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Abstract

This paper analyzes security performance of an image encryption algorithm using 2D lag-complex Logistic map (LCLM),
which adopts it as a pseudo-random number generator, and uses the sum of all pixel values of the plain-image as its initial
value to control the random combination of the basic encryption operations. However, multiple factors make the final pseudo-
random sequences controlling the encryption process may be the same for different plain-images. Based on this point, we
proposed a chosen-plaintext attack by attacking the six encryption steps with a strategy of divide and conquer. Using the
pitfalls of 2D-LCLM, the number of required chosen plain-images is further reduced to 5 · log2(MN) + 95, where MN is the
number of pixels of the plain-image.
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1. Introduction

With the popularization of multimedia capture devices
and the mobile Internet, more and more people become
enjoying sharing and transmitting photos via a social plat-
form, such as WeChat, Instagram and Facebook. Mean-
while, due to the openness of the network, multimedia in-
formation itself or the contained privacy may be leaked dur-
ing the transmission process [1]. Such underlying threats
are transparent for most people. Therefore, ensuring se-
curity and privacy of multimedia data, especially that of
digital images, with proper balancing point with usabil-
ity has become needs of everyone living with cyberspace.
Due to the special characteristics of image data, such as the
large amount of data itself and strong correlation existing
between neighbouring pixels, it is generally impractical to
encrypt the protected object with the classic text encryption
algorithms by converting the object into one-dimensional
text data. Under this background, a large number of im-
age encryption algorithms were proposed in the past three
decades [2, 3, 4]. Unfortunately, some were found insecure
of different extents from the perspective of modern crypt-
analysis [5, 6, 7, 8, 9, 10]. With the development of neural
network technology, the form of attack and defense applied
on image data has been changed much [4, 11, 12].
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As a cryptosystem can be considered as a complex sys-
tem defined on a digital domain, various nonlinear sci-
ences, e.g. chaos, synchronization, were adopted as alter-
native methodologies to design new image encryption algo-
rithms [5, 13, 14, 15]. However, the nice complex dynamics
demonstrated in the original infinite-precision domain may
be degenerated to a certain extent and even diminished in
a finite-precision arithmetic domain [16, 17]. As shown in
[6, 10], the randomness of the sequence obtained by iterat-
ing a discrete chaotic map on a computer with finite arith-
metic precision is much lower than that expected by the
designers: the periods of the sequences starting from some
initial conditions are even smaller than three (see Fig. 1).

In [18], 2D lag-complex Logistic map (2D-LCLM)
is designed to enhance dynamic complexity of the map
and counteract its dynamic degradation in digital domain.
Then, an image encryption algorithm based on the special
Logistic map (IEALM) is designed and tested to demon-
strate cryptographic application merits of the map. In the
algorithm, the pseudo-random number sequences generated
by iterating 2D-LCLM are used to obfuscate and diffuse the
plain-image via complex cascade of modulo addition, XOR
operation, and bit-level permutation. This paper reevalu-
ated security performance of IEALM and reported the fol-
lowing points: 1) the correlation mechanism between the
encryption process and the plain-image is invalid with a
non-negligible probability; 2) some intrinsic properties of
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2D-LCLM are disclosed to support a chosen-plaintext at-
tack; 3) the basic encryption parts can be separately at-
tacked with some chosen plain-images in turn; 4) exper-
imental results and complexity analysis of the attack are
provided to demonstrate its effectiveness.

The rest of this paper is organized as follows. Sec-
tion 2 briefly introduces the procedure of IEALM. Section 3
presents the insecurity metrics of 2D-LCLM, and the secu-
rity vulnerabilities of IEALM, together with some experi-
mental results. The last section concludes the paper.

2. Description of IEALM

The encrypted object of IEALM is an 8-bit RGB image
of size M×N ×3. The algorithm does not consider the spe-
cific storage format of the plain-image, and directly splits it
into three separate color channels, which are then processed
by the same encryption process. For brevity, we describe
the encryption procedure for only one channel. The plain-
image is scanned in the raster order and then denoted by
I = {I(i)}MN−1

i=0 . Likewise, the corresponding cipher-image
is represented as I′′ = {I′′(i)}MN−1

i=0 . Then, IEALM can be
described as follows.

• The secret key: two control parameters of 2D-LCLM
x(i + 1) = b · x(i) · (1 − z(i)),
y(i + 1) = b · y(i) · (1 − z(i)),

z(i + 1) = a · x(i)2 + y(i)2,

(1)

and its two distinct initial conditions K1 =

(x(0), y(0), z(0)) and K2 = (x′(0), y′(0), z′(0)), where
a = 2 and b ∈ [1.69, 2).

• Initialization:

– Step 1: Calculate two initial conditions throughK1 = (0.2 + Xr/109, 0.4 + Yg/109, 0.1 + Zb/109),

K2 = (0.3 + Xr/109, 0.5 + Yg/109, 0.2 + Zb/109),
(2)

where Xr, Yg, and Zb are the sum of the pixel values
of red, green, and blue channels of the plain-image,
respectively.

– Step 2: Iterate Eq. (1) 2MN + 250 times from the ini-
tial condition K1 and discard the first 250 elements
to get three chaotic sequences X = {x(i)}2MN−1

i=0 , Y =

{y(i)}2MN−1
i=0 and Z = {z(i)}2MN−1

i=0 . Then, generate a se-
quence G = {g(i)}2MN−1

i=0 , where

g(i) =
x(i) + y(i) + z(i)

3
.

