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Abstract—With the rapid advancement of 5G networks,
billions of smart Internet of Things (IoT) devices along with
an enormous amount of data are generated at the network
edge. While still at an early age, it is expected that the
evolving 6G network will adopt advanced artificial intelligence
(AI) technologies to collect, transmit, and learn this valuable
data for innovative applications and intelligent services. How-
ever, traditional machine learning (ML) approaches require
centralizing the training data in the data center or cloud,
raising serious user-privacy concerns. Federated learning, as
an emerging distributed AI paradigm with privacy-preserving
nature, is anticipated to be a key enabler for achieving
ubiquitous AI in 6G networks. However, there are several
system and statistical heterogeneity challenges for effective
and efficient FL implementation in 6G networks. In this
article, we investigate the optimization approaches that can
effectively address the challenging heterogeneity issues from
three aspects: incentive mechanism design, network resource
management, and personalized model optimization. We also
present some open problems and promising directions for
future research.

I. INTRODUCTION

With the rapid applications of the Internet of Things
(IoT), autonomous driving, industry 4.0, and metaverse,
a massive volume of data is expected to generate at the
network edge. The valuable data has great potential to
power intelligent applications for our daily lives. While
still in its infancy, it is generally believed that the Sixth
Generation (6G) systems will be established on ubiquitous

This work is supported by the National Natural Science Foundation of
China (Project 62271434 and 62102337), Shenzhen Science and Tech-
nology Program (Project JCYJ20210324120011032), Guangdong Basic
and Applied Basic Research Foundation (Project 2021B1515120008),
Shenzhen Key Lab of Crowd Intelligence Empowered Low-Carbon Energy
Network (No. ZDSYS20220606100601002), and the Shenzhen Institute
of Artificial Intelligence and Robotics for Society. (Corresponding author:
Jianwei Huang)

Bing Luo is with the Data Science Research Center and the Division
of Natural and Applied Sciences, Duke Kunshan University, Kunshan,
Jiangsu, China. (e-mail: bing.luo@dukekunshan.edu.cn)

Xiaomin Ouyang is with the department of Information Engineer-
ing, The Chinese University of Hong Kong, Hong Kong SAR, China
(email:xmouyang @link.cuhk.edu.hk)

Peng Sun is with the College of Computer Science and Elec-
tronic Engineering, Hunan University, Changsha 410082, China. (email:
psun@hnu.edu.cn)

Pengchao Han and Jianwei Huang are with the School of Science and
Engineering, The Chinese University of Hong Kong, Shenzhen, China,
and the Shenzhen Institute of Artificial Intelligence and Robotics for
Society, Shenzhen, China. (emails: hanpengchao@cuhk.edu.cn; jianwei-
huang @cuhk.edu.cn)

Ningning Ding is with the Department of Electrical and Computer
Engineering, Northwestern University, Evanston, IL 60208 USA (email:
ningning.ding @northwestern.edu).

Federate Learning

Aggregation @

Local model Global model

Data @ 0@ Model ®@® Computation Communication /¥
Key Heterogeneous Elements

Fig. 1: An illustration of FL in heterogeneous 6G networks.

artificial intelligence (AI) technologies, to enable such data-
driven machine learning (ML) applications and services
[1]. However, traditional ML techniques normally collect
the training data in a centralized data center, which raises
severe privacy concerns (e.g., risk of data misuse and
leakage of data owners) [2].

To address the above challenge, federated learning (FL)
has emerged as an attractive distributed learning paradigm
(shown in Fig. 1). It enables network edge entities (clients)
to collaboratively train a shared model under the coordina-
tion of a central server, while keeping the raw training data
private [3]]. In FL, each client exploits its local dataset to
compute a local model update, and the server periodically
aggregates these local model updates to obtain a global
model. FL has demonstrated its success in many mobile ap-
plications (e.g., Goggle’s Gboard and Apple’s Siri), which
makes it a high-potential enabler for Al-empowered 6G
technology.

