
1

SMPC-based Federated Learning for 6G enabled
Internet of Medical Things

Aditya Pribadi Kalapaaking, Veronika Stephanie, Ibrahim Khalil, Mohammed Atiquzzaman, Xun Yi, Mahathir
Almashor

Abstract—Rapidly developing intelligent healthcare systems
are underpinned by Sixth Generation (6G) connectivity, ubiq-
uitous Internet of Things (IoT), and Deep Learning (DL) tech-
niques. This portends a future where 6G powers the Internet of
Medical Things (IoMT) with seamless, large-scale, and real-time
connectivity amongst entities. This article proposes a Convolu-
tional Neural Network (CNN) based Federated Learning frame-
work that combines Secure Multi-Party Computation (SMPC)
based aggregation and Encrypted Inference methods, all within
the context of 6G and IoMT. We consider multiple hospitals with
clusters of mixed IoMT and edge devices that encrypt locally
trained models. Subsequently, each hospital sends the encrypted
local models for SMPC-based encrypted aggregation in the cloud,
which generates the encrypted global model. Ultimately, the
encrypted global model is returned to each edge server for more
localized training, further improving model accuracy. Moreover,
hospitals can perform encrypted inference on their edge servers
or the cloud while maintaining data and model privacy. Multiple
experiments were conducted with varying CNN models and
datasets to evaluate the proposed framework’s performance.

Index Terms—Federated Learning, 6G Network, Internet-of-
Medical Things, Deep Learning, Secure Aggregation, Encrypted
Inference, Secure Multi-Party Computation

I. INTRODUCTION

Even at this nascent stage, the medical world is already
looking beyond the significant breakthroughs in latency, mo-
bility, and data rates present in 5G technologies [1]. With the
rise of the Internet of Medical Things (IoMT), the research
community has moved to 6G services as an enabler of ever
more demanding AI-based diagnostics and e-healthcare ser-
vices. Deep Learning (DL) methods have a voracious appetite
for quality data and are integral to such next-generation
medical services. This need for high-resolution and real-
time imaging places stringent requirements on throughput and
latency, which even 5G services will struggle to cope with in
the coming decade [2].

Potential applications within the healthcare realm include
real-time robotic control and video-driven Human-Computer
Interaction (HCI), allowing medical professionals to help
patients remotely. IoMT relies on high inter-connectivity
amongst devices, medical practitioners, and AI-based plat-
forms. This enables healthcare organizations to improve the
efficiency and quality of their services. Such inter-connectivity
can drive accurate, and early diagnosis (and thus treatment)
of various ailments, including computerized tomography (CT)
scans for brain tumors and mammographies for breast cancers.

The increasing scale and variability of medical images
challenge the capabilities of doctors. Contending the deluge
of information can often lead to human errors and misdi-
agnoses. Accordingly, DL has shown great promise to aid

medical practitioners by leveraging computer vision for image
classification. Several studies have shown both accuracy and
efficiency in medical diagnoses [3]. Nevertheless, most IoMT
devices are resource-constrained, which precludes their use for
many DL tasks.

Fig. 1 illustrates the cloud computing paradigm, which adds
both compute and storage resources within the IoMT context.
Here, the cloud is used to deploy the DL model for training
and data inference. However, sending raw data from IoMT
clusters to the cloud is intensive. Thus, edge computing servers
are employed, which process the data before forwarding it to
the cloud.
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Fig. 1: Traditional federated learning application and possible threat
in healthcare scenario

Edge computing reduces the dependence of healthcare in-
dustries on centralized cloud infrastructure, which allows for
a more responsive and agile IT network and, thus, more
reliable patient services [1]. Additionally, with a 6G network,
healthcare industries can enjoy near real-time information
exchange within the IoMT ecosystem [2].

It is known that high-performing DL models require ex-
tensive and diverse training datasets. This can only be ob-
tained from multi-institutional or multi-national data sources
and voluntary data sharing in the industry. While massive
data collection is vital for DL, sharing sensitive patient data
raises privacy concerns. Healthcare institutions may be legally
prevented from sharing their data. Where sharing is possible,
restrictions often apply, which results in incomplete or inade-
quate data.

