both FPI and BPI were progressively reduced,

which effectively avoided some repeated FPI and

BPI operations over the same adjacent GOPs.

By applying FPI and BPI to all the adjacent

GOPs, the spatio-temporal correlated information

of all the frames could be propagated over the

whole video, which offers reliable reference for

inpainting. Note that if Ĝi does not contain the

incomplete frames, the inter GOP inpainting will

be skipped. The detail to implement the inter

GOP inpainting is summarized in Algorithm 2.

We present results in Fig. 8 to demonstrate

the effectiveness of the inter GOP inpainting by

making a comparison between the results with

and without this operation. One can see from

Fig. 8 that the use of the inter GOP inpainting

produces the good results, with propagation of

the long-term source information over the video

to reduce error accumulation.

Final Refinement
Our proposed propagation-based inpainting

methods, i.e., STPI and LTPI, collect the source

information from the other frames to fill the
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Figure 10. The Landscape dataset with object-like masks for quantitative experiments. The top two rows are

single-layer scenes and the bottom two rows are multi-layer scenes.

missing regions of a given frame. If all the refer-

ence frames cannot provide enough information

to completely fill the empty areas of some specific

frames, we will employ the GAN-based spatial

inpainting [20] coupled with the propagation-

based inpainting to complete them, implementing

the final refinement. The former inpainting is used

to fill all the missing areas of a single frame with

high visual quality and the latter one is applied

to complete frames guaranteeing high temporal

consistency and low complexity.

We demonstrated the effectiveness of the final

refinement by comparing the inpainting results

obtained before and after its application. These

results are presented in Fig. 9 and they show

that the final refinement completely fills all the

missing areas of the target frame.

Experimental Results

Experimental Setup

We evaluated the performance of our pro-

posed method by comparing it with the state-

of-the-art methods, including three propagation-

based methods, i.e., Huang’s approach [5], FGVC

[6] and FGT [11], and four deep learning-based

methods, i.e., CPNet [7], OPN [9], IIVI [8],

E2FGVI [10] and FGT [11]. Note that Huang’s

approach [5] is designed on the Matlab platform

with CPU, while FGVC [6] and FGT [11] are

developed based on the Pytorch platform with

both CPU and GPU. The four deep learning-

based methods are implemented on the Pytorch

platform with GPU. In addition, our proposed

method was developed based upon the Matlab

platform with CPU except for the depth estima-

tion and the final refinement which are imple-

mented on the Pytorch platform with GPU. In

this work, we adopt Matlab 2020b and Pytorch

1.2.0 with Inter(R)-Core(TM) i7-9700k 3.60GHz

CPU and NVIDIA GTX 2080Ti 11GB GPU in

Table 1. Quantitative Comparison of Different Methods

on DAVIS dataset for video completion

Methods

Accuracy Efficiency

Square Object Runtime

(s/frame)PSNR SSIM LPIPS PSNR SSIM LPIPS

Huang [5] 31.53 0.9654 0.034 30.14 0.9509 0.043 4.03

CPNet [7] 30.43 0.9468 0.045 29.65 0.9331 0.051 0.40

OPN [9] 30.58 0.9492 0.047 29.57 0.9364 0.053 0.96

FGVC [6] 32.45 0.9709 0.028 31.16 0.9611 0.035 2.36

IIVI [8] 31.69 0.9628 0.031 31.22 0.958 0.037 110.15

E2FGVI [10] 33.78 0.9809 0.026 33.07 0.9777 0.028 0.16

FGT [11] 33.86 0.9831 0.024 32.89 0.9693 0.031 1.89

Ours 34.04 0.9865 0.021 33.15 0.9806 0.025 0.51

the experiments.

Quantitative Comparison

In quantitative comparison, we applied our

proposed approach and the state-of-the-art meth-

ods, including Huang’s method [5], CPNet [7],

OPN [9], FGVC [6], IIVI [8], E2FGVI [10] and

FGT [11], to two video datasets. The first one

is the popular video segmentation dataset DAVIS

and the second one is our collected dataset Land-

scapes that is composed by fourty videos without

moving objects. We adopted three quantitative

metrics, including PSNR (dB), SSIM, and LPIPS,

to evaluate the efficiency of different methods.