However, the implementation of FL will face severe
heterogeneity challenges [4]] in 6G networks. This is be-
cause unlike 5G networks that aim to improve the network
performance (e.g., peak data rate and service coverage),
6G networks will be able to tailor customized services
to guarantee everyone’s quality of experience (QoE). To
achieve this goal, the 6G betwork Al architecture needs
to utilize data from every user’s device, and integrate het-
erogeneous network resources and ubiquitous intelligence
from the cloud to the edge [5]]. Although such a cloud-edge
6G Network AI Architecture can natively incorporate FL
to support user-centric Al, the individual customized and
multi-dimensional service requirements will bring critical



heterogeneity challenges. For example, massive participat-
ing users will be with highly diverse system resources
(e.g., computation, communication, and storage). This can
cause diverse on-device local model training latency when
deploying FL, which negatively affects the application for
delay-sensitive services in 6G networks, such as interactive
VR/AR games. Moreover, due to highly heterogeneous
data, the demand for personalized FL. model optimization
will be even higher in 6G networks in order to guarantee
individual’s quality of experience.

The above characteristics and challenges will lead to
effectiveness and efficiency issues for 6G FL optimization
design, which can be concluded into three aspects that we
proceed to discuss in this article: (i) incentive mechanism
design, (ii) network resource management, and (iii) person-
alized model optimization.

Incentive Mechanism Design. To facilitate the optimiza-
tion design of FL in heterogeneous 6G networks, we first
need to design proper incentive mechanisms to stimulate
sufficient client participation and contribution. Specifically,
on one hand, clients participating in FL tasks incur various
system costs. For example, clients sustain computation
costs when computing local model updates using local
CPU/GPU resources, and have communication costs when
uploading locally updated model parameters or intermediate
gradients. On the other hand, clients involved in FL are still
susceptible to privacy threats. For example, adversaries or
an honest but curious central server can infer data owners’
private information from their shared intermediate gradients
or model parameters. Therefore, self-interested clients may
be reluctant to participate in FL without sufficient economic
compensation, which necessitates a well-designed incentive
mechanism.

Network Resource Management. In FL, since iterative
local model computation and information communications
between clients and the central server can be both time and
energy-consuming, it is necessary and important to analyze
the incurred cost for resource-constrained edge clients. In
particular, the number of participating clients is comparably
large while the accessed wireless system bandwidth is
limited in 6G networks. In this case, clients may suffer
from a high transmission latency, which results in an
unsatisfactory user quality of experience (QoE) for delay-
sensitive applications. Therefore, proper network resource
management is crucial in achieving cost-effective FL in
resource constrained 6G networks.

Personalized Model Optimization. In a canonical FL
framework (e.g., FedAvg), a central server aggregates
model weights from all clients iteratively until converging
to a global model. However, in real-world applications
under 6G networks (e.g., smart city), the data of different
clients is usually highly heterogeneous due to issues such
as different user habits and physical environments. In this
case, such a single model learning paradigm often suffers
poor accuracy performance on the data of clients that have
non-IID distributions. Moreover, there is an increasing need
to improve the model accuracy on a specific user/client in
federated learning. Therefore, designing a personalized FL
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Fig. 2: Server’s cost of the proposed incentive mechanism
on the CIFAR-10 dataset for incomplete information.

paradigm that can customize different models for clients
with heterogeneous data during federated learning is of
great significance.

In this article, we first outline the main research chal-
lenges in the above three design aspects. Then, we propose
several optimization approaches and algorithms for efficient
FL deployment in 6G networks for each aspect. Experimen-
tal results through simulated environments and hardware
prototypes are also provided to validate the effectiveness
of some typical research works. Finally, we identify several
future research directions along with key open problems to
inspire future FL research in heterogeneous 6G networks.

II. INCENTIVE MECHANISM DESIGN FOR FL

The mechanism design for incentivizing clients’ par-
ticipation in FL in heterogeneous 6G networks involves
several challenges. First, edge clients usually have multi-
dimensional private information such as transmission de-
lay and training costs, which are generally unknown by
the server. Thus, it is highly nontrivial for the server
to selectively incentivize desirable users’ participation to
enhance training efficiency and effectiveness. Second, it
is challenging to simultaneously account for the privacy
preservation and incentive design for clients while ensur-
ing good FL model training performance. The reason is
that there exists an intrinsic tradeoff between privacy and
model performance, which is hard to analyze. Third, it is
difficult to evaluate each client’s contribution in a fair and
efficient manner, since the FL paradigm does not allow
direct access to each client’s local data. In this section,
we introduce some typical works that can well address the
above challenges when designing incentive mechanisms for
FL in heterogeneous 6G networks.

