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ABSTRACT 

Ever since the first automation provided by the introduction of the Strowger telephone 
exchange in the late 19th century, networks have been increasingly automated. Fast forward 
to 2022, and the challenge facing network providers is scaling up this level of automation 
considering massive increases in complexity, new levels of agility to operate services, and 
rising demand from customers within the modern telecommunications ecosystem. This 
article describes a significant new industry-academia partnership to address these 
challenges: Next Generation Converged Digital Infrastructure (NG-CDI) is creating a vision for 
the building and operation of a future-proof network infrastructure and its autonomic 
management. In this article we highlight three exemplar activities within the NG-CDI research 
programme that illustrate the benefits of taking a highly collaborative interdisciplinary 
approach and show how academia and industry working closely together has delivered a 
range of direct and positive impacts on the business.  

INTRODUCTION 

Network providers are predicting a huge growth in new services and applications, with tens 
of billions of devices, sensors, vehicles and people to become interconnected over the next 
10 to 15 years. All of this will place unprecedented demand on the underlying infrastructure.  
Traditionally, the deployment of new services has involved reinvestment in infrastructure, 
extensive pre-testing, and people-intensive service support in operation, requiring several 
hundred people to deliver. However, future services will change ever more rapidly – and 
unpredictably – and therefore organizations need to drastically reduce the time it takes for 
new services to be developed, trialled and launched. This requires radical improvements in 
the agility and responsiveness of the network infrastructure itself: the infrastructure will need 
to support near real-time monitoring of performance, self-diagnose problem states and 
enable rapid and informed human intervention when needed. The ambition is to reduce 
service costs as well as providing a framework to spin out innovation in days rather than 
years. The core infrastructure will not only provide huge capital and operational cost savings, 
significant in itself, but also greater growth potential, since the cost of innovation and 
experimentation will be reduced, and its speed increased. 

To address these challenges a new industry-academic partnership, Next Generation 
Converged Digital Infrastructure (NG-CDI), is creating a vision for the building and operation 
of a future-proof network infrastructure and its autonomic management. Such an 
infrastructure must be capable of fast and efficient service innovation and co-creation with a 
wide variety of customers.  NG-CDI promises completely new ways of operating the 
infrastructure. Recent advances in programmable network interfaces, and model-driven 
networking provide the possibility of closed-loop, self- optimizing, and self-healing 
operations. NG-CDI builds on these breakthroughs to deliver greater economies and 
customer value. Operating changes of this scale need not only radical technological solutions, 
but also changes to the organisation itself. 
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This article highlights the benefit of taking a collaborate academia-industry approach to 
addressing future networking challenges based on real-world problems.  The article starts by 
describing the business challenges that led to the formation of the NG-CDI industry-academia 
partnership, and then outlines the approach taken to conducting research between the 
stakeholders. This is followed by an overview of the NG-CDI research programme and 
architecture. We then describe in detail three research exemplar activities; each of which is 
at a different stage of maturity, but nevertheless each is having an impact within the industry 
at a different stage of the transformation journey.  Finally, we conclude the article and 
identify a number of areas of future work based around the risk and governance implications 
associated with the introduction of the NG-CDI architecture. 

 
BUSINESS CHALLENGES AND APPROACH TO RESEARCH 

NG-CDI is an ambitious collaboration, established between British Telecom (BT) and four of 
BT’s long-term strategic University partners, and supported by the UK’s Engineering and 
Physics Sciences Research Council (EPSRC) ‘Prosperity Partnership’ scheme.  The Prosperity 
Partnership scheme is designed to foster strategic, research-based partnerships between 
industry and academia through co-investment in shared research challenges. 

NG-CDI is directly addressing the challenges associated with the huge expansion in the scale 
and value of modern networks. In the past, routine human actions have been scaled up 
through automation. This has seen human effort transferred to engineering design, 
proposition development and other higher-level activities. The challenge now facing 
networks is to extend these activities to manage the massive increase in complexity, speed 
of change, and customer responsiveness demanded by the modern telecommunications 
ecosystem [1]. 

Addressing these challenges requires transformational research to broaden the 
understanding and knowledge base, not only of the capabilities underpinning any digital 
infrastructure but also the ability to manage and operate such a complex system.  