– Step 3: Generate a 4-bit integer sequence U =

{U(i)}MN−1
i=0 and two 8-bit integer sequences V =

{V(i)}MN−1
i=0 and W = {W(i)}MN−1

i=0 via
U(i) =

⌊
|x(i)| · 1015

⌋
mod 16,

V(i) =
⌊
Dec(y(i)) · 103

⌋
mod 256,

W(i) =
⌊
Dec(z(i)) · 103

⌋
mod 256,

where Dec(x) = x · 103 − bx · 103c.

– Step 4: Generate two permutation vectors T1,0 =

{T1,0(i)}MN−1
i=0 and T2,0 = {T2,0(i)}MN−1

i=0 , where T1,0(i)
and T2,0(i) are the order of X(i) and X(i + MN) in
sets {X(i)}MN−1

i=0 and {X(i)}2MN−1
i=MN , respectively. Sim-

ilarly, obtain six permutation vectors of length MN,
T1,1, T2,1, T1,2, T2,2, T1,3 and T2,3, from Y, Z, and
G, respectively. Group the above vectors as T1 ={
T1,0,T1,1,T1,2,T1,3

}
and T2 =

{
T2,0,T2,1,T2,2,T2,3

}
.

– Step 5: Repeat Step 2, 3 and 4 using initial con-
dition K2 and produce the counterparts X′, Y′, Z′,
G′, U′, V′, W′, T3 =

{
T3,0,T3,1,T3,2,T3,3

}
and T4 ={

T4,0,T4,1,T4,2,T4,3
}
.

• The encryption procedure:

– Step 1: Perform modulo addition on I to obtain a se-
quence I∗ = {I∗(i)}MN−1

i=0 by

I∗(i) = I(i) � V(i), (3)

where a � b = (a + b) mod 2n0 and n0 is the binary
length of a and b.

– Step 2: Perform XOR operation on I∗ to obtain se-
quence I∗∗ = {I∗∗(i)}MN−1

i=0 by

I∗∗(i) = W(i) ⊕ I∗(i). (4)

– Step 3: Divide I∗∗ into two 4-bit sequences L∗∗ =

{L∗∗(i)}MN−1
i=0 , H∗∗ = {H∗∗(i)}MN−1

i=0 with function
Spl(X) that returns two sequences XL = {X(i) mod
16}MN−1

i=0 and XH = {bX(i)/16c}MN−1
i=0 , where X =

{X(i)}MN−1
i=0 .

– Step 4: Perform bit-level permutation on L∗∗ and
H∗∗ to get sequences L̃∗∗ = {L̃∗∗(i)}MN−1

i=0 and H̃∗∗ =

{H̃∗∗(i)}MN−1
i=0 : L̃∗∗(i) =

∑3
k=0 L∗∗k (T1,k(i)) · 2k and

H̃∗∗(i) =
∑3

k=0 H∗∗k (T2,k(i))·2k. Then produce sequence
L′ by

L′(i) = U(i) ⊕ L̃∗∗(i) ⊕ H̃∗∗(i). (5)

– Step 5: Perform bit-level permutation on L′ and
H∗∗ to get sequences L̂′ = {L̂′(i)}MN−1

i=0 and Ĥ∗∗ =

2



{Ĥ∗∗(i)}MN−1
i=0 : L̂′(i) =

∑3
k=0 L′k(T3,k(i)) ·2k and Ĥ∗∗(i) =∑3

k=0 H∗∗k (T4,k(i)) · 2k, where L′(i) =
∑3

k=0 L′k(i) · 2k.
Then produce sequence H′ = {H′(i)}MN−1

i=0 via

H′(i) = U′(i) ⊕ L̂′(i) ⊕ Ĥ∗∗(i). (6)

– Step 6: Combine two 4-bit intermediate sequences L′
and H′ into one 8-bit sequence I′ = {I′(i)}MN−1

i=0 =

{L′(i) + H′(i) · 16}MN−1
i=0 . Then perform further con-

fusion on I′ to obtain cipher-image I′′, where

I′′(i) = W ′(i) ⊕ (I′(i) � V ′(i)). (7)

3. Cryptanalysis of IEALM

The designers of IEALM emphasized that it can “well re-
sist the chosen-plaintext attack and other classical attacks.
Each image corresponds to a different secret key, so it has
high security and can resist plaintext attacks” [18]. In this
section, we dispute such claim based on the intrinsic prop-
erties of 2D-LCLM and IEALM.

3.1. The properties of 2D-LCLM
IEALM uses 2D-LCLM as a pseudo-random number

generator to control the encryption process. According to
Property 1 and 2, one can see that four equations on the
variables of IEALM, T1,0 = T1,1, T2,0 = T2,1, T3,0 = T3,1
and T4,0 = T4,1 always hold, which make the algorithm is
more vulnerable to chosen-plaintext attack.

Property 1. The coordinates of 2D-LCLM, x(i), y(i), sat-
isfy x(i)/y(i) = x( j)/y( j) for any i, j ∈ {0, 1, · · · ,MN − 1}.