A. Incentive with Multi-Dimensional Private Information

Edge clients in heterogeneous 6G networks usually have
multi-dimensional private information (e.g., heterogeneous
training costs and communication delay). It is necessary



for the server to design an incentive mechanism to stimu-
late clients’ participation, encourage honest behaviors, and
enhance training efficiency in the presence of clients’ multi-
dimensional private information. Ding et al. [|6] presented
an analytical study on the optimal incentive mechanism
design for FL in such cases. They employed a multi-
dimensional contract-theoretic approach, which summa-
rizes clients’ multi-dimensional private information into
a one-dimensional criterion that allows a complete order
of clients. They further implemented the optimal contract
design under three typical information scenarios (i.e., com-
plete information scenario, weakly incomplete information
scenario, and strongly incomplete information scenario),
to reveal the impact of information asymmetry levels on
server’s optimal strategy and minimum cost (consisting of
expected accuracy loss of the global model and the total
payment to users). As shown in Fig. [2] they showed that
the proposed optimal incentive mechanism ALC has a much
better performance compared with state-of-the-art baselines
designed for non-IID data (i.e., RMA, OUC, and SBG
proposed in other literature). The maximum cost reduction
of ALC compared with benchmarks RMA, OUC, and SBG
can reach 33.62%, 36.17%, and 37.01%, respectively.

B. Incentive with Privacy Preservation

To jointly deal with clients’ privacy protection and incen-
tive issues while ensuring satisfactory FL. model training
performance, researchers have developed several privacy-
preserving incentives for FL [7], [8]. For example, Sun et
al. [8]] incorporated differential privacy (DP) into FL to pre-
serve clients’ privacy. Furthermore, considering that clients
under DP protection (with moderate privacy budgets) still
sustain a certain degree of potential privacy disclosure
and incur some privacy costs, they designed a contract-
theoretic personalized privacy-preserving incentive for FL,
named Pain-FL. The basic idea of Pain-FL is that the server
customizes a contract item for each client, which specifies a
kind of privacy-preserving level (PPL) measured by the pri-
vacy budget in DP and the corresponding payment. In each
round of FL with DP, each client perturbs her calculated
stochastic gradients with the specified PPL in her chosen
contract item in exchange for the corresponding payment.
They analytically derived a set of optimal contract items
under both complete and incomplete information scenarios.
They further empirically show that the designed incentive
mechanism outperforms the uniform payment baselines in
terms of the convergence error performance of the finally
learned global model.

C. Efficient and Fair Contribution Measurement

Clients usually make heterogeneous contributions to FL
model training due to factors like different training data
quantity and quality (e.g., the non-IID degree of local
training data). Therefore, it is crucial to accurately measure
each client’s contribution for fair reward allocation. Specif-
ically, each client in FL should get corresponding rewards
based on its contribution to the federation rather than the

Fig. 3: Heterogeneous wireless federated learning testbed
with 20 CPU-based Raspberry Pis (version 4) and 10 GPU-
based Jetson Nanos.

same reward, which promotes the sustainable operation
of the federation. Compared to the existing contribution
measurement methods that consume intensive computing
resources and operate offline, Yan er al. [9] proposed a
real-time contribution measurement method (FedCM) for
clients in FL. FedCM defines the impact of each client, and
comprehensively considers the current and previous rounds
to obtain the contribution rate of each client with atten-
tion aggregation. Moreover, FedCM updates contribution
aligned with FL, which enables it to implement in real-time.
The authors conducted extensive experiments to evaluate
FedCM, and the results show that it is more sensitive to
data quantity and data quality under the premise of real-
time than the state-of-the-art methods.