The fundamental approach taken by NG-CDI was to bring together a multi-disciplinary team 
of academic and industry researchers to co-create the research programme and evolve it 
during the project. This enables the research agenda to develop as new discoveries were 
made and new business drivers identified. The BT researchers articulated challenges and use 
cases derived from co-working with the business areas of the company, provided masses of 
business and operational data for the development of models and algorithms, and added 
their own expertise and experiences. The academics, each pre-eminent in their field, were 
able to open up the range of techniques and approaches that could be applied, using research 
from other fields, or by developing new advanced methodologies. This approach maximises 
the value of the project by mixing exploratory high potential research from the universities 
with the problem-focused research and exploitation opportunity from the industrial 
researchers. 

Given the wide scope and potential impact, it was important to identify and work with a wide 
range of relevant BT stakeholders, including research and business areas. Coherent visions of 
the value and potential impact of the work were generated to gain traction and co-operation. 
These interactions helped articulate concrete use cases to focus the work. Close co-operation 
in creating chosen “quick wins” using data provided by BT stakeholders helped demonstrate 
tangible benefits and build the enthusiasm to work with academics. Broader support and 
interest was achieved through a set of talks from the senior academics to company-wide 
audiences as part of BT’s Thought Leadership programme, each with around 100 attendees 
representing all the lines of business. At a more operational level, weekly meetings between 
BT personnel and the research team generated a sense of pace across the project through 
feedback and direction. Sub-groups would meet regularly to advance specific topics, and 



   
 

these interactions have aligned perspectives and established common languages across the 
different disciplines involved. This approach has been instrumental in cementing the overall 
vision, supported by the underlying detail. 

 
NG-CDI RESEARCH OVERVIEW 

Realizing the NGI-CDI vision required an intimate understanding of operating national and 
international digital infrastructure, and world-class expertise in the areas of data analytics, 
machine learning, cyber-physical systems, network functions virtualization, networked 
systems, asset management and business innovation.  

Using a combination of approaches, enables improved efficiency and a more direct focus on 
customer and commercial benefits, combining intelligent infrastructure and autonomic 
control, based on customer and business targets. Delivering “intents” rather than low-level 
technological specifications improves the level of automation. An Intent-Based Networking 
(IBN) approach designates a high-level requirement that can be expressed from an external 
client, application, or owned by the network operator. Once an intent arrives into the system, 
it passes through different stages of translation before reaching the management plane. This 
process converts a high-level expression to something more technical and feasible within the 
management plane before being configured/enforced at the relevant network devices. 

Iterating the requirements through simulations results in machine-readable intents 
(formalised requirements) which can be used automatically to orchestrate software-based 
network and service functions, and deployed into the infrastructure to deliver the service. 
The service capacity can be scaled up or down without needing to install dedicated 
equipment. The agreed service levels will need to be managed dynamically. In the real world 
there will be disturbances such as surges in traffic demand, equipment failures, data errors, 
engineering works. Some of these events will be manageable by self-learning software agent 
control, which in real time can find the best available new balance between the various 
requirements – such as maintaining certain service levels subject to cost constraints. The 
control algorithms use network events: traffic, telemetry etc., to learn about problem states 
and remaining useful life of network elements. This updates the agents accordingly to self-
optimise the service-level intents. For this autonomous control, it is crucially important that 
we balance a new category of costs/risks. A learning algorithm needs to know what accuracy 
of decision is required, how fast the learning rates need to be, the required speeds of 
response – all of which are fundamentally related. This involves new ways of judging and 
making decisions on the extent of prognostic maintenance used to pre-empt service issues, 
based on the likely scale of consequences. NG-CDI is looking at model-supported business 
decision-making processes and cultures that the industry will increasingly need.  

Autonomic capability will be distributed through different domains. For example, many 
aspects of a 5G network will be self-optimising. Centralised control will not scale and to 
support the key business functions we need a sufficient representation of the knowledge 
needed. This will be a mix of types. Some will be pre-stored scenarios built from modelling or 
machine-learning – which can be enacted when appropriate. Some will be selected or 
aggregated data and used in real-time monitoring, tuned to the right response rate and 
accuracy. Real-time data streams will be used to diagnose network issues, or respond as 
necessary. This requires sophisticated new statistical techniques for detecting anomalies in 
massive real-time data flows, distinguishing them from normal statistics. 



