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Risk Area Alert Through Heterogeneous Mobile

Networks: A New Approach to Fight COVID-19
and Beyond

Yao Sun, Qing Xue, Lei Zhang, Lina Mohjazi, Bin Cao, Muhammad Ali Imran

Abstract—COVID-19 has now been sweeping the whole world,
and fundamentally affecting our daily life. An effective mecha-
nism to further fight against COVID-19 and prevent the spread
of this pandemic is to alert people when they are in the vicinity
of areas with a high infection risk, yielding them to adjust
their routes and consequently, leave these areas. Inspired by the
fact that mobile communication networks are capable of precise
positioning, data processing and information broadcasting, as
well as are available for almost every person, in this paper, we
propose a mobile network assisted Risk arEa ALerting scheme,
named REAL, which exploits heterogeneous mobile networks to
alert users who are in/near to the areas with high risks of COVID-
19 infection. Specifically, in REAL scheme, all base stations (BSs)
periodically estimate their serving users’ locations, which are
then analyzed by macro BSs (MBSs) to identify risk areas. Next,
each MBS transmits the information about risk areas to small
BSs (SBSs), which in their turn adjust the beamforming direction
to cover these areas and send alerts to users located therein.
Simulation results validate the effectiveness of the proposed
REAL scheme. In addition, some key challenges associated with
implementing REAL are discussed at the end.

I. INTRODUCTION

In December of 2019, a case of pneumonia termed coro-
navirus disease 2019 (COVID-19) has been identified as an
infectious respiratory disease caused by the Severe Acute
Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) [1]. The
most frightening thing is that the virus has an unimaginable
infectious speed among people. Globally, as of 29 March
2021, there have been 126,890,643 confirmed cases, including
2,778,619 deaths, across 218 countries and territories [2].

A. Background

With respect to the unexpected outbreak and rapid spread of
COVID-19, many countries have put into place tough restric-
tion policies on daily life to curb the virus’ spread. Specifically,
managing the lockdown implementation for the city or even
the whole country is an unprecedented but absolutely effective
measure taken by governments to cope with the large-scale
outbreak of COVID-19. Many public areas such as restaurants,
pubs, and parks have been forced to either close or remain
open but with very limited access permissions. Moreover, most
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countries have gradually adopted the self-quarantine policy to
relieve the pressure imposed on medical systems and reduce
the disease transmission speed as well.

Before the global roll-out of vaccines is completed, humans
have to well prepare for the long-term ‘new normal’ to cam-
paign against COVID-19. Based on this situation, we should
realize that besides the restrictions put on travel, measures for
guaranteeing people to go out while being exposed to low
infection risk should be conducted. To this end, governments
have already introduced some measures to drive down the
infection rate, such as keeping social distance, wearing masks,
and even contact tracing. Although these measures could be
effective to some extent, the disease is still rapidly spreading
in many areas around the world. This urgently calls for the
need to explore innovative and more efficient mechanisms to
decrease the probability of infection and to further prevent the
spread of COVID-19.

B. Motivation

One direct and highly effective approach is to apply real-
time risk area alerting, such that people outside can receive
risk alerting messages when they are in the proximity of a
high-risk area. According to the characteristics of COVID-
19, a high-risk area can be defined as the area where user
density stays above a threshold for several minutes (say 5
minutes). Please note that the number of users counted for
calculating user density should be those who have visited this
area over a certain time period (say 30 minutes) instead of the
current users staying in this area, since the COVID-19 virus
can survive for a certain period of time [1]. Hence, people
who enter this area may suffer a high risk of being infected.
To this effect, if people can be alerted in a timely manner,
they can promptly adjust their routes to avoid passing through
these high-risk areas. Therefore, real-time risk area alerting
can play a central role in controlling the spread of the virus.