Accordingly, [4] proposed Federated Learning (FL) to allow
parties to collaboratively train a model by sharing local updates
with a parameter server. Intuitively, this method is safer than
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centralized training as public models learn from healthcare
IoMT data without relying on a third-party cloud.

The application of the 6G network for existing FL methods
allows IoMT systems to deliver more secure and reliable
services. However, 6G presents many novel challenges, with
few studies of it in IoMT and FL architectures. Furthermore,
FL remains vulnerable to some attacks [5], which will be
discussed further in section II.

Contributions: We introduce a secure federated learning
process that encrypts all local models and performs an SMPC-
based model aggregation. Later the global model can be
placed on the cloud to perform an encrypted inference process.
Specifically, we:

1) proposes an efficient architecture that leverages edge
computing and 6G for IoMT applications.

2) secures the 6G edge-computing federated learning model
and the aggregation process, using SMPC.

3) provide privacy by performing secure inference with
multiple different parties in 6G network

The rest of the article is organized as follows. Section II
discuss the possible threat in a current FL architecture. Section
III discusses closely related work. The proposed framework is
described in Section IV. Section V shows experimental results
and evaluates the performance of the proposed framework
from different aspects. Finally, Section VII concludes the
framework with some concluding remarks.

II. SECURITY ISSUE

We present an FL-based IoMT-enabled healthcare system
scenario to highlight current issues with traditional FL. As-
sume several smart hospitals that are geographically dispersed,
with varying patient demographics and illnesses. Each hospital
is equipped with a cluster of IoMT devices (e.g., intelligent
MRI and smart mammography).IoMT devices are used for
monitoring patients’ routines and detecting severe diseases. As
they are resource-constrained and unable to perform typical
ML processes, collected data is sent to the edge/cloud for
ML training and validation. Hence, each hospital maintains
an edge server with access to localized data. This helps to
reduce external transmission costs and sensitive data exposure
during ML training.

Limited access to larger and more complete datasets impacts
the accuracy of local models trained on local data. Therefore,
each hospital’s edge server joins a cloud-based FL platform,
where their locally trained models are aggregated with those
from other hospitals. The aggregated models are called the
global model. Eventually, the global model is sent back to each
hospital. As a result, each hospital is benefited from increased
accuracy and coverage.

However, the above approach suffers from the following
security risks:

• Data privacy: Sending local data to the cloud risks the
privacy of said data. For example, a dishonest employee
from the cloud service provider can act as an internal
attacker and collect private images or information (of the
hospital or patients). The stolen data can be leaked or sold
for personal gain, requiring a more robust and privacy-
aware FL architecture.

• Local model and aggregation process privacy: The ag-
gregation process requires trained local models to be
aggregated centrally, where they may be intercepted. Such
local models are trained with sensitive data, and a bad
actor (insider or external) can perform model inversion
attacks before the aggregation process. Thus, a secure
aggregation method is required to prevent such attacks.

• Result integrity when performing inference in the cloud:
In existing studies, IoMT devices send their data to the
cloud for ML training and inference process. An attacker
may access and tamper model results before being sent
back to the hospitals. Hence, a secure inference method
is required to ensure confidence in the integrity of results.

III. RELATED WORK

Several studies have presented federated learning in 6G
architecture. Qu et al. [6] proposed an air unit or UAV
as middlemen between cloud and end-users during the FL
process. Using an air unit for model training and data inference
process does not translate well to our healthcare scenario, as
communication costs are high with inherent instability. Thus,
we propose an FL architecture using intermediary edge servers
between IoMT devices and the cloud. We also note that their
architecture does not protect privacy in data and inter-party
communications.

Zhou et al. [7] proposed an efficient federated learning
architecture for the Internet of Vehicles (IoV) using 6G.
The work leverages edge servers to connect the cloud and
vehicles. In the framework, a two-layer FL model aggregation
is proposed. In the process, end-users send local models
to edge servers. The first aggregation happens on the edge
servers when all local models are received. This results in
aggregated local models called aggregates. The same edge
servers leverage the cloud to perform a second aggregation
upon completion to generate a global model called resultant.