   
 

  
 

Figure 1 - NG-CDI Architecture 

The project is supported by an underlying architecture (Figure 1).  The figure highlights three 
exemplars of activity within the overall NG-CDI programme that are described in the 
remainder of the article: 1) Anomaly Detection, 2) Prognostic Maintenance and 3) Business 
Intents. These three exemplars encompass representative technical challenges faced by BT 
towards future evolved network autonomics in different network management applications. 

 
NG-CDI EXEMPLAR ACTIVITIES 

Delivery of the full benefits of the project depends on building a range of outputs, 
encompassing different areas of impact and on different timescales. For example, a 
technological and business long-term vision needs to be developed across the industry to 
develop paths towards manufacture and implementation based on international scale 
economics. Alongside this long-term influence, immediate opportunities have been created, 
delivering benefits in the shape of smarter customer processes, and improved service levels. 
Medium term opportunities are developed through building conversations across the 
business. These are often stimulated by proof-of-concept demonstrations which show the art 
of the possible through real or simulated networks and data. 

Close co-working between university and BT researchers has enabled benefits across this 
range of impacts. Techniques have been developed based on massive operational data from 
BT’s network and processes. This means the solutions are bedded in reality and more readily 
assimilated by the business. BT researchers provide a bridge to relevant business and 
operational areas, translating their research knowledge to articulate the benefits and impacts 
in the language of relevant business domains. The existence of network testbeds provides 
further opportunities by enabling the deployment trial services in real-world environments, 
such as 5G O-RAN, from which operational and user experience can be tested.  

In this section we highlight examples of successful impact areas, which serve to illustrate the 
different types of business impact and their relationship to the ambitions for the converged 
digital infrastructure. Devolving processes to autonomic control increases the responsivity to 
the dynamic network environment and changing requirements. It releases human effort to 
concentrate on higher value activities. 

NG-CDI has addressed these opportunities in the following topic areas. Anomaly Detection 
enables the business to discern whether a pattern of network events is one that the 
autonomic system needs to respond to, and if so without human intervention, or whether 
human expertise is needed. Systems which learn from network and service data can be used 
to optimise business decisions and processes such as Prognostic Maintenance. This enables 
the business to continually balance between reactive and proactive maintenance to optimise 
the economics of service delivery. Enabling continuous change in this way can be extended 
to the customer through Business Intents. This enables a more direct translation between the 



   
 

language of business needs of balancing organisational risks, costs and performance to the 
technical ‘instructions’ necessary for effective orchestration of the service and the supporting 
autonomic processes. All the topics described play important roles in reducing the 
commercial risks inherent in automated systems as well as ensuring safe operation. The 
integration of these aspects to provide a rich interface to the key business decision processes 
is an active area of research. 

 

Anomaly Detection: Within the current telecoms network environment, we face many data 
streams that need to be carefully monitored to help ensure the successful performance of 
the infrastructure. The collection of these streams is crucial to observing and understanding 
the behaviour of a network that is driven by the behaviour of millions of users and 
applications. However, the scale of even current-day networks, in terms of the equipment 
and the number of metrics that can be monitored, means that it is no longer possible to rely 
on expert users visually reviewing data streams, except at the macro-scale where many 
smaller problems may be missed. As we look to the data-driven, autonomic networks of the 
future, the volume and variety of these streams will increase.  

Nowhere is this more apparent than in the monitoring of network operational data streams. 
Here the aim is to rapidly, and accurately, analyse a stream as it is observed to identify those 
anomalous periods that may be indicative of operational challenges. Timely and accurate 
detection of such anomalies is critical to help minimise operational disruption and ensure the 
smooth running of the network. In essence, the problem we need to consider is how to 
identify anomalous periods efficiently and accurately from the baseline of everyday 
performance. Consequently, some of the simplest data analyses we might undertake consist 
of identifying in real-time whether anomalies have occurred and whether such anomalies are 
point, i.e., a single outlying observation, or collective anomalies. Figure 2 shows an example 
of this for a sample of network throughput data. 

