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Abstract

Named Data Networking (NDN) architectural features, including multicast data delivery, stateful 

forwarding, and in-network data caching, have shown promise for applications such as video 

streaming and file sharing. However, collaborative applications, requiring a multi-producer 

participation introduce new NDN design challenges. In this paper, we highlight these challenges in 

the context of the Network Time Protocol (NTP) and one of its most widely-used deployments for 

NTP server discovery, the NTP pool project. We discuss the design requirements for the support of 

NTP and NTP pool and present general directions for the design of a time synchronization 

protocol over NDN, coined Named Data Networking Time Protocol (NDNTP).

I. INTRODUCTION

Information-Centric Networking (ICN) [1] and a prominent realization of its vision, the 

Named Data Networking (NDN) architecture [2], use application-defined names to retrieve 

secured data through a stateful forwarding plane. This waives the need for costly mappings 

between the application data and its physical location(s). The NDN design and its builtin 

features, such as multicast data delivery and in-network caching, have shown promise for 

applications and services such as video streaming, file sharing, and others [3], [4].

The ICN/NDN community has worked on adapting IP-based applications and services to run 

on top of NDN [3], including general guidelines on adapting non-NDN applications to 

function over NDN [5]. However, the NDN adoption for certain categories of applications 

remains largely unexplored. For instance, crowd-sensing and crowd-sourcing applications 

and services that enable multiple producers to return different content for the same Interest 

may introduce new challenges to the existing NDN design.

In this paper, we consider the Network Time Protocol (NTP) [6] as a use-case given the 

universal need of applications and devices for a time synchronization service. Through this 

use-case, we highlight new NDN design requirements and design an NDN-based service, 

called Named Data Networking Time Protocol (NDNTP), to provide time synchronization to 

applications, systems, and devices within islands of NDN connectivity. We present a 

preliminary investigation of how functionality equivalent to the IP-based NTP can be 

Correspondence to: Abderrahmen Mtibaa.

HHS Public Access
Author manuscript
IEEE Netw. Author manuscript; available in PMC 2021 November 01.

Published in final edited form as:
IEEE Netw. 2020 ; 34(6): 235–241. doi:10.1109/MNET.011.2000169.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



provided over NDN. We further consider NTP pool [7] as one of the most widely-used NTP 

server discovery deployments. Motivated by the requirements of NTP and NTP pool, we 

discuss the NDNTP design as well as enhancements of the native NDN architectural features 

to support the NTP functionality.

As part of our work, we propose design directions for: (i) forwarding time synchronization 

requests towards different sets of servers and retrieving multiple time samples from each of 

these servers; (ii) fine-grained control over how far in the network time synchronization 

requests can travel; and (iii) controlling the NDN in-network caching and request 

aggregation mechanisms to enable the retrieval of up-to-date time samples. The design 

directions discussed throughout the paper can be leveraged by various NDN applications 

that share the same requirements as NDNTP.

The rest of this paper is organized as follows: Section II presents a brief background on 

NDN, NTP, and NTP pool, Section III discusses the design requirements of NDNTP, while 

Sections IV, V, and VI present alternative directions to satisfy each of the design 

requirement. Section VII briefly discusses NDNTP extensions, while Section VIII concludes 

the paper.

II. BACKGROUND

In this section, we first present an NDN primer. Then we present some background on NTP 

and NTP pool to prepare readers for the discussion in the rest of the paper.

A. NDN Background

NDN [2] features a data-centric, receiver-driven communication model, where each piece of 

data has an application-defined name. Consumer applications send requests for named data, 

called Interests, towards data producer applications. Each Interest carries the name of the 

requested data. Once a data producer receives an Interest, it sends back a Data packet, which 

is cryptographically signed by the data producer and contains the requested data.

Interests are forwarded based on their names towards producers by NDN forwarders. To 

achieve that, NDN forwarders make use of a Forwarding Information Base (FIB), which 

contains name prefixes along with a set of outgoing interfaces for each prefix. Forwarders 

also maintain a Pending Interest Table (PIT), where they store network state for each Interest 

that has been forwarded, but the corresponding data has not been received yet. A Data 

packet follows the reverse path of the corresponding Interest based on the network state in 

PIT and can be forwarded all the way back to a consumer only if there is a valid PIT entry 

for the corresponding Interest at each hop forwarder. Once a Data packet is retrieved in 

response to an Interest, the corresponding PIT entry at each hop forwarder will be 

consumed. This happens as part of the “flow balance” principle of NDN, which mandates 

that each Interest packet can bring back only one Data packet from each hop forwarder. If a 

PIT entry stays open to allow for more than one Data packets to be returned to a consumer, 

the “flow balance” principle is violated. Finally, each forwarder is equipped with a Contest 

Store (CS), where recently received Data packets are cached to satisfy Interests for the same 

data in the future.
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B. NTP and NTP Pool Background

NTP [6] has been one of the longest running protocols on the Internet. It was created due to 

the need of applications and services for time synchronization over packet-switched 

networks. Discovering NTP servers and automating this process for clients has been 

essential for the deployment of NTP. Among the different service discovery schemes 

proposed (e.g., broadcast/multicast/manycast servers), NTP pool has been one of the most 

widely-used ones [7]. NTP pool is a cluster of volunteer NTP servers used by large numbers 

of clients around the world (e.g., it has been the default time synchronization option for most 

Linux distributions). NTP pool groups NTP servers based on their IP address geolocations 

into continental and country zones (Fig. 1).