Firstly, as previous work [6, 10, 11] did,

we adopted 50 video clips from DAVIS dataset

to evaluate quantitative performance and time

efficiency. The resolutions of these videos are

240 × 432. We generated the stationary square

masks and the temporally-varied irregular masks

for video restoration scenario and object removal

scenario, respectively. The quantitative evaluation

results were given in Table. 1. It can be seen from

Table. 1 that our method outperforms the state-

of-the-arts on all the three quantitative metrics.

Meanwhile, the runtime of different approaches

are also presented in Table. 1. Although our
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Table 2. Verification of Robustness for Different Resolu-

tion on Landscapes for object removal

Methods
PSNR/SSIM

480p 720p 1080p

Huang [5] 29.27/0.9644 30.30/0.9719 30.01/0.9673

CPNet [7] 29.21/0.9566 29.89/0.9660 30.68/0.9728

OPN [9] 28.32/0.9589 29.62/0.9657 -/-

FGVC [6] 33.24/0.9871 32.73/0.9875 32.33/0.9832

IIVI [8] 32.12/0.9782 31.84/0.9773 30.77/0.9745

E2FGVI [10] 33.40/0.9832 33.12/0.9827 -/-

FGT [11] 35.37/0.9901 35.24/0.9894 35.13/0.9878

Ours 35.92/0.9913 35.58/0.9907 35.23/0.9896

method was developed mostly based on CPU,

its average processing time is comparable to that

of the deep learning-based methods which were

implemented based on GPU, which proves the

time efficiency of our proposed approach.

Secondly, to verify the robustness of different

methods, we applied them to the videos of our

Landscapes dataset, where each video is trans-

ferred into three versions with three correspond-

ing resolutions, i.e. 480p, 720p, and 1080p. We

used the masks offered by DAVIS dataset to

remove the content of video and fill the empty re-

gions. Our Landscape dataset can provide ground-

truth to evaluate object removal with object-like

masks. Videos and masks from Landscape dataset

are shown in Fig. 10. The corresponding results

were offered in Table 2. OPN [9] and E2FGVI

[10] cannot process the 1080p videos due to the

limited GPU memory. One can see from Table

2 that our method achieves the best performance

in different resolution scenarios with the given

marks. This demonstrates its robustness to video

resolution and removed content.

Qualitative Comparison

We carried out qualitative comparison exper-

iments on DAVIS datset. These videos are also

used in [5] for the quantitative comparison, where

the user-specified object masks are given, and the

videos contain both the single-layer scenes and

multi-layer scenes. We demonstrate the inpainting

performance of our method by performing it on

these videos and make the qualitative comparison

with state-of-the-art methods.

Firstly, we present some visual results in Fig.

11 to compare our method with the other meth-

ods. It is found from Fig. 11 that our method

produces more pleasant results which contain

Table 3. Parameter Determination for Single-layer Align-

ment

η=0.5 η=1.0 η=1.5 η=2.0

PSNR 35.81 36.03 35.72 35.68

SSIM 0.9901 0.9922 0.9892 0.9880

Table 4. Parameter Determination for Multi-layer Align-

ment

PSNR (dB) SSIM

n = 40

λ=0.5 35.54 0.9879

λ=1.0 35.75 0.9903

λ=1.5 35.68 0.9887

n = 80

λ=0.5 35.73 0.9896

λ=1.0 35.81 0.9904

λ=1.5 35.77 0.9902

n = 120

λ=0.5 35.41 0.9868

λ=1.0 35.64 0.9974

λ=1.5 35.28 0.9885

smoother edges and clearer textures. However, the

other methods, especially OPN [9], often generate

blurred results and distorted semantic objects. All

the results of our proposed method can be found

in the website1.

Secondly, besides of visual results, the tempo-

ral coherence evaluation adopted in [5] is used to

compare the temporal consistency of the results

obtained by using different methods. In this com-

parison, a slice of successive frames are selected

and the spatio-temporal profile (the yellow line

highlighted in frames) is given. We offer the

temporal coherence results in Fig. 12. One can

see from Fig. 12 that our result maintains the

long-term temporal consistency and accordingly

achieves better temporal coherence.