 
Figure 2 – Analysis of sample network throughput data, identifying periods of typical and anomalous throughput.  

Note that both point (yellow dots) and collective (red band) anomalies are identified. 

We have developed a new suite of computationally efficient anomaly detection methods 
including [4-5]. Built upon the rigorous foundations of statistical inference, the resulting 
anomaly methods can be run in real-time to identify whether the raw data might, for 
example, be a fleeting point anomaly or a more persistent collective anomaly from the typical 
`baseline’. Within this suite, the Sequential Collective and Point Anomaly (SCAPA) approach 
[4], provides a highly effective mechanism to detect anomalies within univariate data 
sequences.  

SCAPA is based on a dynamic programming algorithm, analysing each new data point as it is 
received. Broadly speaking, the approach works as follows: Firstly, SCAPA assumes that all 
the data is drawn from the same distribution and assigns a cost to this. The methods then 
seeks to segment the data, to reduce this cost. Individual points are also removed in order to 
further reduce the cost. When this occurs, the point is flagged as a point anomaly.  



   
 

One particular novelty of SCAPA, as a method, is that it re-assesses these anomalies each 
time a new observation is received. In addition to discerning the nature of the change, the 
theory developed also provides understanding of key questions such as (i) when is it 
appropriate to use this approach; (ii) the likely delay between anomaly occurrence and 
detection and (iii) the amount of data needed before an anomaly is randomly observed. 

 

Figure 3 – Sequential CAPA in action within the BT network operations dashboard during the US Open tennis championship final 

Through the programme’s close collaboration between the academic team and BT’s 
researchers at Martlesham the anomaly methods developed in the programme have been 
embedded in a number of different operational areas, including BT’s Internet Peering 
Platform. Here, the anomaly tools [3] developed in [4] are used to monitor the platform in 
real time, triggering anomalies to BT’s network operations teams to help them monitor and 
assure the performance of this critical digital infrastructure that connects millions of users 
with other network and content providers. 

This can be seen in Figure 3, where the operator has drilled down from aggregate views of 
network anomalies to focus on the data rate through a single network interface. The top part 
of the dashboard shows how SCAPA is reacting to the emerging anomaly, increasing severity 
and duration of the collective anomaly with both the rate of increase of the data rate and the 
duration of the event. The lower part of the dashboard shows the data rate telemetry and 
the predicted median based upon historical data. This is used in conjunction with the 
predicted standard deviation of the residuals to normalise the data rate telemetry before 
presentation to SCAPA. We can see that these steps form a pipeline of processing with both 
batch (recalculating the predicted median and standard deviation of residuals) and streaming 
(normalisation of the telemetry and anomaly calculation) operations. In the current 
implementation the streaming operations are performed using Apache Beam with side-
inputs to receive periodic updates to the predictions. 

BT is actively working on applying SCAPA and other anomaly detection algorithms to further 
network and service platforms including the UK core network, Fixed and Radio Access 
Networks, Content Delivery Networks and IP Voice services. 

 

Prognostic Maintenance: Reliability of network equipment is critical to maintaining high 
levels of service assurance to customers. One of the key benefits of digitalization is the ability 
to monitor critical metrics that helps understand the health of equipment and to use the data 



   
 

for their effective management and maintenance. In this context, the ability to move from 
reactive to predictive maintenance practices have become popular across different industry 
sectors, driven by emerging data-centric approaches for failure diagnosis and prognosis. In 
particular, the use of advanced machine learning algorithms has improved our ability to 
exploit monitoring data and predict equipment failures. 

However, the main problem with data-driven prognostics is that they rely on large amounts 
of historical failure data to estimate model parameters effectively.  The availability of 
historical failure data is limited due to two major reasons: (i) over-protective maintenance 
and replacement regimes; and (ii) highly reliable equipment. This causes failures to be rare, 
and leads to the problem of limited failure data availability for data-driven prognostics of 
network equipment, which causes prognostics predictions to be associated with high 
uncertainty. This was identified by BT network operations as a significant limitation in their 
ability to determine which event alarms should have priority attention. The manufacturers’ 
equipment alarms include, effectively, very high volumes of false positives, and determining 
which need to be acted upon is a skilled and time-consuming activity. The operations centre 
provided high-volume telemetry data from network nodes to enable the research. 