It is worth mentioning that risk area alerting is essentially
different from other existing protection measures. Basically,
besides much effort has been paid from a biomedical per-
spective, some researchers propose solutions for the pandemic
by exploiting digital technologies. These digital technology
based solutions can be roughly divided into the following
three categories. 1) Digital Contact Tracing [3]. This aims to
identify the people who may have come into contact with an
infected person and subsequently, collect further information
about these contacts. 2) Social Network Analysis [4]. This



kind of solution analyzes users’ social behavior to virtually
construct a virus network, where some potential risk areas as
well as risky people can be predicted. 3) Environment Sensing
[5]. This method exploits wearable devices or other Internet
of Things (IoT) nodes to collect the required information and
send alerts to people (e.g., keeping social distance, wearing
masks). Besides these tremendous studies, risk area alerting
should be a complementary measure with the cooperation of
these existing measures to slow down and even control the
spread of COVID-19.

After realizing the potential effectiveness and necessity of
risk area alerting, we next discuss how to design a systematic
framework to underpin an efficient risk area alerting scheme.
An intuitive way is based on the human-counted method,
where people count neighbors by themselves and once the
number of neighbors is large enough, they will move away
from this area. The major drawback of this rough and simple
method is that people are aware of the current status only
and not the past. This results in the lack of necessary alerting
information. For example, people may not be aware of the risk
when there are few neighbors nearby currently but many just
before. Hence, it is essential to develop a precise yet efficient
mechanism to conduct risk area alerting, and thus, motivate
our work.

Performing risk area alerting requires precise positioning,
ability of data processing, function of information broadcast-
ing, large coverage, and easy availability of access. With
respect to these requirements, the exploitation of mobile
communication networks is particularly appealing to design an
efficient and powerful risk area alerting scheme. Specifically,
the current emerging heterogeneous networks (HetNets) could
be an appropriate architecture, where traditional macro base
station (MBS), small BSs (SBSs) and/or millimeter wave
(mmWave) SBSs are hierarchically deployed [6] providing an
extreme coverage for mobile users. In addition, HetNets are
expected to achieve very high positioning accuracy (the error
can be less than 0.1 meters) with a delay of several millisec-
onds [7]. Also, HetNets have a data processing ability which
is capable of handling computing tasks in risk area alerting
scheme. Therefore, the merits of HetNets can be reaped to
design a risk area alerting scheme with good prospects.

C. Contributions and Organization

To fight against COVID-19 and beyond, in this paper,
we propose a mobile network assisted Risk arEa ALerting
(REAL) scheme. REAL is underpinned by HetNets, in which
all BSs periodically estimate the location of their own serving
users. In REAL, MBSs analyze these positions to identify risk
areas, then SBSs/m-SBSs adjust the beamforming direction
to cover these risk areas, and alert users located within.
Moreover, we conduct numerical simulations to evaluate the
performance of REAL scheme, and the effectiveness is vali-
dated under different scenarios.

The main contributions of this work are:

o In order to determine the risk level of COVID-19 infec-

tion, user density is introduced as the evaluation index.
The user location information is obtained by exploiting
the positioning function of mobile HetNet systems.

o We propose two functions of REAL scheme, risk level
alerting for an individual user and risk level evaluation
for an area. The operators can select one or both of the
two functions depending on practical requirements.

o Some open issues including user privacy, mmWave link
robustness, hybrid spectrum coexistence, and scheme
implementations have been discussed at the end of this
paper. For each of these issues, we give some potential
solutions to facilitate the implementation of REAL.

The rest of this paper is organized as follows. In Section II,
we introduce the architecture of HetNets. Section III presents
REAL solution for COVID-19 based on this architecture.
Experiment results are presented in Section IV and some
challenges of REAL are discussed in Section V. Conclusions
are drawn in the last section.

II. PRELIMINARY: HETEROGENEOUS NETWORKS
ARCHITECTURE

Fig. 1 illustrates the considered HetNet in which multiple
SBSs are located within the coverage area of one MBS.
The MBS performs centralized handover and scheduling deci-
sions (such as resource scheduling and beamforming policy
of SBSs) [6]. There are three types of SBSs: SBSs using
conventional microwave band (denoted as ;-SBS), SBSs using
mmWave band (denoted as m-SBS) and SBSs using the both
bands (i.e., dual-mode SBS, denoted as d-SBS). The BSs
are inter-connected via traditional high capacity X2-based
backhaul links to exchange information.