In preserving users’ privacy, the framework first performs
encryption on the local model parameters. This results in a
high computation cost because each user’s model needs to
be encrypted after each training process. Furthermore, the
secure aggregation process on the edge server violates users’
privacy due to the decryption process done by the edge
servers. In addition, the aggregates produced by edge servers
remain unencrypted as they are sent to the cloud. Similarly
to the aggregates, the resultant produced by the cloud is left
unencrypted.

Recently, several researchers have worked on a lightweight
privacy-preserving method. Liu et al. [8] proposed a secure
and lightweight neural network inference system for secure
intelligent medical diagnostic services. They enhance the ad-
ditive secret sharing method to perform a lightweight inference
process. Zheng et al. [4] built a lightweight encryption method
based on cherrypicked cryptographic for aggregation method
in federated learning. Their lightweight encryption method
also has the ability to handle drop-out clients without exposing
their secret keys. Wang et al. [9] developed a method to com-
bat eavesdropping attacks in the wireless federated learning
scenario. By sending jamming signals to the eavesdropper to
enhance the server’s secrecy throughput. However, the current



3

privacy-preserving method only works to anticipate a specific
attack. In contrast, we propose an SMPC-based cryptography
method in the FL scenario that can secure both the aggregation
and inference process.

IV. PROPOSED FRAMEWORK

Here, we present our proposed general architecture in Sec-
tion IV-A. Subsequently, the detailed architecture processes
are discussed in three separate stages: Section IV-B presents
the local model generation; Section IV-C presents the SMPC-
based encrypted aggregation protocol; and finally, Section
IV-D discusses the protocol used for SMPC-based encrypted
inference.

A. System Architecture
We propose an FL architecture that leverages SMPC to

perform encrypted aggregation and encrypted inference.
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Fig. 2: Overview of the proposed framework

As shown in Fig. 2, our proposed architecture is divided into
three layers, namely the IoMT devices layer, the edge layer,
and the cloud layer. The IoMT devices layer comprises smart
IoMT devices owned by hospitals. This layer is responsible for
generating and transmitting data resources to the edge layer.
The edge layer consists of edge servers owned by hospitals.
This layer is responsible for executing edge computing tasks
(e.g., local model training and local model encryption). The
cloud layer is where the aggregation process of the encrypted
local model happens. The resulting aggregated models are then
stored in the cloud to be used for the encrypted inference
process.

In our scenario, we assume that there exists n number
of hospitals H . Each hospital has an edge server Zn ∈ Z
and IoMT devices I = i1, i2, ..., in connected to Zn. Zn

collects data such as images from smart mammography or
smart MRI produced by connected IoMT devices. A collection
of I connected to an edge server Zn creates a cluster of IoMT
devices Cn(1 ≤ n ≤ H). This scenario involves a multitude
of devices and endpoints of varying capabilities and scale.
Hence, a reliable and high-bandwidth connection is requisite

for timely data transfers. This is a use case that 6G is well
suited for.

Initially, the hospitals’ edge servers receive images from
IoMT devices to train their respective Local Models (LM). As
mentioned, local model accuracy is impacted due to limited
local data and resources. To overcome this, clusters of IoMT
devices Cn from multiple hospitals join the FL process. This
allows multiple parties with varying datasets to contribute to
the training process to produce diverse LMs. These LMs are
then aggregated into a Global Model (GM), which would
perform better than individual LMs. In our architecture, we
perform encrypted aggregation on the LMs within the confines
of a Trusted Third Party (TTP) using an SMPC protocol. A
secure multi-party computation or SMPC is a cryptographic
technique that enables multiple parties to perform computation
using their private data where no individual party can see the
other parties’ data. The resulting encrypted GM is stored in the
cloud. This allows participating hospitals to perform encrypted
inference with high computational power.