In order to address this issue, we developed a technique for generating failure data that 
realistically reflect the behaviour of degrading equipment (i.e., real-valued failure data) for 
prognostics under the conditions of limited failure data availability. It allows training datasets 
used for data-driven prognostics to be augmented so that an increased number of failure 
data samples is available for prognostics modelling. The methodology generates real-valued 
failure data using a Conditional Generative Adversarial Network (CGAN) by controlling and 
directing the failure data generation process using auxiliary information pertaining to the 
failure mode that needs predicting. More specifically, the noise being added to the newly 
generated failure data samples is conditioned on auxiliary information to prevent different 
modes of data being generated. Auxiliary information is additional information that adds 
value to the understanding of failure dynamics of the equipment of interest (e.g., equipment 
similarity information, expert knowledge on failure causes and failure modes and quality of 
equipment use).  

We applied this technique for predicting the Time-To-Failure (TTF) of telecommunications 
broadband lines under the conditions of limited failure data availability. To this end, we used 
the methodology to use expert knowledge on VDSL and ADSL broadband line failure causes 
(e.g., water ingress into electrical junctions, joints and DPs) to generate real-valued 
broadband line failure data. Performance was assessed in terms of an “F-score”. This is a 
useful measure in practical decision systems, as it represents the mean of two metrics: 
precision and recall. Precision is the proportion of true positive predictions amongst all 
positive (e.g. failures) predictions, and recall is the proportion of true positive predictions 
with respect to actual positives. Therefore the F-score can be considered as the “risk” of 
believing in the algorithm as it determines impacts such as customer service levels and cost: 
i.e. the proportion of real faults intercepted and the wasted effort in responding to false 
positives. The prognostics performance obtained when prognostics models are trained on 
the augmented training datasets and evaluated on the test datasets showed significant 
improvement – an increase of 25 percent in the F-score for ADSL lines and 13 percent for 
VDSL lines compared to the best available existing techniques (Figures 4 and 5). 



   
 

 

 
Figure 4: Prognostics performance using best available current technique 

 

 
Figure 5: Prognostics performance using our methodology 

 

Business Intents: To ensure the adoption of our architecture in production, we opted from 
the start of the project to use a flexible intent-based approach to expose autonomic control 
to users and customers. During the early design stages, we conducted a series of interviews 
with key BT stakeholders (e.g. BT Global Services, Strategic Planning) to better understand 
business requirements for our architecture and to collect automation use-cases. In our initial 
requirements analysis, we identified two key design goals: the need for automation in 
internal business processes and the ability for non-technical users to interact with the 
autonomic framework. Although several standardized intent models exist, they focus on 
customer connectivity-based intents and the automatic translation of those intents into 
appropriate device configurations. Nonetheless, connectivity services depend on “human-
centric” business processes, currently unsupported by existing intent models (i.e., billing, 
logistics).  Finally, existing model-based intent systems require high precision in policy 
expression, which frequently confuses non-technical users, who rely on network managers 
to eliminate ambiguity when specifying network requirements.  

To meet our first design goal, we developed a new intent system which supports control for 



   
 

new resource domains (e.g. orchestration) and provides new types of intents that abstract 
business processes, including equipment upgrades and service protection. Figure 6 presents 
an example execution of an equipment upgrade intent [2] as a representative use-case. The 
use case was developed in collaboration with BT Global Services and allows the network 
administrator to automatically replace network equipment with a short TTF, estimated by 
the prognostic maintenance model. Existing equipment upgrade processes typically rely on 
manual configuration and testing of devices by network administrators, experienced with 
vendor-specific configuration interfaces. The process usually is repetitive, and human 
supervision essentially ensures the timely detection of sporadic hardware failures and 
misconfigurations. Nonetheless, critical upgrades can take several days due to the inability to 
extensively parallelize the upgrade process, due to limited human resources. In parallel, 
equipment upgrades lead to unnecessarily long service downtimes to accommodate 
potential delivery and installation delays.  