One of the fundamental challenges of HetNets is that the
received signal-to-interference-plus-noise ratio (SINR) from
SBSs could be very poor due to the low transmit power, which
leads to an unstable connection as well as a low transmission
rate [8]. In addition, the received SINR of mmWave commu-
nication can be even worse due to the high path loss caused
by the propagation features of mmWave frequency [9]. To
address this challenge, massive antenna arrays can be packed
into transceivers, thus to exploit beamforming [10] techniques
to improve SINR. Hence, in this work, we assume that all
SBSs have the capability to perform beamforming.

In HetNets, user equipments (UEs) can be associated with
one SBS or an MBS. Under the HetNet architecture shown in
Fig. 1, there are four UE association scenarios as follows.

1) Associated with an MBS: The UE with high mobility or
no suitable SBSs nearby is associated with an MBS for
increasing transmission reliability. We call this type of UE
as long-range UE.

2) Associated with ©-SBS: The UE is associated with a nearby
u-SBS. A n-SBS operates with several static wide beams,
and the UE can perform beam switching while moving
around.

3) Associated with m-SBS: The UE is associated with a nearby
m-SBS. An m-SBS operates with several dynamic narrow
beams, and the coverage of these beams can be adjusted.

4) Associated with d-SBS: The UEs associated with a d-SBS
have two transmission modes, where the close-by UEs are
served by mmWave links, and farther-away UEs with a poor
SINR experience are served by pWave links.
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Fig. 2. Schematic diagram of risk assessment area for the RUE.

III. SOLUTION OF RISK AREA ALERTING FOR COVID-19

To alert users who are in or near to the areas with high risk
of COVID-19 infection, we propose our novel REAL scheme,
by exploiting a HetNet shown in Fig. 1.

In REAL scheme, user density is used as an index to eval-
uvate the risk level of COVID-19 infection for a certain area.
User density is calculated based on two factors, the number
of UEs who have visited this area S during a specific time
period (say 30 minutes), and the size of area .S. The number
of UEs can be counted by BSs while the area size is defined in

different ways for different communication scenarios as shown
in Fig. 2. Here, a reference UE (e.g., RUE) is taken as an
example to illustrate.

(a) If the RUE is a long-range UE, S is the circular area
where the RUE is located at the center, and the radius r is set
according to the spread characteristics of COVID-19.

(b) If the RUE is served via a u-SBS link with static wide
beams, S corresponds to the coverage of each beam. For
tractability of the analysis, we use the sectored antenna model
to approximate the beamforming patterns.

(c) If the RUE is served by an m-SBS operating with dynamic
narrow beams, S is calculated following the method in (a).
(d) If the RUE is served by a d-SBS, S is calculated in the
way of scenario (b) when the RUE is connected to pWave
link, and scenario (a) for mmWave link.

After getting the value of user density, the risk level can be
obtained. Specifically, let us set two thresholds of user density,
namely density-low and density-high. When the user density is
lower than the threshold density-low, the area is at a low risk
level; when the user density is between the two thresholds, the
risk is in medium level; otherwise, the area is at a high risk
level. Note that more thresholds of user density can be set to
achieve a more accurate risk level assessment.

Based on the above illustration, REAL can fulfill two func-
tions: risk level alerting for an individual user and risk level
evaluation for an area. The two functions can be performed
in parallel, and the operators can select one or the both
depending on practical requirements. As shown in Fig.3, the
basic procedures of the two functions are stated as follows.
Function 1: risk level alerting for an individual user

o (a) The RUE is associated with an appropriate BS (the
MBS or an SBS), and establishes a communication link
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Fig. 3. Procedures of two functions of REAL scheme.

with the serving BS.

e (b) Each BS in the HetNet periodically detects and
records the position information of serving UEs. Mean-
while, all the three types of SBSs send the measured
results to the MBS.

e (c) The MBS integrates the detection information of each
cell and then calculates the user density around the RUE
based on the aforementioned rule.

e (d) According to the user density, the MBS makes a risk
level decision for the RUE.

o (e) If the RUE is served by an SBS, the MBS needs to
send feedback on the risk level to the corresponding SBS.