B. Local Model Generation
In the local model generation, every hospital generates a lo-

cal model based on its dataset collected from the IoMT cluster
Cn. This step is similar to the initialization step in federated
learning. Since Cn contains many In, the communication time
and the bandwidth used will be very high. We use 6G network
to decrease the communication time and latency between each
entity.

In this scenario, we assume that every hospital has an edge
server tasked with training local models. The DL approach
used in our architecture is a Convolutional Neural Network
(CNN) based image classification such as Resnet18 [10], and
AlexNet [11]. In general, CNN image classification processes
an input image and classifies it under certain categories of t
objects.

In the local model training process, an edge server Zn of
cluster Cn recieves local image dataset In. The edge server
process the input image as an array of pixels, depending on
the image resolution. For example, an image with height h,
width w, and dimension d, can be received as an array input
of h × w × d. Note that in our scenario, d is perceived as
a color channel. After the input is processed, it is passed
through different layers within the CNN models. The layers
can include convolution layers with filters (Kernels), Pooling,
and fully connected layers (FC). Finally, CNN applies Softmax
function to classify an object with probabilistic values between
0 and 1. We refer to the trained model as local model and
denote it as ML. An overview of the LM generation phase
is illustrated in Fig. 3, where each hospital Hn has an edge
server Zn sends ML using a 6G network to the secure worker
for the SMPC-based encrypted aggregation phase.

C. SMPC-based Encrypted Model Aggregation
In our proposed scenario, we adopt Federated Averaging

(FedAVG) [12] algorithm as the base of our FL aggregation
method. Without providing proper privacy protection, the FL
application is not feasible. A local model produced by each FL
participant is vulnerable to attacks such as model inversion and
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Fig. 3: Local Model Generation

membership inference attacks. Hence, we leverage the SPDZ
protocol to perform a secure aggregation process. SPDZ is the
alias of the MPC protocol of Damgård et al. [13] for secure
computation that allows parties to perform a computation on
private values based on the additive secret sharing scheme.
Additive secret sharing allows a trusted party T to share
secrets sn ∈ s among n parties P1, P2, ...Pn, such that to
reveal s, n participants must share their secrets. This process
starts with a high number of prime number Q generation.
Then, s is split into n number of shares s1, s2, ..., sn. In this
scheme, the shares of s must satisfy:

s =

(
n∑

i=1

si

)
mod Q

This protocol allows us to perform the sum of local model
parameters without revealing each model’s revealing value to
other parties. Hence, we use this protocol to perform a secure
aggregation process in our architecture.

In additive secret sharing, properties such as addition,
subtraction, and multiplication are supported. In this particular
paper, the SPDZ protocol for secure federated averaging
employs the addition operation. Suppose that P1 has a secret
s and P2 has a secret u. Additionally, there exists a T . In
a particular case, P1 and P2 want to know the sum of their
secrets without revealing the true value of their secrets. To
calculate the sum, the protocol simply shares the secrets of
the two parties into n number of shares.

Particularly, s is divided into three shares (s1, s2, s3) and u
into another shares (u1, u2, u3). Each party holds one share of
each secret. For example, P1 holds (s1, u1), P2 holds (s2, u2),
and T holds (s3, u3). Then, to calculate the sum of the two
secrets, each party adds up the shares that they hold using
mn = (un + sn) mod Q, where mn is the sum of shares
that party n holds. Finally, the sum of shares are computed as
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Fig. 4: a) SMPC-based Encrypted Aggregation. b) SMPC-based
Encrypted Inference

follows:

u+ s =

(
n∑

i=1

mi

)
mod Q

As communication between each party is crucial to produce
an aggregated final model, the use of 6G is a critical way
to ensure reliable inter-party connection in the secret-sharing
process. The SMPC-based encrypted model aggregation are
illustrated in Fig. 4a.

D. SMPC-based Encrypted Inference

In the architecture, a trusted party or secure worker T runs
a secure aggregation process to produce a global model. The
secure worker then encrypts this global model to ensure that no
parties can perform model inversion or membership inference
attacks. For this, we leverage additive secret sharing protocol
and Function Secret Sharing (FSS) to allow data and model
owners to keep their inputs and models confidential.