Proof. If i = j, it is obvious that x(i)/y(i) = x( j)/y( j). As-
suming i > j, one has

x(i) = bx(i − 1)(1 − z(i))

= bi− j−1x( j)(1 − z(i)) · · · (1 − z( j + 1))

= bi− j−1x( j)
i∏

t= j+1

(1 − z(t)). (8)

Similarly, one can get

y(i) = bi− j−1y( j)
i∏

t= j+1

(1 − z(t)).

Dividing the two sides of Eq. (8) with that of the above
equation, one can get x(i)/y(i) = x( j)/y( j).

Property 2. If the coordinates of X = {x(i)}Ni=0 and
Y = {y(i)}Ni=0 satisfy x(i)/y(i) = x( j)/y( j), where i, j ∈
{0, 1, · · · ,N}. Then the ranking order of x(i) in X is the
same as that of y(i) in Y.

Proof. According to property 1, it can be known that

y( j) = A( j)y(i),

where A( j) = x( j)/x(i) and j = 0, 1, · · · ,N. Let A =

{A( j)}Nj=0, and then according to the known condition, one
can know there are k − 1 elements in A that are less than 1.
Then one can deduce that there are k − 1 elements in Y that
are smaller than y(i). Namely, y(i) is ranked k in Y.

Property 3. 2D-LCLM can be represented as
x(i + 1) = bx(i)(1 − (a + (x(0)/y(0))2)x(i − 1)2),

y(i + 1) = by(i)(1 − (a(y(0)/x(0))2 + 1)y(i − 1)2),

z(i + 1) = b2z(i)(1 − z(i − 1))2,

(9)

where i ≥ 1, (x(0), y(0), z(0)) is the initial condition, x(1) =

bx(0)(1 − z(0)), y(1) = by(0)(1 − z(0)), and z(1) = ax(0)2 +

y(0)2.

Proof. According to Eq. (1) and Property 1, when i ≥ 1,
one has

x(i + 1) = bx(i)(1 − ax(i − 1)2 − y(i − 1)2)

= bx(i)(1 − (a + (y(0)/x(0))2)x(i − 1)2).

Likewise, one can get

y(i + 1) = by(i)(1 − (a(x(0)/y(0))2 + 1)y(i − 1)2).

According to Eq. (1), when i ≥ 1, one can obtain

z(i + 1) = ax(i)2 + y(i)2

= b2(ax(i − 1)2 + y(i − 1)2)(1 − z(i − 1))2

= b2z(i)(1 − z(i − 1))2.

The designers of IEALM stated “2D-LCLM is 3D in a
real field” in [18], saying that it can show better properties
than the other 2D chaotic maps. Unfortunately, Property 3
negates the statement, as it shows that three maps of 2D-
LCLM are independent, and each independent map can not
traverse the whole 3D domain.

To disclose the real structure of 2D-LCLM in a com-
puter, we performed comprehensive tests on its functional
graphs as [9, 10, 17]. Three typical examples are depicted
in Fig. 1. Any orbit definitely enter a cycle after a tran-
sient process. Note that this rule always keep no matter
how large the implementation precision is. As shown in
[9, 17], some cycles of short period (even self-loop) always
exist no matter which enhancement method is adopted, e.g.
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Figure 1: The functional graph of the third equation in Eq. (9) with b = 511/28 under 3-bit fixed-point precision and different quantization
strategies: a) floor; b) round; c) ceil, where symbol (i, j) in each node denotes coordinate (i/23, j/23).

increasing the arithmetic precision, perturbing states, per-
turbing the control parameters, switching among multiple
chaotic maps and cascading more than one chaotic maps. If
the initial state is located in a small-scale connected com-
ponent or a cycle of short period in the functional graph of
the used chaotic map, there are even no enough available
states to be discarded. So, an adaptive threshold should
be set to avoid this problem. But, it would cost additional
computation.

3.2. Key distribution

To thwart known/chosen-plaintext attack, IEALM uses
the information of plain-image to generate different secret
keys when encrypting different plain-images, but the uni-
formity of key distribution is ignored. For an encryption
algorithm, it is secure if the keys obey a uniform distribu-
tion, because all keys have the same probability of being
selected. A classical example of insecurity is substitution
cipher (e.g. Caesar cipher), which uses a codebook to di-
rectly replace one letter with another. Since the frequency
of letters does not obey a uniform distribution, the algo-
rithm cannot resist statistical attack.

In IEALM, the sum of pixel value of the plain-image
is used to generate the initial value of 2D-LCLM. Since
a natural image has its practical visual meaning, the sum is
not random and does not obey a uniform distribution. To
show such property of natural images, we tested the distri-
bution of the average pixel value of 60,000 images of Mini-
ImageNet [19] and found that the value follows a normal
distribution, as shown in Fig. 2.

According to the above experimental conclusion, if we
arbitrarily select a 256 × 256 image from Mini-ImageNet,
in theory, a total of 4.7·1021 possible keys can be generated.
However, since the mean pixel values are normally dis-
tributed, the probabilities of these keys being selected are
not equal. According to the property of the normal distribu-
tion, one can get Prob(81.641 < xr < 159.609) = 0.6827,
Prob(77.388 < yg < 151.382) = 0.6827 and Prob(60.422 <

0 32 64 96 128 160 192 224 255

average value 
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zb ∼ N(102.7, 42.3)

Figure 2: The distribution of the average pixel value of images of
Mini-ImageNet, where xr, yg, and zb are the average pixel values
of red, green, and blue channels of images, respectively.

zb < 144.984) = 0.6827. As for an attacker, only by enu-
merating this part of the secret key through a brute force
attack, the success probability for attacking the algorithm
is at least 30%. However, this part accounts for only 2.91%
of the total key space.