III. NETWORK RESOURCE MANAGEMENT FOR FL

The resource cost for FL in 6G networks mainly occurs
at edge clients’ iterative local model training for computing
model updates and wireless communications for transmit-
ting model parameters, which involves both learning time
and energy consumption. However, as the participating
clients in 6G networks usually have different computational
powers and wireless communications speeds, standard FL
algorithm (e.g., FedAvg) may cause inefficient resource cost
for achieving the required model performance, especially
when the clients’ data are highly non-IID and unbalanced.
In this section, we present some typical network resource
management methods that can efficiently address the het-
erogeneity challenges in 6G networks for achieving cost-
effective FL design.

A. Adaptive Parameter Control

Considering limited communication bandwidth and large
communication overhead, the de facto FedAvg algorithm
[3] usually performs multiple local iterations in parallel
on a fraction of randomly sampled clients. These essential
parameters play an important role in computation and com-
munication resource consumption. In line with this, Luo et
al. [10] studied how to design adaptive FL in wireless
networks that optimally chooses these essential control



variables to minimize the total cost while ensuring the
required model performance. The authors first analytically
established the relationship between the total resource cost
and the control variables with the convergence upper bound.
Then, to efficiently solve the cost minimization problem,
they developed a low-cost sampling-based algorithm to
estimate the convergence-related unknown parameters. Dif-
ferent from most existing FL. works based on computer
simulations, they implement their algorithm in an actual
hardware prototype with resource-constrained devices, as
shown in Fig. 8] The developed on-device model training
and real wireless communications testbed can effectively
capture real heterogeneous system operation time in terms
of computation and communication, which provided the
design principles for FL algorithms in optimizing client
sampling percentage and local iteration steps.

B. Importance-based Client Sampling

Existing works on the convergence analysis of FL mainly
focused on sampling schemes that are uniformly at random
or proportional to the clients’ data sizes, which often suffer
from slow error convergence with respect to wall-clock time
due to high degrees of the system and statistical heterogene-
ity. To this end, the authors in [11] proposed an adaptive
client sampling approach that tackles the heterogeneity
challenges to minimize the wall-clock convergence time.
With an unbiased model aggregation design, they obtained
a tractable convergence upper bound for FL algorithms
with arbitrary client sampling probabilities. This allows
the authors to establish the analytical relationship between
the total learning time and client sampling probabilities
and formulate a non-convex training time minimization
problem. Their solution characterizes the impact of hetero-
geneous computation, communication, and data distribution
on the optimal client sampling probability. They also con-
duct experiments on a hardware prototype to validate the
effectiveness of their optimized client sampling algorithm.
In particular, Fig. @] shows that for the EMNIST dataset their
proposed optimal client sampling spends at least 70% less
time than other baseline sampling schemes for achieving
the same target accuracy.

C. Adaptive Gradient Compression

Transmitting model parameters between clients and users
in FL may lead to high communication overhead, especially
for deep neural networks with millions of parameters in
6G heterogeneous networks with limited communication
resources. Gradient sparsification can alleviate the commu-
nication burden of FL in 6G heterogeneous networks by
only communicating a small subset of important elements
of the model gradient, i.e., the top & gradients with higher
absolute values. In this regard, Han et al. [12]] proposed
an adaptive gradient sparsification approach for improving
the efficiency of FL towards heterogeneous communication
resources. First, to ensure all clients contribute equally to
the global model update in each round of communication,
the authors design a fairness-aware bidirectional top-k
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Fig. 4: Testing accuracy over the wall-clock time for the
EMNIST dataset on the hardware prototype using the
logistic regression model.

gradient sparsification method. Then, for given commu-
nication resource availability, the authors formulate the
overall training time minimization problem to automatically
determine the optimal degree of gradient sparsity (i.e., k).
Minimizing the overall training contributes to achieving the
trade-off between computation and communication. Since
the system can only reveal the training time after applying
a deterministic &, the authors propose an online learning
approach to find the optimal degree of gradient sparsity
using an estimated sign of the derivative of the objective
function.