In the CNN setup, parameters and input data can be secretly
shared amongst the party, and each operation in the process is
treated independently. For addition operations in CNN layers,
such as matrix multiplication layer, an additive secret sharing
protocol mentioned in Section IV-C is used. However, for
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multiplication operation, Beaver triple, as mentioned in [14],
is used as it fits with additive secret sharing.

For comparison operation in CNN layers such as Max
Pooling, Function Secret Sharing (FSS) is used. To achieve
this, let there be a value y, and a comparison operation wants
to know if y ≤ 0. First, two shares y0 and y1 are generated
from y. These shares are sent to the respective parties P0

and P1. Each party then masks these shares accordingly using
masking values a0 and a1 by summing up their share and the
mask values. Then, the summed values are added up together
to produce a public value x = y+a. This value is then applied
to FSS to obtain a shared output which determines if y ≤ 0.
In this case, a comparison function in FSS is defined as

F (y + a) = F (x) = (x ≤ a) = (y + a) ≤ a = y ≤ 0

.
The 6G interplay in the encrypted inference phase allows

an increase in encrypted prediction data download and upload
rate. This enables parties Pn or Hospitals to provide faster and
more reliable services to the users. The SMPC-based encrypted
inference are illustrated in Fig. 4b.

V. EXPERIMENTAL RESULTS

In this section, We provide discussions on the experimental
setup, and dataset and model in Section V-A and V-B, respec-
tively. Section V-C shows experimental results and evaluations.
We conducted several experiments to evaluate the performance
of our proposed framework.

A. Experimental Setup
We run the server and client sides in our experiments with

AWS Sagemaker. We used ml.g4dn.16xlarge series with 64
virtual CPUs, 256 GB Memory, and 1 NVIDIA T4 GPU.
The G4DN series from AWS runs the application on a virtual
CPU above the customized Intel Cascade Lake. It is optimized
for machine learning inference and small-scale training. For
the encrypted inference, we selected ml.p3.8xlarge since it
requires high computing power. This machine has 4 NVIDIA
Tesla V100 with 64 GB memory and Peer to Peer connection
between the GPU. In addition, it has 32 vCPUs and 244 GB
of RAM. We built our federated learning application using
PySyft [14].

B. Dataset and Model
We used the breast cancer dataset from Histopathological

Database [15] to test the performance of our application in
a practical IoMT scenario. It comprises 9,109 microscopic
images of breast tumor tissue collected from 82 patients
using different magnifying factors (40X, 100X, 200X, and
400X). The dataset is classified into 2,480 benign and 5,429
malignant samples (700X460 pixels, 3-channel RGB, 8-bit
depth in each channel, PNG format). We partitioned the
dataset evenly among all federated learning participants to
train the local model. We evaluated our system using two
different pre-trained machine learning models: Alexnet [11]
and Resnet18 [10]. The former has five convolutional layers
and three fully connected layers with a total of 61 million
parameters. The latter is a CNN comprising 18 layers and
11.7 million parameters.

C. Results and Performance Evaluation
We first evaluate our architecture by checking the accuracy

of the transfer learning. In this experiment, we test federated
learning with an encrypted aggregation setup against the breast
cancer dataset. As shown in Fig. 5a and Fig. 5b at the
beginning, they start from 0% and goes up to 84% accuracy
during the first epoch. This kind of result can be achieved
when we are using transfer learning.

In a practical healthcare scenario, transfer learning can be
helpful because not all hospitals can generate their model as
there is a need for IoMT devices to generate the data, in
addition to powerful computing resources. In Fig. 5a and Fig.
5b we also perform experiments with encrypted aggregation
process using SMPC. As can be seen, we obtained high
training and evaluation accuracies. Specifically, we achieved
up to 98% for Resnet during training, and up to 90% during
validation. Similarly for AlexNet, the accuracies are up to 95%
and 85% respectively, for training and validation. In Fig. 6 we
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Fig. 5: Federated learning accuracy with encrypted aggregation using
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Model;

evaluate the encrypted inference with differing image batch
sizes. We run each batch of images five times for the encrypted
inference and average the overall result. In our scenario, we
send encrypted data to the cloud, so both the data and the
inference are performed in an encrypted way. Starting with
5 and 10 images, both ResNet18 and AlexNet achieve 100%
accuracy when completing the encrypted inference. When the
image batch size reaches 25, the accuracy from both models
slightly decreases while performing the encrypted inference;
However, it is still above 90%. From the overall experiment
results for the accuracy with encrypted inference and data,
the fewer images we performed in the encrypted inference,
the more accurate the outcome is. The plot shows that the
ResNet18 model has higher accuracy than the AlexNet model
for every different image batch size.