3.3. Chosen-plaintext Attack
In [18], the designers adopted the sum of pixel values

of each plain-image as the secret key, trying to achieve
the function of “one-time passwords”. But it is also pos-
sible to generate the same key for different plain-images.
Firstly, the same key must be generated for two identical
plain-images. Secondly, for different plain-images it may
also generate the same key, such as different images with
the same sum of pixel values. In addition, due to the lim-
ited arithmetic precision of computer, even different plain-
images owning different average pixel values may generate
the same secret key through the calculation of Eq. (2).

As for plain-image I0 and its corresponding cipher-
image I′′0 , one can try to decrypt another cipher-image I′′1 if
the following two conditions hold at the same time: 1) I′′1

4



is encrypted with the same secret key as I′′0 ; 2) the corre-
sponding plain-image of I′′1 has the same result calculated
with Eq. (2) as I0, namely the final sequences controlling
the encryption process are the same.

• Simplification of IEALM

For simplicity, let (WL,WH) = Spl(W), (W′
L,W

′
H) =

Spl(W′), (VL,VH) = Spl(V), (V′L,V
′
H) = Spl(V′), and

(L∗, H∗) = Spl(I∗). From Eq. (5), as for the four lower
bit-planes, one has

L′(i) = U(i) ⊕ W̃L(i) ⊕ W̃H(i) ⊕ L̃∗(i) ⊕ H̃∗(i)
= β(i) ⊕ L?(i), (10)

where
L?(i) = L̃∗(i) ⊕ H̃∗(i),

β(i) = U(i)⊕W̃L(i)⊕W̃H(i), W̃L(i) =
∑3

k=0 WL,k(T1,k(i))·2k,
W̃H(i) =

∑3
k=0 WH,k(T2,k(i)) · 2k, L̃∗(i) =

∑3
k=0 L∗k(T1,k(i)) ·

2k, and H̃∗(i) =
∑3

k=0 H∗k (T2,k(i)) · 2k. According to
Eq. (6), for the four higher bit-planes, one has

H′(i) = U′(i) ⊕ L̂′(i) ⊕ ŴH(i) ⊕ Ĥ∗(i)

= U′(i) ⊕ β̂(i) ⊕ L̂?(i) ⊕ ŴH(i) ⊕ Ĥ∗(i)
= β′(i) ⊕ H?(i), (11)

where
H?(i) = L̂?(i) ⊕ Ĥ∗(i),

β′(i) = U′(i) ⊕ β̂(i) ⊕ ŴH(i), β̂(i) =
∑3

k=0 βk(T3,k(i)) · 2k,
ŴH(i) =

∑3
k=0 WH,k(T4,k(i)) ·2k, L̂?(i) =

∑3
k=0 L?(T3,k(i)) ·

2k, and Ĥ∗(i) =
∑3

k=0 H∗k (T4,k(i)) · 2k.

Fact 1. ∀ a, b ∈ {0, 1, · · · , 2n0 − 1}, (a ⊕ 2n0−1) � b =

(a � b) ⊕ 2n0−1 = a ⊕ (b � 2n0−1).

According to Eq. (3), Eq. (4) and Fact 1, one can get

I∗∗(i) = W(i) ⊕ (I(i) � V(i))
= (W(i) ⊕ 128) ⊕ (I(i) � (V(i) ⊕ 128)),

where i = 0, 1, · · · ,MN−1. This means that one can shift
the MSB (most significant bit) of V(i) to W(i) without
affecting the encryption result.

• Differential attack on IEALM

Given two plain-images I0 and I1 encrypted by IEALM
with the same controlling sequences, we define the bit-
wise XOR operation between them as I0⊕1 = I0 ⊕ I1.
Likewise, L0⊕1 = L0 ⊕ L1 and H0⊕1 = H0 ⊕ H1, where
(L0,H0) = Spl(I0) and (L1,H1) = Spl(I1). As for
the corresponding cipher-images I′′0 and I′′1 , one can get
(L′′0 ,H

′′
0 ) = Spl(I′′0 ) and (L′′1 ,H

′′
1 ) = Spl(I′′1 ).

According to Eq. (3), one can obtain L∗0⊕1 = (L0 � VL) ⊕ (L1 � VL),
H∗0⊕1 = (H0 � VH � r0) ⊕ (H1 � VH � r1),

(12)

where r j = b(L′j+VL)/16c, j = 0, 1. Analyzing the above
equation individually on each bit-plane, one can get

L∗0⊕1,k(i) =

 L0⊕1,0(i) when k = 0;
L0⊕1,k(i) ⊕ θ0⊕1,k(i) when k = 1, 2, 3,

(13)
and

H∗0⊕1,k(i) =

 H0⊕1,0(i) ⊕ r0⊕1(i) when k = 0;
H0⊕1,k(i) ⊕ λ0⊕1,k(i) when k = 1, 2, 3,

(14)
where

θ j,k(i) =

∑k−1
t=0 (VL,t(i) + L j,t(i)) · 2t

2k

 ,
λ j,k(i) =

∑k−1
t=0 (VH,t(i) + H j,t(i)) · 2t + r j(i)

2k

 , (15)

and j = 0, 1.