¢ (f) The RUE obtains the risk level from the serving BS
and determines whether to implement a risk aversion
strategy.

Function 2: risk level evaluation for an area

e (a) Each BS in the HetNet periodically detects and
records the position information of serving UEs. Mean-
while, all SBSs send the measured results to the MBS.

« (b) The MBS integrates the detection information of each
cell and then calculates user density for a specific area.

e (c) According to the user density, the MBS makes risk
level decision for this area.

e (d) If the risk level is higher than a threshold, the MBS
needs to inform the nearest SBS to adjust the beam to
cover this area.

e (e) The SBS periodically broadcasts risk alerting infor-
mation in this area.

Generally, function 1 of REAL is performed to send alert
to the users once the user density nearby is higher than the
predefined threshold. Then the user can take some actions, for
example, change the travel plan, have a COVID test or even
conduct self-isolated. Function 2 is to monitor the risk level
for a hot-spot area. Once the area is at high risk, the BSs will
broadcast alerts to the nearby users, thus the users can leave
or do not enter this area.

Besides the proposed two functions, there are twofold pos-
itive impacts of REAL on designing risk prediction solutions.
The first is that we can use the detected high-risk areas to
predict other penitential high-risk areas for a later time slot.
The other point is that we can analyze user density collected
by REAL scheme to extract the patterns of user behavior thus
to predict high-risk areas.

To implement REAL scheme, the current used LTE Posi-
tioning Protocol (LPP) can be exploited to achieve positioning
function in REAL, and the whole positioning procedure is
illustrated in 3GPP TS 36.355 [11]. In this way, the proposed
two functions shown in Fig.3 can be supported. Furthermore,
there is not much extra cost incurred since both the communi-
cation overhead (only user locations and alert information) and
computation resource consumption (only for calculating user
density) are quite low. Even if the mobile devices should keep
the positioning function on and periodically report location to
the BS, the energy consumption on devices should not be high
due to the simple positioning function.

IV. SIMULATION RESULTS AND DISCUSSIONS

In this section, we conduct simulations to evaluate the
performance of our proposed REAL scheme. Our numerical
computations are implemented with MATLAB codes and
carried out on a PC equipped with an Intel-i5 4 core 3.2GHz
processor and 8G RAM. We set the number of mobile users
as 500, and all these users are randomly distributed in the
considered area with radius 500 meters. The MBS is deployed
at the center of this area. For user movement, we assume that
they move at a random speed along with a certain direction
in a straight line, and they will bounce in a random direction
once reaching the edge of the considered area. We consider
two scenarios high speed with an average value of 2 m/s and
low speed with an average of 0.5 m/s. We consider the total
time as 120 minutes.

In the simulations, we only set two risk levels of an area,
i.e., risk and non-risk. With respect to the characteristics of
COVID-19, we define a risk area as a sector with radius 50
meters and angle 60° in which more than 10 people stay for
over 5 minutes. Please note that since the size of each area
is fixed, using the metric of number of users and user density
are equivalent in our simulations. We consider the coverage
of an SBS beam to be a sector with the same size (i.e., radius
is 50 meters, angle is 60°), and each SBS has three such
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Fig. 4. Comparisons of number of covered risk areas.

beams to cover 3 different sectors. Considering that m-SBS
is sensitive to blockages, we should simulate the distribution
of blockages. We consider two scenarios dense blockage and
sparse blockage, where the probability of non-line of sight
(NLOS) is 22% and 10%, respectively. Once receiving alerting
information, the user will randomly change the movement
direction with a certain probability. In this article, we do not
optimize the way of changing direction as this is beyond the
scope of this work.

