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Abstract

The pervasive need to safely share and store information between devices calls for the replacement

of centralized trust architectures with the decentralized ones. Distributed Ledger Technologies (DLTs)

are seen as the most promising enabler of decentralized trust, but they still lack technological maturity

and their successful adoption depends on the understanding of the fundamental design trade-offs and

their reflection in the actual technical design. This work focuses on the challenges and potential solutions

for an effective integration of DLTs in the context of Internet-of-Things (IoT). We first introduce the

landscape of IoT applications and discuss the limitations and opportunities offered by DLTs. Then,

we review the technical challenges encountered in the integration of resource-constrained devices with

distributed trust networks. We describe the common traits of lightweight synchronization protocols,

and propose a novel classification, rooted in the IoT perspective. We identify the need of receiving

ledger information at the endpoint devices, implying a two-way data exchange that contrasts with the

conventional uplink-oriented communication technologies intended for IoT systems.

I. INTRODUCTION

In recent years, there has been an enormous interest in applications of Distributed Ledger

Technologies (DLTs) to the realm of Internet of Things (IoT). The motivation stems from the lack

of a pervasive IoT trust layer: IoT applications are usually confined within their own ecosystem,

making it difficult to share authenticated information among different applications. DLT is seen

as an enabler of a distributed trust network, that would be used by IoT devices to manage and
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exchange data without involving centralized control [1]. This would not only replace some of

the existing centralized applications with their decentralized versions, but also lead to a wave of

completely new applications, such as trusted access to edge computing resources [2].

However, the task of meaningful integration of DLTs into existing networking infrastructures

calls for an investigation of the challenges posed by DLTs [3]. The key problems are the cost

of storing the ledger and verifying its correctness, as well as the scaling of the frequency of the

ledger updates. In addition, an insufficient attention has been dedicated to issues related to the

integration of DLT into wireless IoT systems [4].

This paper addresses the following question: What is the capability of the wireless IoT

technologies available on the market for supporting the traffic generated by DLTs? In order to

provide the answer, we first classify IoT applications and map them into DLT-aided applications,

which is the basis to understand and quantify the communication demands of DLTs. After

identifying the pivotal role that lightweight synchronization protocols play in the integration

of DLTs into wireless IoT systems, we study two practical use cases: (1) Integration of DLT

with a measurement reporting system based on LoraWAN; (2) Integration of DLT into an IoT

application based on the consensus among the agents, e.g., in a distributed control system. These

simple, but illustrative cases show that two-way wireless communication is required to enable

high decentralization. Another conclusion is that the achievable level of decentralization is largely

determined by the wireless technology used.

The rest of the text is organized as follows. Section II provides background on DLTs and

IoT services. Section III arguments the challenges of integrating IoT with DLTs. Section IV

presents the architecture of a distributed trust network. Section V introduces and classifies the

lightweight synchronization protocols. Section VI elaborates two case studies. The paper is

concluded in Section VII.

II. BACKGROUND ON DLTS AND IOT SERVICES

A. Distributed Ledger Technologies (DLTs)

Distributed ledger technology involves a set of protocols designed to replicate a timestamped

and ordered database, termed ledger [5]. The nodes of a DLT network store a copy of a common

ledger, that is kept consistent by means of hash chaining. To append new data, termed transaction,

to the ledger, the nodes should fulfill a set of rules defined by a consensus mechanism, e.g., based

on proof-of-work [5]. The aim of consensus mechanisms is to ensure consistency of local copies,
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while limiting the ledger update rate. For instance, in blockchains, a bulk of valid transactions

can occur from every few seconds (as in Ethereum) to minutes (in Bitcoin). In DLTs based on

directed acyclic graphs, e.g. IOTA, a computation has to be done to update the ledger. It was

experimentally shown that this computation requires several seconds for low-energy devices [6].

Moreover, in DLTs, an already included transaction may be reverted (i.e. removed from the

ledger), if a consensus is reached on a different and conflicting transaction. Hence, DLTs also

introduce the concept of “finalized transaction”, referring to an accepted transaction that will

not be reverted with a high probability. The finalization probability is an increasing function of

the time since the transaction was published. This introduces a trade-off between the finalization

certainty and the tolerated transaction validation delay [7], depending not only on the application,

but also on the consensus mechanism of the specific DLT.