IV. PERSONALIZED MODEL OPTIMIZATION FOR FL

Most FL approaches aim to learn a single model for all
users, which often suffers poor accuracy performance on
heterogeneous user data in real-world applications under
6G networks. The goal of personalized model optimization
in FL is to customize different models for clients with
heterogeneous data to improve model accuracy. There are
two major challenges in personalized FL. First, there is
a trade-off between the generalization and personalization
ability of the learned models during federated learning,
which largely affects the model accuracy. Second, federated
learning on the non-IID data of clients often exhibits
many convergence issues due to the divergence of model
updates, which will incur significant training delays and
system overhead. In this section, we introduce several rep-
resentative personalized FL approaches that can customize
different models for heterogeneous clients in FL.

A. Clustering-based Multi-task Learning

To train personalized models while enabling collabo-
rative learning among similar nodes, Ouyang er al. [13]
proposed a clustering-based federated multi-task learning
approach named ClusterFL. The design of ClusterFL is
motivated by the key observation that the data distributions
of some clients share spatial-temporal similarity in a wide
range of applications with 6G networks, which can be
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Fig. 5: Accuracy performance of ClusterFL with different
numbers of nodes. The results are obtained by using a large-
scale dataset that collected the activity data of 121 subjects
and a new FL testbed with 10 Nvidia edge devices.

exploited to improve the model accuracy in FL. Specifically,
ClusterFL features a novel clustered multi-task federated
learning formulation by introducing a cluster indicator
matrix indicating the similarity of users, which minimizes
the empirical loss of learned models while automatically
capturing the intrinsic cluster structure among different
users. In ClusterFL, the model weights and the cluster
indicator matrix are alternatively optimized until conver-
gence while keeping the data locality of nodes. The authors
also provide theoretical analysis for achieving convergence
with general non-convex and strongly convex local models.
Fig. [5] compares the accuracy performance of ClusterFL
with different learning paradigms when involving different
numbers of nodes. In all configurations, ClusterFL outper-
forms the decentralized baselines, and its accuracy even
exceeds centralized learning for 60 and 90 nodes. Moreover,
ClusterFL has a significantly smaller variation of accuracy
among nodes, which means that ClusterFL can improve
model accuracy for most nodes.

B. Regularized Local Training

Another type of personalized model optimization ap-
proach in FL is based on regularized local training. Specif-
ically, regularization techniques are applied to limit the
impact of local updates, which can provide more robust
convergence performance and better-personalized models.
For example, pFedMe [14] adds a regularization term to the
local loss function of clients, which measures the distance
between the global model and the clients’ local model. Then
the global model is averaged by all the local models at
the central server. This approach helps decouple personal-
ized model optimization from global model learning, thus
achieving a good convergence performance. The results
show that pFedMe can capture the statistical diversity of
clients’ data and achieves a sublinear speedup of order 2/3
for smooth non-convex objectives.

C. Global Model Post-training

There are also personalized FL approaches based on post-
training of the global model [15]]. The training process
in these approaches includes two steps, federated aver-
aging and local adaptation. Specifically, the clients will
first collaboratively train a global model through federated
averaging. Then the single global model learned by FL will
be adapted to different clients based on their own data. The
techniques for adapting the global model to clients include
model fine-tuning and knowledge distillation. Therefore,
the clients can individually improve the quality of their
local models without re-designing the FL framework or
involving other participants. However, there is a lack of
theoretical analysis on how to achieve the balance of local
personalization and learning from other clients for such a
post-training personalized FL approach.

V. FUTURE CHALLENGES AND OPEN ISSUES

In addition to the proposed optimization methods and
algorithms which address the heterogeneity issues, we
further outline several future challenges and open problems
in future 6G networks.

e Incentive Mechanism for Randomized Participation.
Most existing incentive mechanism for FL usually as-
sumes that all clients participate in all training rounds
(known as full client participation). This assumption is
generally impractical in 6G networks due to clients’
intermittent availability (e.g., unstable wireless com-
munications or out of battery). Therefore, it is more
meaningful to design a practical incentive mechanism
for FL with partial client participation. However, the
challenge for incentivizing partial clients is that the
resulting model can be severely biased as the data on
the incentivized clients may not be representative of all
clients’ data. In this case, the mechanism may fail to
converge to the optimal model that would be obtained
if all the clients participate in training. Therefore, how
to design an unbiased and convergence-guaranteed
incentive mechanism requires further investigation.