According to Eq. (10), by differentiating plain-images,
one has

L′0⊕1(i) = L?0⊕1(i)

= L̃∗0⊕1(i) ⊕ H̃∗0⊕1(i).

Then in the k-bit-plane, one can get

L′0⊕1,k(i) = L?0⊕1,k(i)

= L∗0⊕1,k(T1,k(i)) ⊕ H∗0⊕1,k(T2,k(i)). (16)

Similarly, from Eq. (11) one can get

H′0⊕1,k(i) = H?
0⊕1,k(i)

= L?0⊕1,k(T3,k(i)) ⊕ H∗0⊕1,k(T4,k(i)) (17)

According to Eq. (7), one has L′′0⊕1 = (L′0 � V′L) ⊕ (L′1 � V′L),
H′′0⊕1 = (H′0 � V′H � r′0) ⊕ (H′1 � V′H � r′1),

where r′j = b(L′j + V′L)/16c and j = 0, 1. Then one can
get

L′′0⊕1,k(i) =

 L′0⊕1,0(i) when k = 0;
L′0⊕1,k(i) ⊕ θ′0⊕1,k(i) when k = 1, 2, 3,

(18)
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and

H′′0⊕1,k(i) =

 H′0⊕1,0(i) ⊕ r′0⊕1(i) when k = 0;
H′0⊕1,k(i) ⊕ λ′0⊕1,k(i) when k = 1, 2, 3,

(19)
where

θ′j,k(i) =


∑k−1

t=0 (V ′L,t(i) + L′j,t(i)) · 2
t

2k

 ,
λ′j,k(i) =


∑k−1

t=0 (V ′H,t(i) + H′j,t(i)) · 2
t + r′j(i)

2k

 ,
(20)

and j = 0, 1.

• Determining T2

The bit-level permutation using T2,k can be determined
with Eq. (14), (16), and (18). When k = 0, one just
needs to eliminate L∗0⊕1(i) and r0⊕1(i) to attack the permu-
tation. Through setting L0⊕1(i) = 0, one gets r0⊕1(i) = 0
and L∗0⊕1(i) = 0, and then Eq. (16) becomes L′0⊕1,k(i) =

H∗0⊕1,k(T2,k(i)).

When k > 0, one needs to additionally eliminate the
effect of the carries from the lower bit-planes, namely
λ0⊕1,k(i) and θ′0⊕1,k(i). Hence, for k′ = 0 ∼ (k − 1),
set H0⊕1,k′ (i) = 0, and then λ0⊕1,k(i) = 0 according to
Eq. (15). Furthermore, one can deduce L′0⊕1,k′ (i) = 0 and
θ′0⊕1,k(i) = 0 from Eq. (20). Based on these setting, for
k = 0 ∼ 3, Eq. (18) becomes

L′′0⊕1,k(i) = L′0⊕1,k(i)

= H0⊕1,k(T2,k(i)).

In this case, the encryption operation on H0⊕1,k(i) is actu-
ally permutation-only. As the chosen-plaintext attack on
permutation-only encryption algorithm is already mature
[20], we only briefly describe the attack procedure. The
permutation vector T2,k can be exactly recovered by the
following steps:

– Step 1: Choose a plain-image I0 of fixed value zero
and get its corresponding cipher-image I′′0 .

– Step 2: Choose n plain-images I1, I2, · · · , In that sat-
isfy It = {Ht(i) · 16}MN−1

i=0 , t = 1, 2, · · · , n, and the k′-th
significant bit of Ht(i) is

Ht,k′ (i) =


⌊
i/2t−1

⌋
mod 2 if k′ = k;

0 otherwise,

where n = dlog2(MN)e and k′ = 0 ∼ 3.

– Step 3: Encrypt I1, I2, · · · , In and get the corre-
sponding cipher-images I′′1 , I

′′
2 , · · · , I

′′
n . Then, for∑n

t=1 L′′0⊕t,k(i′) · 2t−1 = i, one can confirm T2,k(i′) = i,
where L′′t (i′) = I′′t (i′) mod 16.

Perform the above procedures for k = 0 ∼ 3 to recover
T2,0, T2,1, T2,2, and T2,3. In fact, since T2,1 = T2,0, one
can recover T2 with only dlog2(MN)e + 1 plain-images.

• Determining VL

Let H0⊕1(i) = 0, L0(i) = 0 and L1(i) = c for i =

0, 1, · · · ,MN − 1, where 1 ≤ c ≤ 15. For k = 0, Eq. (18)
can be expressed as

L′′0⊕1,0(i) = L′0⊕1,0(i)

= L∗0⊕1,0(T1,0(i)) ⊕ H∗0⊕1,0(T2,0(i))

= L0⊕1,0(T1,0(i)) ⊕ r0⊕1(T2,0(i))
= (c mod 2) ⊕ r1(T2,0(i)).

As r1(T2,0(i)) = b(c + VL(T2,0(i)))/16c, r1(T2,0(i)) = 1
if and only if c + VL(T2,0(i)) ≥ 16. Therefore, one can
obtain

L′′0⊕1,0(i) =

 (c mod 2) ⊕ 1 if (c + VL(T2,0(i))) ≥ 16;
c mod 2 otherwise.

Setting c = 1, one can deduce that

VL(T2,0(i)) ∈

 {15} if L′′0⊕1,0(i) = 0;
{0, 1, · · · , 14} otherwise.