B. IoT Devices and Services

As envisioned by 5G standardization [8], IoT services can be divided into two general cate-

gories: massive Machine Type Communication (mMTC, also known as massive IoT) and ultra-

reliable low-latency (URLLC). The main distinctions between them are seen in the requirements

on communication latency, reliability and scalability, but also in the capabilities of the devices.

A typical mMTC application involves a sensor network in which devices report their ob-

servations to a server in quasi-periodic manner, with a low factor of activity [8]. The main

challenge here is the massive number of reporting devices; 5G mMTC use-cases foresee from

tens of thousands to million connections per 1 km2 [8]. On the other hand, reliability and latency

requirements in mMTC are significantly less challenging compared to URLLC. For instance, the

target reliability and latency of user-plane radio connections for applications like smart city or

factory monitoring are 95% and 0.5 s, respectively [8].

URLLC applications feature general requirements of user-plane radio reliability of 0.99999

and latency of 1 ms [8]. Traffic patterns depend on the pplication and can be deterministic

periodic, quasi-periodic and event-driven reporting. Deterministic periodic traffic is characteristic

for real-time control applications, which operate in cycles of the order of 1 ms and have extreme

requirements, e.g. user-plane radio reliability of 0.999999999 and latency of 0.1 ms in industrial

automation [8]. Event-driven reporting is characteristic for alarm systems, where some event(s),

e.g. detection of a fire, triggers the devices. An additional challenge here is a high spatio-
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temporal correlation of the report generation among the triggered devices, considerably straining

the wireless network.

In any IoT application, every device acts as an information publisher and/or subscriber. As

publisher, the device sends its data to servers, e.g., MQTT brokers. Depending on the application,

the device may also require the receipt of the data publication. When acting as a subscriber, the

device informs the servers about its topics of interest (usually, in the initialization phase) and

the servers push the information to the device, when available. For the introduced categories

of IoT applications, an example of publisher is a sensor in mMTC; a subscriber could be an

actuator that takes action after an alarm is reported. Finally, the devices in URLLC applications

are, generally, more capable than the mMTC devices in terms of computational and power

supply. Thus, URLLC and mMTC devices face different challenges in the integration of DLTs:

while the transaction finalization delay poses a problem for URLLC devices, mMTC devices are

challenged by the computational requirements and the protocol overhead.

III. WILL DLTS FIT WITH IOT APPLICATIONS?

In this section, we discuss the challenges of integrating DLTs in IoT ecosystem, focusing on

the communication aspects. We consider solutions in which the IoT devices do not store the

ledger, hence, the continuous growth of the ledger size has a little impact on the storage costs

of IoT devices. However, it still involves the transmission of a high amount of the metadata,

e.g., the block headers in blockchains, contrasting the standard perception that the IoT traffic has

very small payloads. A related issue is that distributed trust architecture symmetrizes the uplink

and downlink traffic, conflicting with the fact that a number of mMTC technologies have been

designed and optimized for uplink-dominated traffic [7].

A second obstacle is seen in the latency of the publishing of information to the ledger, which

adds up to the latency of the communication system. Specifically, the validation delay prevents the

existing DLTs in supporting real-time and event-driven reporting. Together with the finalization

delay, this prevents the use of DLTs for URLLC applications.1 We quantify verification and

finalization delays for several DLTs in Section VI.

Another challenge is that the ledger replications make the cost of operating IoT servers high,

since these have to constantly store and verify the ledger updates. This harms the network

1E.g., in Bitcoin network, the validation usually takes ten minutes, and a transaction is considered finalized with high probability

after tens of minutes. An approach to overcome this problem are the off-chain payment channels [9].
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decentralization, as a large number of IoT devices will be connected to relatively few servers.

Secondly, the overhead due to metadata (e.g. digital signatures) makes storing in DLTs the large

amounts of data, commonly required by quasi-periodic reporting applications, inefficient. Thus,

the devices are motivated to limit the amount of information stored in the ledger by being

required to pay fee to the DLT node that validates their transaction (in blockchains) or to spend

energy (in IOTA) when creating a transaction.