In the first simulation, we evaluate the number of risk areas
discovered by REAL scheme under different number of SBSs,
as shown in Fig.4. In this simulation, we consider 4 scenarios
with different levels of user movement speed and blockage
density. From Fig.4, we can see that the number of covered
risk areas increases with the number of deployed SBSs for all
four scenarios. This is because increasing the number of SBSs
can cover more areas, thus the number of covered risk areas
is increased although the total number of risk areas remains
unchanged. Moreover, we find that the number of risk areas
is much more when the user speed is low, and the accurate
number is 120 for a low-speed scenario and 81 for high-speed.
The rationale behind this difference is that users tend to stay
in an area for a longer time when the movement speed is low.
As a result, such areas become of high-risk based on the rule
of more than 10 people staying over 5 minutes. In addition,
as expected, the number of covered risk areas should be less
under the scenario of dense blockage, since some risk areas
cannot be covered by m-SBSs due to the blockages.

Fig.5 compares the number of alerted users under the same
four scenarios as the first simulation. The alerted users are
defined as the users who can correctly receive the alerting
information when they are in the risk areas. We can see that the
number of alerted users increases with the number of deployed
SBSs for all four scenarios due to the increased coverage
of SBSs. Similar to that in the first simulation, the number
of alerted users is much more under the low-speed scenario.
The reason is that there are more risk areas under low-speed
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scenario and more users should receive alert information. In
addition, the number of alerted users is less under the scenario
of dense blockage since more transmissions would be blocked.

Last, we investigate the effectiveness of using REAL to help
users decrease the risk of COVID-19 infection. Fig.6 shows
the number of risk areas versus the percentage of users who
have correctly received alerting information. We assume that
the user will randomly change the movement direction once
receiving an alerting message. As expected, it is observed
that the number of risk areas decreases with the percentage
of risk users who can correctly receive the alert information.
Accurately, the number of risk areas is about 85 and 55
for low-speed and high speed scenarios respectively when
90% users can correctly receive alerts. Compared with the
number of total risk areas, 120 (low-speed) and 81 (high -



speed) obtained from the first simulation, REAL can reduce
the number of risk areas by about 30% and 32% for low-
speed and high-speed scenarios, respectively. It is highlighted
that the number of risk areas can be further reduced if users
adopt a smarter way of changing movement trajectory when
they receive alert information rather than randomly changing
the moving direction in this simulation.

V. CHALLENGES AND DISCUSSIONS

Although REAL is expected to bring forward many benefits
to the COVID-19 infection risk alerting, there still remain
some associated challenges that should be addressed before
unlocking the full potentials of this scheme.

A. User Privacy

There are two factors attributed to the privacy issues in
REAL. The first is the leakage of user location information.
In REAL, the location information of each user should be
collected and analyzed timely by BSs to identify the high-risk
areas. As the location information is closely related to users’
privacy, it could be quite sensitive and dangerous for users
if the location information is leaked to others. One potential
solution to protect user location information is to use a pseudo
ID, where mobile users periodically generate pseudo IDs and
then the BSs collect these pseudo IDs with the corresponding
location information. In this way, the information of the
matched pair user, location will not be leaked, and only the
total number of users in an area should be collected.

Another privacy/security concern of REAL is that the cen-
tral MBS may be unreliable or even be attacked under some
scenarios, leading to a wrong alerting information obtained.
To solve this security issue, we propose two potential ways.
One is to exploit physical layer authentication technology,
where spatial decorrelation property (obtained based on phys-
ical information including received signal strength indicators,
channel phase response, channel impulse responses, etc.)
is adopted to distinguish radio transmitters, thus to detect
spoofing attacks. Another potential solution is resorting to
blockchain technology for designing REAL in a distributed
way. Specifically, each SBS collects the location information
independently, and the collected data can be seen as transac-
tions recorded in the blockchain system. Accordingly, these
data or transactions are transparent and almost impossible to
be tempered (except under some extreme scenarios such as a
BS has more than 51% of the total computing power of the
system).