Namely, one can determine VL(T2,0(i)) = 15 by finding
L′′0⊕1,0(i) = 0. Similarly, one can set c = 2 and then find
VL(T2,0(i)) = 14 through

VL(T2,0(i)) ∈

 {14, 15} if L′′0⊕1,0(i) = 1;
{0, 1, · · · , 13} otherwise.

The remaining unknown elements of VL can be obtained
by choosing c ∈ {3, 4, · · · , 15} in turn.

• Determining T1

The permutation vector T1,k can be recovered using
Eq. (13), (16), and (18). To eliminate H∗0⊕1,k(T2,k(i))
in Eq. (16), one can set H0(i) = r1(i) and H1(i) =

r0(i) to get H∗0⊕1(i) = 0. When k > 0, choosing
L0⊕1,k′ (i) = 0 for k′ = 0 ∼ (k − 1), one can de-
duce θ0⊕1,k(i) = 0 from Eq. (15). Furthermore, because
L′0⊕1,k′ (i) = L∗0⊕1,k′ (T1,k′ (i)) = L0⊕1,k′ (i) = 0, the carry
θ′0⊕1,k(i) = 0 according to Eq. (20). Then, Eq. (18) be-
comes

L′′0⊕1,k(i) = L′0⊕1,k(i)

= L∗0⊕1,k(T1,k(i))

= L0⊕1,k(T1,k(i)).
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Therefore, T1 can be exactly determined by utilizing the
recovery procedure of T2.

• Determining VH

The three LSB of VH can be guessed by observing the
corresponding carry incurred by the addition in Eq. (12).
Setting I0(i) = 0, one has L∗0(i) = VL(i) and r0(i) = 0.
Since VL is known, one can directly choose L∗1(i) =

L∗0(i)⊕2k and H1(i) = 2k � r1(i) to determine VH,k, where
k < 3 and a� b = (a− b) mod 2n0. Note that r1(i) is also
known and L1(i) = L∗1(i)�VL(i). Then Eq. (12) becomes

H∗0⊕1(i) = VH(i) ⊕ (2k � VH(i)).

Then one can deduce L∗0⊕1,k(i) = H∗0⊕1,k(i) = 1. When k >
0, for lower bit-planes, one has L∗0⊕1,k′ (i) = H∗0⊕1,k′ (i) = 0,
where k′ = 0 ∼ (k − 1). From Eq. (16), one can get
L′0⊕1,k′ (i) = 0 and L′0⊕1,k(i) = 0. Furthermore, the carry
θ′0⊕1,k+1(i) = 0 according to Eq. (20). Hence, Eq. (18)
becomes

L′′0⊕1,k+1(i) = L′0⊕1,k+1(i)

= L∗0⊕1,k+1(T1,k+1(i)) ⊕ H∗0⊕1,k+1(T2,k+1(i)).

Considering L∗0⊕1,k+1(T1,k+1(i)) = 0, H0⊕1,k+1(T2,k+1(i)) =

0, and λ0,k+1(T2,k+1(i)) = 0, the above equation can fur-
ther become

L′′0⊕1,k+1(i) = λ1,k+1(T2,k+1(i)).

Incorporating
∑k

t=0 H1,t · 2t + r1 = 2k into Eq. (15), one
can get

λ1,k+1(i) =

∑k
t=0 VH,t(i) · 2t + 2k

2k+1


=

 0 when VH,k(i) = 0;
1 when VH,k(i) = 1,

Namely, λ1,k+1(i) = VH,k(i). Combining the above two
equations, one has

VH,k(T2,k+1(i)) = L′′0⊕1,k+1(i).

Then one can recover VH,0(i), VH,1(i), VH,2(i) by setting
k = 0, 1, 2 in turn. Shifting VH,3(i) to WH,3(i) directly,
one can set VH,3(i) = 0 according to Fact 1.

Since the equivalent version of V is known, one can con-
vert any I∗ to I via I = I∗ � V. Therefore, we only
consider choosing I∗ without specifying the plain-image
I in subsequent discussion.

• Determining T4

The permutation vector T4,k can be determined by
Eq. (17) and (19). Set I∗0(i) = 0 and L̃∗1(i) = H̃∗1(i)
to get L′0⊕1(i) = L?0⊕1(i) = 0 and r′0(i) = r′1(i). From
Eq. (17), one can know that H′0⊕1,k(i) = H∗0⊕1,k(T4,k(i)).
When k > 0, set H∗1,k′ (i) = 0 for k′ = 0 ∼ (k − 1)
to eliminate the effect of carry λ′0⊕1,k(i). Then one can
get H′0⊕1,k′ (i) = 0 and then λ′0⊕1,k(i) = 0 from Eq. (20).
Hence, for k = 0 ∼ 3, Eq. (19) becomes

H′′0⊕1,k(i) = H′0⊕1,k(i)

= H∗0⊕1,k(T4,k(i)).

Likewise, one can recover T4 exactly by utilizing the re-
covery procedure of T2.

• Determining T3

Let L∗0(i) = H∗0(i) = H∗1(i) = 0 for i = 0, 1, · · · , (MN −1).
From L?(i) = L̃∗(i)⊕H̃∗(i) and H?(i) = L̂?(i)⊕Ĥ∗(i), one
can get L?0 (i) = 0, L?1 (i) = L̃∗1(i), H?