Finally, DLT systems do not provide service differentiation, which poses challenges for IoT ap-

plications that need high reliability guarantees. Instead, DLTs are usually application-agnostic [10]

and the transaction prioritization is delegated to the endpoint devices, which indicate to the DLT

network the importance of the data they are transmitting, e.g. by paying a fee. Hence, the

validation delay of a transaction depends on its priority w.r.t. other transactions waiting to be

validated by the DLT network.

Due to all these challenges, DLTs may not be suitable for IoT applications that require

short delays, or involve very simple devices and/or networks with limited downlink capabilities.

However, DLTs may still be suitable for complementing a vast class of IoT applications with a

sporadic interaction between devices and DLTs; e.g. accountability and access management to

resources, such as edge computing [2]. The ideal DLT use-case is the one that has the availability

of trusted data as the most important feature and can tolerate a data finalization delay.

In conclusion, the benefit of integrating a DLT with existing applications lies in the formation

of a new distributed trust “layer”. The architecture of such distributed trust network is discussed

next.

IV. THE ARCHITECTURE OF DISTRIBUTED TRUST NETWORKS

A typical architecture of IoT applications is depicted in Fig. 1(a): devices interact with a server

that provides secure and reliable write/read access to a database. The fundamental issue of such

architecture, motivating the introduction of DLTs, is a low interoperability among servers. For

example, two endpoint devices (E1 and E2 in Fig. 1) can exchange authenticated information

only if their servers support this functionality; this is not the case for S1 and S3 in Fig. 1(a).

The transition to a DLT-based distributed trust network requires changes in the IoT networking

architecture, as depicted in Fig. 1(b). Here, the servers and the edge devices are interconnected

by the DLT network, which allows sharing of data authenticated by the DLT. The DLT networks

usually rely on wired technologies and consist of nodes that verify and store the updates to
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Edge network

E1

E2

S2
S3

S1

(a)

Edge network

E1
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Fig. 1: The (a) legacy system architecture and (b) DLT-based. S1, S2 and S3 are servers, E1

and E2 are endpoint devices. In (b), the green nodes are gateways (GWs), while S2 and S3 are

both servers and GWs. Dotted lines represent network links.

the ledger. Some of these serve as gateways (GWs) between the IoT devices and the DLT. The

interactions between GWs and IoT devices are typically regulated by lightweight synchronization

protocols, designed to simplify the interaction with the distributed trust network. However,
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as presented in the first case study in Sec. VII, some implementations of such protocols are

unsuitable for LoraWAN networks, especially in regards to delivering blockchain block headers

to a large number of wireless devices. Another issue is the low energy available to certain IoT

devices, which prevents them from initiating frequent interactions with GWs. For this reason,

there exist several types of lightweight synchronization protocols that procure different costs and

benefits. These are categorized and discussed in the following section.

V. PROTOCOLS FOR DISTRIBUTED TRUST NETWORKS

A. Lightweight Synchronization Protocols

Protocols that facilitate lightweight ledger synchronization have been studied in [7], where

three protocol classes P1, P2, and P3, with different trust levels were identified. Protocols from

class P1 provide the device with all information necessary to verify the DLT, hence, the amount

of trust outsourced the network is minimal. Such protocols are not envisaged for implementation

in IoT devices due to high memory and communication requirements [4]. Class P2 represents

protocols in which the IoT devices receive a reduced amount of ledger information, only being

capable of verifying that the received information is consistent, but not whether the transactions

are valid. For instance, in Bitcoin Simplified Payment Verification (SPV) protocol [5], a client

only receives the transactions in which it is interested, together with a reduced amount of

metadata, i.e., block headers and Merkle proofs. The client is thus incapable of verifying the

validity of the transaction, and can only verify whether the metadata received from different GWs

is the same. Finally, P3 protocols delegate the full trust to the GWs and, hence, are not attractive

for distributed trust networks. However, they might be the only viable solution in certain IoT

systems, as further elaborated in Sec. VI.

In the context of distributed trust networks, for which the class P2 is the only suitable one, it

is helpful to further distinguish between two subclasses:

1) Digest-based protocols, in which the GWs push to the client a digest (e.g. block header) of

the information appended to the ledger. Based on the digest, the client may request further

information of interest, e.g. a transaction validated in the past. This class of protocols

stems from SPV protocol.