 

 
Figure 6: Equipment Health monitor and upgrade intents 

The intent uses an Operations Support System (OSS) driver to procure the new equipment, 
and to schedule infrastructure engineers site visits, once delivery dates are confirmed. In 
parallel the intent layer can schedule a re-routing operation to the management layer, in 
order to drain traffic a-priori from the failing equipment. The re-routing process can result in 
Quality of Service (QoS) degradation, due to a temporary lack of network resources or further 
stretched rerouting paths, and the intent layer can negotiate with the network manager 
possible QoS relaxation windows. Finally, infrastructure engineers can signal the start and 
end time of the upgrade process to the intent layer, to minimize downtimes, while Software 
Defined Networking (SDN) interfaces can be used for automatic device configuration and 
fault checking. It is worth highlighting that the integration of the intent and knowledge plane 
allows risk management strategies specification during the intent planning phase. 
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Specifically, risk metrics can quantify the impact of possible actions (e.g. quantify the real 
service degradation based on previous traffic patterns) and the intent will select execution 
plans that reduce operational risks (e.g. schedule upgrades during quiet periods).  In parallel, 
the intent model allows network administrators to associate automatic risk management 
processes with risk metric thresholds to automate failure response (e.g. if the equipment 
configuration action fails, the intent must automatically inform an engineer). 

To improve the accessibility of our intent system we developed a new prototype interface 
which helps users to reduce the level of ambiguity during the process of capturing intents. 
Specifically, we implemented a conversational interface, that uses natural language 
techniques to analyse and extract user goals. Our prototype interface implementation allows 
users to interact with our intent layer via popular services, such as Google Assistant and Slack 
[6]. The interface system explains interactively the impact of an expressed intent, thus 
allowing users to correct mistakes and reduce ambiguity. In parallel, users can inspect the 
intent state and receive error notifications throughout the lifecycle of an intent. Our 
approach enables intent systems to put the user in the loop of the intent process and, in the 
future, we aim to explore how user input can improve intent validation and re-planning. For 
example, users can suggest ways to resolve intent conflicts, or provide tiebreakers to the 
intent optimization process.  

 
CONCLUSIONS AND FUTURE WORK 

We believe that NG-CDI is a perfect example of effective collaboration between academia 
and industry in an effort to drive a future networking research agenda based around real-
world problems. On the one hand, the osmosis of academic research with network business 
processes allows the project to identify novel challenges and use-cases for research. On the 
other hand, academic partners are able to access operational data and even explore 
opportunities for deployment of models and system in production environments.  

The areas of work highlighted in this article illustrate the benefits of taking a highly 
collaborative interdisciplinary approach. The business impacts range from specific 
applications of ground-breaking new techniques being trialled in volume business processes; 
through demonstrated visions of how smarter business and network processes could bring 
customer and business benefit. In addition, the consortial approach has brought thought 
leadership to help develop strategies in the business as a whole, and the telecoms industry 
beyond.  In each area of work the ongoing collaboration between academia and industry is 
resulting in a direct and positive impact on the business, as well as benefitting the research 
community. 

We are acutely aware that whilst the introduction of an automated, knowledge-based 
management architecture promises huge potential for greater and more timely control over 
our environment, the introduction of such an architecture also introduces new risks.  As the 
technology becomes more complex, we need to avoid it becoming less transparent and 
accountable. 

As part of our Future Work, we are examining the risk and governance implications associated 
with the introduction of such an architecture. Firstly, we are examining the risks within the 
architecture itself, covering the development of technologies from design to deployment, 
testing, re-calibration and revision, and to map the risks involved at each stage. Our approach 
is informed by research in model risk management.  A second aspect of risk concerns 
governance.  Ensuring the elements of the architecture are managed for risk is highly 
important, and so too is the integration of this architecture into the wider systems and 
organisation of the business as a whole.  

Through working with business and risk management areas of the company we are 



   
 

developing the vision and new approaches that aim not only to maintain robust operations, 
but also take advantage of the technology to reduce the existing business risks associated 
with legacy technologies. The introduction of the architecture has strong potential to deliver 
the future strategy for managing future digital infrastructures. Our integration of model risk 
management and enterprise risk management will provide a new and integrated framework 
to assess the introduction of advanced technology and the balance of risks it entails. 
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