B. Robustness of mmWave Wireless Channel

Another challenging issue of REAL system is the robustness
of mmWave wireless channel, since mmWave link is easily
blocked by obstacles. Hence, the alerts may not be received
properly by the users located in areas with many obstacles. To
address this challenge, some potential solutions are discussed
here. Basically, blockage can be classified into two categories,
fixed blockages and random moving blockages. For random
moving blockages, we assume that the effect can be ignored,

as m-SBSs will transmit alerts periodically during a certain
time period (say 30 minutes according to the characteristics of
the COVID virus) before changing beam direction. Thus, the
random moving blockages can hardly block these periodical
transmissions. For fixed blockages, some measures can be
adopted. First, the relay technology can be exploited to assist
mmWave signals to propagate around obstacles by creating
alternative propagation paths with the aid of relays. Thus,
relay-aided transmission can improve the reliability and even
the throughput as well as the coverage of REAL system.
Moreover, in some dense blockage areas, we can deploy some
SBSs using traditional band (i.e., 2GHz around), which is
not sensitive to blockages, to transmit alerting informations.
Moreover, spatial diversity and spatial multiplexing can be
expected to play an important role to enhance robustness in
mmWave networks.

C. Hybrid mmWave and Microwave Network Deployment

In REAL scheme, it is expected that the number of SBSs
should be abundant enough to cover all the risk areas and
thus broadcasting the alerting information to users near/in
these areas. However, one key challenge is how to efficiently
achieve the coexistence of sub-6GHz and millimeter-wave
cellular networks [9]. Some hybrid MBS and SBS cooperation
schemes can be proposed to enhance the performance of
HetNet in terms of coverage, throughput, and data rate of
boundary users [12].

Moreover, the current wireless communication system may
have a limited number of SBSs deployed in some regions.
Hence, it is necessary to explore how REAL can achieve a
high accuracy of risk area coverage as well as the efficient
real-time alerting under the case of limited SBSs. Device to
device communication (D2D) can be seen as a potential way
to address the challenge of insufficient SBSs. D2D communi-
cation refers to direct transmission between proximate devices,
without relaying information through BS [13]. Thus, once a
user receives the alerting information from the BS (could be
MBS or SBS), it will broadcast this alert to nearby users by
using D2D communication.

D. REAL Scheme Implementation on Mobile Device

To implement REAL scheme, it is required to develop a
mobile application installed on user devices. The application
should be compatible with different operating systems (typi-
cally Android, iOS and Windows), hence it is for all users,
and obtains an accurate user density. One challenge is on the
information/data exchanges with BSs for those devices without
the ability of accessing mobile data service. In this case,
those devices cannot transmit/receive data to/from BSs, thus
the localization information cannot be obtained directly. One
potential solution is that these devices can exploit Bluetooth
to connect to nearby devices, and the location information can
be transmitted to BSs by their neighbors. Another challenge is
the high energy consumption when running this application to
support REAL scheme, which is caused by performing sensing
and transmission frequently. To relieve the burden on en-
ergy consumption, besides optimizing software performance,
a more effective way is to deploy energy-efficient hardwares.



VI. CONCLUSIONS

In this work, we have proposed to exploit mobile commu-
nication networks to control the fast spread of COVID-19.
We have designed a risk area alerting scheme named REAL
under HetNets. In REAL, the MBS collects and analyzes
user location information to periodically identify risk areas,
while SBSs adjust their own beam directions trying to cover
these risk areas and send alerts to the users located inside
those areas. We have conducted simulations under different
scenarios, and the results have demonstrated the effectiveness
of REAL in the battle against COVID-19.

Moreover, we have also discussed some of the challenges
and their potential solutions to facilitate the implementation of
REAL in practice. More importantly, this work can be regarded
as a pioneer in exploiting wireless communication systems for
controlling pandemics through positioning and sending risk
alert information to outdoor mobile users.
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