2) Incentive-based protocols, in which the GWs push the information of interest to the

client, when available. Since the client lacks means to verify the trustworthiness of GWs,

deposits of a certain value are set up to ensure that the GWs act honestly. To increase the
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Fig. 2: A sequence of message exchange in DLTs. The phases are numbered from 0 to 8.

security, further mechanisms are implemented, such as charging fines to GWs that send

false data [11].

On top of the DLT synchronization protocols, IoT devices can run decentralized applications

(“dApps”) [1], [12], [13] or execute “off-chain” protocols, that allow the exchange of temporary

information among devices [9]. In the simplest formulation of an off-chain protocol, two devices

initiate a payment channel on the ledger by each sending a transaction to the ledger. Once the

transactions are validated, they exchange data without involving the DLT network. To close the

channel, each device sends a second transaction confirming that the previously exchanged data

is trusted by both parts.

B. Protocol Overhead

We now return to the discussion of the protocol overhead imposed by DLTs. A general

message exchange in lightweight protocols is depicted in Fig. 2; note that some specific protocols

implementations, e.g. Bitcoin [5], Ethereum, Fabric [10] and IOTA, skip some of the phases.
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For instance, phase 0 exists only in Fabric, serving to prepare the transaction by collecting the

“endorsement”, i.e. authentication, from nodes of DLT network via the GWs. In phase 1, the IoT

device invests energy to solve the PoW (this is only encountered in IOTA) and digitally signs the

transaction (this happens in all the protocols); then, in phase 2, it sends the transaction to the GW.

The transaction is forwarded to the DLT network in phase 3, and included in the ledger at the end

of phase 4 (this delay exists in blockchains but not in IOTA, where the PoW was done already

in phase 1). In phase 5, the GW is informed of the validation of the transaction, subsequently

informing the IoT device in phases 6 and 7. For instance, in Ethereum-like blockchains, the

message in phase 6 is a receipt and the one in phase 7 contains block headers and the proof of

inclusion [7]. In incentive-based protocols, step 6 may not be present, and the message in phase

7 may just contain an acknowledgement from a trusted GW. Observe that with incentive-based

protocols, the amount of DLT metadata sent to the device is minimal, because it is filtered by

the GWs [11]. This is not the case for digest-based protocols, which feature a large metadata

overhead to ensure authenticity and reliability of the information.

The overhead related to authenticity is due to the fact that GWs cannot be entirely trusted.

In the uplink, the transaction is, when possible, locally signed by the device before being

transmitted.2 In the downlink, by receiving (part of) the ledger information, a device can verify

that the GWs are effectively forwarding its transactions to the DLT network. The issue is that the

device must trust that the GWs are timely forwarding correct ledger information. The detection

of malicious GWs in lightweight protocols is usually handled by establishing connections to

multiple GWs to reduce the possibility of collusion.3 For instance, in Fig. 1(b), E2 sends a

transaction via a GW and receives the feedback from a second one (denoted by the purple

arrow). Another advantage of connecting to multiple GWs lies in the possibility to hide the

sources, that a device subscribes to, by subscribing to different sources at each GW. Finally,

devices participating in off-chain payment channels can check if the channels are correctly

opened/closed.

A feedback channel is also required in order to achieve reliability. First, in blockchains, the

devices need information regarding the priority given to their transaction w.r.t. the state of the

2Previous works showed that the operation of digital signature may be too expensive for certain classes of IoT devices [6].
3Discovery of new GWs in a decentralized fashion introduces additional overhead that is out of the paper scope. The limited

resources available at IoT devices may impede this process.
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DLT meta-data
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Fig. 3: Information sent within the wireless access point and the publishers (cars) and subscribers

(houses), for legacy and DLT-based systems.

network. In other words, they need to be informed about the transaction fee to pay to the

network. Another motivation for feedback is that a transaction may fail due to conflicts with

transactions from other devices. This may happen, e.g. in Ethereum smart contracts, where

portions of general-purpose memory stored in the DLT can be shared between several devices.