o Incentive Mechanism with Punishment Design. EXist-
ing incentive mechanisms for FL mainly focus on
how to reward clients based on their contributions.
However, they have largely neglected the security
issues in incentive design. Specifically, as an open
and decentralized system, clients in FL can be easily
compromised by external adversaries. These compro-
mised clients can then launch Byzantine attacks via
data or model poisoning to mislead the FL process and
degrade the FL model performance. In such problem
settings, existing incentive design will not only lead
to a waste of money but also a deteriorated or even
useless global model. Therefore, in order to create
and maintain a benign and sustainable FL ecosystem,
we may need to design incentive mechanisms that
explicitly consider punishing malicious clients accord-
ingly and induce them to behave faithfully. This is



a fundamental and promising direction that is worth
further investigation.

FL with Time-varying Data Distribution. In 6G net-
works, the clients in FL will encounter dynamic
wireless channel conditions due to mobility, which
leads to unstable communication rates. This problem
has been widely studied in wireless communications
via flexible scheduling and resource allocation al-
gorithms. However, in addition to system dynamics,
the main dynamic challenge in FL also comes from
data dynamics, where clients’ local training datasets
vary over time, e.g., climate data in sensor nodes and
trajectory data in autonomous cars. In the literature,
existing FL optimization design usually assumes a
fixed data distribution among clients throughout all
training rounds, which may not hold in 6G networks.
The difficulty in addressing the time-varying challenge
lies in the unpredictable distribution of future data,
which requires new effective and robust FL learning
algorithms.

Federated Knowledge Distillation. The 6G networks
feature enormous number of intelligent users with
customized service and QoS demands [5]]. The devices
are normmaly with different computation capacities
with limited communication resources. Dealing with
these users’ QoS requirements over heterogeneous
infrastructures relies on a more flexible federated
learning framework, including diverse model struc-
tures, different privacy protection levels, and higher
model accuracy. It is possible to leverage Federated
knowledge distillation (FedKD) to deal with the het-
erogeneous models of users and efficient communica-
tion desire, although FedKD still undergoes challenges
for robustness and security design to meet the 6G
version. First, FedKD is rigid in treating all clients
equally while ignoring the non-I1ID data of clients. It
is important yet challenging to find an efficient way
for knowledge transfer among clients with non-IID
data, other than simply taking an average of client
model outputs for knowledge distillation. Furthermore,
sharing the model outputs of clients to the sever
faces the risk of privacy leakage. FedKD requires an
additional privacy protection mechanism, which has
not been stressed in the literature.

Federated Multimodal Learning. Most of the current
studies in FL assume that there is only single-modality
data on the clients. However, in many real-world appli-
cations under 6G networks such as human-computer
interaction and autonomous diving, the local data on
clients are usually generated from multiple modalities.
Integrating information from different clients’ data
in federated multimodal learning has several major
challenges. First, the local data of clients may come
from multiple modalities or only a single modality
due to resource limitations or sensor faults. Therefore,
a scalable federated multimodal learning framework
is needed to effectively aggregate the multimodal
and unimodal models of clients. Second, it is more

challenging to deal with the non-IID data distributions
of clients in federated multimodal learning. The reason
is that current personalized FL solutions are developed
for unimodal settings where all clients train models
with the same architecture, thus cannot be directly
applied to federated multimodal learning. Therefore,
it is important to design new algorithms that can
improve the model accuracy of FL clients with both
heterogeneous data distributions and data modalities.

VI. CONCLUSION

In this article, we have investigated three key optimiza-
tion design aspects to address the heterogeneity challenges
for FL in 6G networks. For each design aspect, we outline
the main challenges and present several optimization ap-
proaches to optimize the effectiveness and efficiency of FL.
Both simulation and hardware prototype experiments are
provided to demonstrate the effectiveness of our proposed
research works. Finally, we identify several future research
directions along with key challenges to inspire the future
FL research.
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