0 (i) = 0, and H?
1,k(i) =

L?1,k(T3,k(i)). Since L?1 (i) = L̃∗1(i) and T1 is known, we
directly choose L?

1 without specifying the corresponding
plain-image in the succeeding discussion.

To determine T3,0, according to Eq. (17) and (19), one
has

H′′0⊕1,0(i) = H′0⊕1,0(i) ⊕ r′0⊕1(i)

= H?
0⊕1,0(i) ⊕ r′0⊕1(i)

= L?1,0(T3,0(i)) ⊕ r′0⊕1(i), (21)

where r′0⊕1(i) = b(β(i) + V ′L(i))/16c ⊕ b((β(i) ⊕ L?1 (i)) +

V ′L(i))/16c. Obviously, r′0⊕1(i) is only dependent on
L?1 (i), so we use Φ(i, L?1 (i)) to represent r′0⊕1(i) corre-
sponding to different L?1 (i). Then, Eq. (21) can be rep-
resented as

H′′0⊕1,0(i) ⊕ Φ(i, L?1 (i)) = L?1,0(T3,0(i)).

For L?1 (i) = 0, one can see Φ(i, 0) = 0. To get Φ(i, 1),
one can set L?1 (i) = 1 for i = 0 ∼ (MN − 1) and then
Φ(i, 1) = H′′0⊕1,0(i)⊕1 from the above equation. Choosing
L?1 (i) ∈ {0, 1}, since Φ(i, L?1 (i)) is also known, one can
recover T3,0 with the preceding equation referring to the
recovery process of T2,k.

To determine T3,k for k ∈ {1, 2, 3}, likewise, one has

H′′0⊕1,k(i) = H′0⊕1,k(i) ⊕ λ′0⊕1,k(i)

= L?1,k(T3,k(i)) ⊕ λ′0⊕1,k(i). (22)

From Eq. (11), one can get H′0(i) = β′(i). Choosing
L?1 (i) ∈ {0, 2k}, for t = 0 ∼ (k−1), H?

1,t(i) = L?1,t(T3,t(i)) =

7



a) b) c)

d) e) f)
Figure 3: Chosen-plaintext attack results on IEALM: a) plain-image “Lenna”; b) cipher-image of Fig. a) encryped by (a, b, xr, yg, zb) =

(2, 1.99, 29676, 9202, 62299); c) the recovered plain-image with the obtained equivalent secret key; d) plain-image “Peppers”; e) cipher-
image of Fig. d) encrypted by (a, b, xr, yg, zb) = (2, 1.99, 29232, 54749, 57603); f) the recovered plain-image with the obtained equivalent
secret key.

0 and then H′1,t(i) = β′t(i). According to Eq. (20), one has

λ′0⊕1,k(i) =

⌊
αk(i) + r′0(i)

2k

⌋
⊕

⌊
αk(i) + r′1(i)

2k

⌋
=

⌊
αk(i) + b(β(i) + V ′L(i))/16c

2k

⌋
⊕

⌊
αk(i) + b(β(i) ⊕ L?1 (i) + V ′L(i))/16c

2k

⌋
,

where αk(i) =
∑k−1

t=0 (V ′H,t(i) + β′t(i)) · 2
t. Likewise, we use

Ψ(i, L?1 (i)) to represent λ′0⊕1,k(i) corresponding to differ-
ent L?1 (i). Then Eq. (22) can be expressed as

H′′0⊕1,k(i) = L?1,k(T3,k(i)) ⊕ Ψ(i, L?1 (i)).

For L?1 (i) = 0, one can know Ψ(i, 0) = 0. To obtain
Ψ(i, 2k), set L?1 (i) = 2k for i = 0 ∼ (MN − 1) and then get
Ψ(i, L?1 (i)) = H′′0⊕1,k(i) ⊕ 1 from the preceding equation.
Choosing L?1 (i) ∈ {0, 2k}, since Ψ(i, L?1 (i)) is known, one
can recover T3,k using the above equation and the recov-
ery process of T2,k. Therefore, T3 =

{
T3,0,T3,1,T3,2,T3,3

}
is determined.

• Attacking the other encryption operations

Once all permutation vectors were successfully recov-
ered, one can get

I′′(i) = W ′(i) ⊕ (I′(i) � V ′(i))
= W ′(i) ⊕ (((β(i) + 16 · β′(i)) ⊕ I?(i)) � V ′(i))

from Eq. (7), (10) and (11), where I?(i) = L?(i) + H?(i) ·
16. In the above equation, I′′(i) can be determined by
I?(i) and vice versa. In other words, I′′(i) and I?(i) are
one-to-one correspondence. Note that one can directly
choose any I? and then obtain its plain-image I. Ac-
cordingly, choose I?(i) = c for c = 0 ∼ 255, and then get
I′′(i) to obtain a map F(i, I′′(i)) = c, which can be used
to recover I?(i) from I′′(i).

• Recovering the plain-image

As for a cipher-image I′′, first recover I? by I?(i) =

F(i, I′′(i)) and calculate (L?,H?) = Spl(I?). Perform
the permutation with T3 on L? to get L̂?, and derive Ĥ∗
by Ĥ∗(i) = H?(i) ⊕ L̂?(i). Apply the inverse version of
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Table 1: Some data in the encryption process of the blue channel of Fig. 3b).