VI. INTEGRATION OF DLTS WITH WIRELESS IOT TECHNOLOGIES

The lightweight protocols introduce a number of additional steps compared to a system with

centralized trust. In the publish operation, depicted in Fig. 3, there is the additional burden of

digitally signing the transaction and of transmitting the signature. Depending on the application,

the device may also require a receipt that allows it to verify that the information was successfully

published. Furthermore, a device acting as a subscriber needs to receive not only the information

published to the subscribed channel, but also the publisher’s signature and the metadata that

allows the device to verify that the information can be trusted (i.e. that it is included in the

ledger). Both the receipt sent to the publisher and the metadata sent to the subscriber to verify

the published information impose protocol overhead, which decreases with the amount of trust

that the device outsources to the network.

From the perspective of the wireless access network, the main difference between distributed

trust networks and legacy architectures lies in the involvement of IoT devices in new protocols

for distributed trust. In the following subsections, we demonstrate some of the issues encountered
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TABLE I: Parameters of the DLTs considered in the case study.

DLT

Capacity

(transactions

per second )

Average

Validation Time

(seconds)

Average

Block Size

(bytes)

Size of

block header

(bytes)

Minimum size

of transaction

(bytes)

Ethereum 1–102 1–10 103–104 508 110

IOTA 10–103 10–102 - - 1600?

Bitcoin 1–101 102 105–106 80 247

Fabric 103 100 105–106 72 3060??

? of which 1300 bytes are available for data
?? of which 960 bytes are available for data

when using popular DLTs in LoraWAN and IEEE 802.11 wireless networks, which are widely

used for IoT.

A. Case study 1: Publishing and subscribing to a DLT via LoRaWAN

LoRaWAN is a low-power wide area network technology which enables long-range commu-

nication at modest data rates. In Europe, LoRaWAN operates in ISM bands, where is imposed a

duty-cycle of 1%, which is enforced by waiting for 99 transmission times after each transmission.

This constraint limits the amount of downlink traffic from the access point (AP), challenging the

suitability of LoRaWAN for devices that subscribe to information streams. We shall investigate

subscribing and publishing in the following paragraphs.

We assume a 1000 meter radius cell with a single AP in the center and 100 Class C devices

spread uniformly throughout. Spreading factors (SFs) are allocated based on their distance to

the AP as in [14], and we account for both co- and inter-SF interference and the demodulation

capabilities of the AP [14]. The UL consists of five 125 kHz UL channels in sub-band G and

three in sub-band G1, within the 868 MHz ISM band with a 1% duty-cycle. UL transmissions

are all of the acknowledged type with up to 3 retransmissions. In the DL the block headers are

broadcasted using SF 12, that allows reaching devices at the cell edge. Under these conditions,

the time to transmit a block header for Ethereum, Bitcoin and Fabric are 24.49 s, 4.11 s and

3.95 s, respectively. This corresponds to a rate limit of, respectively, 0.04, 0.24 and 0.25 block

headers per second in a 100% duty-cycled band.
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Fig. 4: CDF of end-to-end latency for the considered scenario.

In the publishing scenario, the devices publish transactions with 50 bytes of payload to

the ledger according to a Poisson process with intensity of 1 transaction per week. Once the

transaction has been validated by the DLT, a receipt with size 10 bytes is transmitted to the device

in the DL, see phase 6 in Fig. 2. Transaction overheads are listed in Table I and the validation

times used for Ethereum, Bitcoin, IOTA, and Fabric are 21 seconds, 13 minutes, 88 seconds

and 550 milliseconds, respectively. For the case of Fabric, we assume that the endorsement, see

phase 0 in Fig. 2, is already available to the device.

Fig. 4 shows the Cumulative Density Function (CDF) of the end-to-end latency, defined as

the time between a transmission is queued in the device buffer until the receipt is received by

the device. In the figure, the horizontal asymptotes are due to transmission failures caused by

the unreliable link between the devices and the AP. Obviously, a large transaction size leads to

a large number of frames to be transmitted per payload and in turn a higher failure rate, which

is mitigated by the acknowledgement-retransmission procedure at the cost of latency. Validation

time has a relatively small impact on the latency in this case, but would have a larger impact

on unacknowledged operations (Class A).
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Fig. 5: Comparison of convergence rate (on the left) and amount of data received by a device

(on the right) for the three different methods.