In the experiment shown in Fig. 5c and Fig. 5d, we evaluate
the encrypted inference time cost to see the performance of our
system with a different number of image batch sizes. In this
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scenario, we will assess the ResNet18 and AlexNet machine
learning model with two other VMs, the ML.G4DN is the
machine we assume every hospital will have, and ML.P3 is
the cloud that has powerful computation power with multiple
GPU.

As is seen, both ResNet18 and AlexNet have linearly
increased for the time cost. Performing encrypted inference
with ResNet18 will take a longer time to compare to AlexNet.
However, from the previous experiment shown in Fig. 6, the
accuracy result from ResNet18 is stable above 90%. From both
experiments result in Fig. 5c and Fig. 5d we also see similar
results, while performing encrypted inference with the more
capable computing power availble reduces the time cost by up
to 50%. From this result, we see that even though each hospital
has the encrypted global model, their limited resources cannot
handle large image batch sizes which leads to a stronger cloud
computational requirement.

VI. FUTURE RESEARCH DIRECTION

In this article, SMPC-based encrypted aggregation and
secure inference have been introduced to improve the security
of 6G federated learning architectures. However, there remain
several challenges requiring further research:

6G Infrastructure. The communication bottleneck is con-
sidered as a major challenge in an IoT-based federated learn-
ing environment. IoT devices communicate using wireless
networks. With additional security settings that require mul-
tiple communication rounds, such as SMPC, huge internet
bandwidth is imperative. The advanced development of the
6G network can solve the limited bandwidth issue. However,
for such frameworks to be accepted, 6G infrastructure must
be established across continents. Due to the high costs of
deploying 6G infrastructures, there needs to be better research
into expanding 6G adoption strategies.

Lightweight Machine Learning. The resource-limited na-
ture of IoT devices is a barrier to on-device training of DL
models. Accordingly, reducing on-device model complexity
(by outsourcing training to edge servers) while maintaining
privacy protections is an ongoing concern.

Novel Anomaly Detection Mechanism. There is a need to
identify and prevent malicious IoT devices from sending data
and jeopardizing FL training. Further research to detect system
anomalies is encouraged, such as metric evaluation from IoT
devices to identify malicious nodes.

Cost-efficient communication. As the number of IoT
devices participating in FL increases, communication cost
remains a crucial barrier to wide adoption within the 6G
context. A cost-efficient mechanism must be developed to
make the FL model acceptable for 6G networks with extremely
heterogeneous devices and network delays.

VII. CONCLUSION

This paper proposes privacy-preserving federated learning
with SMPC-based encrypted model aggregation and inference
for a 6G-based IoMT environment. The main objective is to
ensure local models from each hospital remain private during
the aggregation process and to perform secure inference in
third-party cloud platforms.

The model from each hospital is encrypted and split into
several shares. Later, the secret shares from each party are
computed using additive secret sharing to generate a global
model. Eventually, the encrypted global model is sent to a
hospital-controlled edge server for an iterative FL process and
stored in the cloud to perform an encrypted inference.

In our architecture, we also leverage edge computing, and
thanks to the 6G network, the IoMT devices can maintain
a stable, timely, and reliable connection with hospital-owned
edge servers. We conducted several experiments that show the
proposed framework has high accuracy despite performing en-
crypted aggregation. In addition, we have noted several critical
challenges while performing secure multi-party computation
and federated learning processes in future research directions.
In the future, we plan to develop a more lightweight encrypted
inference mechanism that can be done on edge servers.
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