Item
Index

1 2 4 8 16 32 64 128 256 512 1024

I(i) 125 123 122 114 110 83 100 106 125 122 114
T 2,0(i) 63654 41166 44389 5418 60541 8324 8394 52758 10693 18236 12940
T 1,1(i) 62246 12618 22576 424 5892 47186 18568 14185 4948 47571 6740
T 4,2(i) 8436 37177 13122 24285 25840 24911 350 52730 12436 30075 132
T 3,3(i) 1357 27981 60186 16982 691 9877 32352 30284 62723 61986 27694
V(i) 72 61 201 128 210 239 54 92 42 22 199
I∗(i) 197 184 67 242 64 66 154 198 167 144 57
I′(i) 241 191 78 14 227 4 172 169 53 31 252
I′′(i) 207 70 75 7 173 226 225 87 5 190 196

Table 2: The items obtain in an attack corresponding to the data shown in Table 1.

Item
Index

1 2 4 8 16 32 64 128 256 512 1024

T 2,0(i) 63654 41166 44389 5418 60541 8324 8394 52758 10693 18236 12940
T 1,1(i) 62246 12618 22576 424 5892 47186 18568 14185 4948 47571 6740
T 4,2(i) 8436 37177 13122 24285 25840 24911 350 52730 12436 30075 132
T 3,3(i) 1357 27981 60186 16982 691 9877 32352 30284 62723 61986 27694
V(i) 72 61 73 0 82 111 54 92 42 22 71
I∗(i) 197 184 195 114 192 194 154 198 167 144 185
I(i) 125 123 122 114 110 83 100 106 125 122 114

permutation with T4 on Ĥ∗ to recover H∗. Permute H∗
with T2 to get H̃∗, and derive L̃∗ by L̃∗(i) = L?(i)⊕ H̃∗(i).
Then employ the inverse version of permutation with T1
on L̃∗ to recover L∗. Finally, one can get plain-image I
by I(i) = (L∗(i) + 16 · H∗(i)) � V(i).

To verify the effectiveness of the above attacking pro-
cess, we performed a number of experiments with some
random secret keys 1. The attack results on a typical image
is shown in Fig. 3. The success rate of the attack is 100%.
And some recovered data during the attack are listed in Ta-
bles 1 and 2 as a reference. Note that the recovered MSB of
V(i) and I∗(i) may be different from that in Table 1 (the un-
derlined elements) as it has no influence on the decryption
result.

3.4. Complexity of the attack

Recalling the attack process, consider T1,0 = T1,1, T2,0 =

T2,1, T3,0 = T3,1 and T4,0 = T4,1, one can see that the
images required in procedure determining T2 and T4 are
P1 = P2 = dlog2(MN)e + 1. And the number of im-
ages needed to recover V is P3 = 6. Likewise, one can
get determining T1 and T3 need P4 = 2 · dlog2(MN)e

1The source codes of this paper are available at https://github.
com/ChengqingLi/MM-IEALM

and P5 = dlog2(MN)e + 1 images, respectively. The fi-
nal procedure of attack requires P6 = 86 images. Since the
complexity of each procedure is O(PiMN), the complex-
ity of the attack is O(PMN) ≈ O(MN log2(MN)), where
P = P1 + P2 + · · · + P6.

As for the image shown in Fig. 3 c), the numbers of cho-
sen plain-images required for the above attacking proce-
dures are 17, 17, 6, 32, 17, and 86, respectively. The com-
plexity of the attack is O(175MN), this attack takes only a
few seconds on a personal computer.

3.5. Analysis of the key space

The designers of IEALM claimed that its key space is
greater than 10120 [18]. In fact, the real key space of
IEALM depends on arithmetic precision L and the pixel
values of the plain-image. Although the pseudorandom
number generator has six initial values, they are only deter-
mined by the pixel values of the plain-image. This makes
the actual key space of IEALM can not reach that esti-
mated by the designers. Strictly speaking, the key space
of IEALM is only 22L · (256MN)3. As for a plain-image of
size 2048 × 2048, the sizes of key space of IEALM imple-
mented with precision 32-bit and 64-bit are 1046 and 1065,
respectively. In contrast, for a plain-image of size 256×256,
the sizes are reduced to 1038 and 1057, respectively. In any
case, the size of key space is far smaller than 10120 claimed
by the designers. Note that the above estimation is only the
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maximum theoretical value of the key space. As the keys
are not uniformly distributed and not all control parameters
of a chaotic map can generate sequences with enough ran-
domness, the real effective key space is even much smaller.

4. Conclusion

This paper analyzed the security performance of an im-
age encryption algorithm based on 2D lag-complex logistic
map from the viewpoint of modern cryptanalysis. The sen-
sitivity mechanism between the controlling pseudo-random
sequences and the plain-image can be cancelled for some
special plain-images. Due to the algorithm is composed by
cascading some independent basic encryption parts, their
equivalents were recovered with some chosen plain-images
one by one. The properties of the underlying chaotic map
were explored to enhance the attacking efficiency. Both
theoretical analysis and experimental results were provided
to show the effectiveness of the attack. The presented re-
sults show that designing a secure and efficient image en-
cryption algorithm should consider many factors, such as
special storage format of image data, randomness of the
adopted pseudo-random number generator, application sce-
narios and real structure of the encryption algorithm.
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