B. Case study 2: Accountability of operations

As a second case study, we consider a scenario with a large deployment of devices that aim

to average a value, e.g. a measurement, that is an operation encountered in many applications.

Each device only knows a subset of devices, called neighbors. The connectivity is provided by

IEEE 802.11 APs, see the right part of Fig. 1(b). In the UL each device transmits to the AP

to which it is associated with without acknowledgments. In the DL packages are sent from the

AP to the device. Both transmissions are assumed to have packet error probability p. The UL

transmissions happen at a fixed rate, and the averaging procedure is done in transmission periods

that occur every T seconds, in which devices exchange their values.

We compare three methods for computing the average: (A) authenticated gossip consensus,

(B) smart contract-aided computation and (C) transaction-based computation. In method A, each

device sends in each transmission period the locally estimated value to a randomly chosen

neighbor device, together with its digital signature. In the same transmission period, the device

receives estimates from neighbor devices, and computes the average. After a certain number of

exchanges, the devices should converge to the same average value. In method B, all devices

connect to a DLT network and send in each transmission period their estimated values to

the same smart contract, via transactions. The smart contract is programmed to compute the
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average upon reception of a new value. All devices subscribe to the updates of this contract

and, every time a block is generated, receive the computed average value. Finally, in method

C, in each transmission period, each device sends a transaction containing its local value to the

DLT network. Furthermore, each device also subscribes to the transactions sent by its neighbor

devices. All three methods provide accountability, because the messages sent by devices are

always signed. However, the benefit of DLT-based methods (B and C), with respect to A, is that

the devices do not need to locally store the signatures of other devices, as they are stored in the

ledger.

We simulate an execution of the three methods in a strongly connected network consisting of

1000 devices, each of them knowing as neighbors 5 random devices. The DLT that we use is

Ethereum blockchain protocol with block period, TB, equal to the transmission period interval

T . The packet error probability is p = 0.1 and equal for all devices, and all messages are sent

as a single packet. The estimated values are represented by 32-bit floating points.

Fig. 5 shows that the three methods provide different rates of convergence, and that method

B is fastest, as the smart contract acts as a centralized information fusion point.4 However, we

observe a substantial difference in the amount of data exchanged with the APs with each method.

Specifically, with method A the device transmits 4 bytes in UL for each transmission period,

plus a digital signature, that has size 72 bytes (assuming the use of ECDSA with 256-bit elliptic

curve). With methods B and C it transmits 4 bytes, plus the overhead given by the metadata

of a transaction, see the last column of Table I. In the DL channel, with method A the device

receives a maximum of 20 bytes (5 packets) during a transmission period, while in method B a

device receives approximately 931 bytes: the block header (508 bytes), the new state of the smart

contract (48 bytes), and the proof that the new state is included in the block (375 bytes) [7].

Finally, with C the device receives approximately 1600 bytes, given by block header, up to five

valid transactions, and the proof that they are included in the block. The figure shows that both

convergence and bytes received depend on the ratio between T and TB. The conclusion is that,

with DLT-based methods (B and C), the 802.11 APs are subject to a significantly higher load

in DL.

4Notice that devices are making use of the information received from the DLT as soon as it is received, without waiting for

its confirmation. Waiting for confirmation may be required in some applications.
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VII. CONCLUSION AND OUTLOOK

DLTs are still in an early stage and therefore open to large protocol re-designs. There are a

number of ongoing investigations to improve the core features of DLTs networks in order to

reduce their operating costs and offer a lower latency. This work shows that the design of DLTs

should also take into account the capabilities of the edge networks, especially in the context

of devices with limited capacity. We have focused on the communication aspects, introducing

the architecture of DLT-based distributed trust networks, and proposed a new classification for

lightweight DLT synchronization protocols. Then, we showed potential integration issues by

studying the cases of two wireless technologies. The results clearly show that wireless systems

may impede the full functionalities of lightweight synchronization protocols. This should be

taken into account by the industry if the support of DLT will become a must-have feature. On

the other hand, we prompt the DLT communities to invest more effort in understanding the limits

of the wireless solutions, to design protocols that actually fit in the IoT landscape.
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