Thirdly, we carried out a user study to sub-

jectively evaluate the inpainting results obtained

with different methods. For each video, the source

video and the inpainted videos were all displayed

to ten participants and they were required to give

a score from 1 to 5 to evaluate the quality of

the result, where a higher score indicates a better

result. The user study results are presented in Fig.

13 and these results show that most of our results

have higher scores, which demonstrates the good

performance of our proposed method.

Determination of Hyper-parameters

In our work, the hyper-parameters defined in

the single-layer alignment, multi-layer alignment,

1https://drive.google.com/drive/folders/
1Qcsn0cy36xRVcgKTLbeFxNpBPLBB-RIa
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Figure 11. Qualitative comparison of inpainting results for some videos from DAVIS dataset. From left to right:

Train, Horsejump-Low, Horsejump-High, Motorbike and Goat. From top to bottom: Mask, Huang [5], CPNet [7],

OPN [9], FGVC [6], IIVI [8], E2FGVI [10], FGT [11] and ours.

progressive fusion were determined according

to a number of preliminary experiments. These

experiments were carried out on the videos from

Landscape dataset with random masks using the

480p resolution.

For single-layer alignment To determine the

parameter η used in the single-layer alignment,

we conducted experiments with different η on 20

videos from Lanscape dataset, to select the most

applicable parameter η. The average quantitative

results over these videos are given in Table 3.

Based upon the results presented in Table 3, we

choose η = 1.0 for our work due to the best

performance offered by it.

For multi-layer alignment We applied multi-

layer alignment with various combinations of

depth weight λ and super-pixel size n to broken

landscape videos for the determination of them.

The other 20 videos from Lanscape dataset were

adopted in this experiment and the classification

threshold T was empirically specified as T = 30.

The average quantitative results over these videos

12



Figure 12. Comparison of temporal coherence. From

top to bottom: Temporal slice, Mask, Huang [5], CP-

Net [7], OPN [9], FGVC [6], IIVI [8], E2FGVI [10], FGT

[11] and ours.

Figure 13. User study results evaluated on DAVIS

videos.

are given in Table 4. According to the results

presented in Table 4, we selected n = 80 and

λ = 1.0 for our method due to the better results

achieved by using such a combination.

For progressive fusion We used different

dmax in the experiment and chose the most

Table 5. Parameter Determination for Progressive Fusion

dmax 10 20 30 40 50

PSNR 35.63 35.60 35.92 35.78 35.62

SSIM 0.9905 0.9896 0.9913 0.9889 0.9883

Table 6. Ablation Study Results of LTPI

Methods PSNR SSIM

Intra GOP inpainting

FPI 27.89 0.9412

BPI 27.43 0.9383

FPI+BPI 33.56 0.9731

Intra GOP inpainting

+Inter GOP inpainting

FPI 29.63 0.9557

BPI 29.35 0.9541

FPI+BPI 35.92 0.9913

applicable one to calculate the weighting factor

ω for Eq. (12) used in the progressive fusion

algorithm. The average quantitative results over

all the broken landscape videos are given in Table

5. According to the results shown in Table 5, we

finally adopt dmax = 20 in our work due to the

superior performance.

Effectiveness of LTPI

We conducted ablation experiments to verify

the effectiveness of our proposed LTPI module,

where the performance of intra GOP inpainting

and inter GOP inpainting was verified. Mean-

while, the effectiveness of FPI and BPI was also

verified. These experiments were conducted on

the landscape videos with the 480p resolution.

The verification results are given in Table 6. It

was found from Table 6 that completing videos

with both the intra GOP inpainting and the inter

GOP inpainting demonstrate impressive results

and adopting FPI and BPI can bring significant

performance gain.

Conclusions
In this paper, we propose a short-long-term

propagation-based method to fill the missing ar-

eas of videos. Our proposed method was devel-

oped based upon integrating two inpainting mod-

ules, i.e., STPI and LTPI, where the STPI module

fills a single frame with the reference information

collected from local adjacent frames and the LTPI

module inpaints the whole video by progressively

applying STPI to all the frames. In both the

modules, the correlated spatio-temporal informa-

tion is propagated from one frame to another,

guaranteeing a high temporal consistency. The

experimental results, including qualitative studies
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with users as well as quantitative methods, using

reference techniques [5-11] all demonstrate that

our proposed method achieves better performance

than those at the current state-of-the-art.
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