Each NTP server in the pool is assigned a score, which reflects the accuracy of the provided 

time samples are This score is determined by a monitoring station. Once a new server joins 

the pool, it is assigned a low score by default. The monitoring station probes this newly 

joined (and every other) server over time, verifying the accuracy of its clock. As servers 

respond with accurate clock readings to the requests of the monitoring station, their scores 

improve. Once the score of a server reaches a certain threshold, the server will start 

receiving requests by NTP clients. NTP clients discover servers in the pool by querying 

DNS for the “pool.ntp.org” domain name. The DNS resolution of “pool.ntp.org” would 

usually return servers within or close to the client’s country.

III. DESIGN REQUIREMENTS OF NDNTP

In this section, we first give an overview of the NDNTP network model. Then, we present 

NDNTP’s design goals and requirements, focusing on the NDN features that need to be 

enhanced in the context of this design.

A. Network Model and Assumptions

We consider NDN islands, where consumers (NDNTP clients) are scattered geographically 

into multiple zones such as Europe, America, and Asia. In each zone, there is a number of 

NDNTP servers acting as NDN data producers. NDNTP clients are inter-connected with 

NDNTP servers through one or more network hops (NDN forwarders).

The NDNTP servers receive time requests (Interest packets) under the “/NDNTP/time” 

namespace sent by NDNTP clients, who initiate the time synchronization process. Servers 

respond to requests by generating and signing NDNTP responses (Data packets), which 

contain the current timestamp and other necessary fields as determined by the NTP 

specification [8]. To receive requests from clients, servers announce the “/NDNTP/time” 

namespace to the network. A name-based routing protocol, such as NLSR [9]), propagates 

the announcement and establishes routes towards servers (i.e., install the proper forwarding 

information on the FIB of NDN forwarders).

B. NDNTP’s Design Requirements

Deploying NDNTP in an NDN island can be challenging, since functionality requirements 

motivated by NTP and NTP pool require the augmentation of certain NDN architectural 
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features. In the rest of this section, we present the main functionality requirements of the 

NDNTP design and motivate the challenges on fulfilling them over NDN.

Multi-server time sample fetching: The best current practices of NTP deployment [10] 

indicate that a client should contact more than one NTP servers in order to select accurate 

time sources and disregard unreliable ones. NDN inherently facilitates reaching multiple 

servers through its multipath/multicast nature. In this context, clients send requests for “/

NDNTP/time”, which will be satisfied by any server running the time synchronization 

service. In NDNTP, we would like multicast requests in order to bring a response from each 

server they reached back to a client. However, NDN allows only a single Data packet to use 

the reverse path to the client–often the closest server will use the network state stored in PIT, 

thus responses sent by other servers will not find PIT state to be returned to the client. Fig. 2 

illustrates such a scenario, where a client reaching three different servers would receive a 

single Data packet from the closest server (i.e., S1). This packet will consume the PIT entry 

at forwarder F1, leaving data from other servers without a path back to the client.

Moreover, clients typically request multiple time samples from the same set of servers to 

increase the accuracy of the time synchronization process. In NDN, clients rely on the 

network to guide requests towards the “best” (i.e., often the closest) server, without being 

able to control whether subsequent time synchronization requests will reach the same or 

different servers. To this end, additional mechanisms are needed to let more than one 

requests be forwarded towards the same set of servers. All these challenges are discussed 

and different design directions are proposed in Section IV.

Distance-based server selection: Through the NTP pool, clients often select a set of 

NTP servers that are in the same country or continental zone as themselves. Clients discover 

different sets of servers over time in order to: (i) avoid the impact of malicious groups of 

neighboring servers colluding to return bogus timestamps to clients; and (ii) balance the load 

among servers in a zone.

NDN makes use of application-defined names for communication purposes, enabling access 

to services typically from the closest source/server that can offer them. However, to achieve 

distance-based server selection, NDNTP clients may need mechanisms for fine-grained 

control over how far their requests should travel and how these requests can be satisfied by 

servers that are potentially not the closest ones to clients. We further discuss this challenge 

and propose directions to address it by enhancing the NDN design in Section V.

Time synchronization freshness and accuracy: NTP clients aim to retrieve fresh 

(up-to-date) time samples, increasing the accuracy of the time synchronization process. 

However, due to NDN in-network caching, NDNTP client requests for time synchronization 

can be satisfied with outdated responses that have been cached in the network. Moreover, 

NDNTP requests (from the same or different clients) reaching a forwarder that has another 

NDNTP request pending in its PIT could result in request aggregation. That is, subsequent 

NDNTP requests may not be forwarded to a server, but will be satisfied when the response 

to the first pending request is received by the forwarder. This could skew the client round-
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trip delay measurements, impacting the accuracy of the time synchronization process. We 

further discuss these challenges and propose directions to tackle them in Section VI.

IV. ENABLING MULTI-SERVER TIME SAMPLE FETCHING

In Section III, we present different design directions for the following NDNTP design goals/

objectives: (i) ensure that clients can reach multiple servers and collect multiple time 

samples for each of these servers; and (ii) enable a multicast request to bring a response 

from each server that it reached back to a client.

A. Gathering Multiple Samples From Multiple Servers

It is desirable for NTP clients to: (i) contact more than one NTP servers in order to identify 

accurate time sources and disregard inaccurate ones; and (ii) collect multiple time samples 

from each NTP server to enhance the accuracy of the synchronization process due to the 

dynamic nature of network conditions. The NDN communication model is inherently 

multipath/multicast supporting requirement (i), since an Interest can be forwarded towards 

multiple producers (NDNTP servers in our case). However, deterministically contacting the 

same server multiple times in the context of requirement (ii) is counter-intuitive to the 

purpose of NDN, where data can be retrieved from any party that can provide it. As a result, 

the NDN architecture itself does not provide explicit mechanisms to ensure that Interests 

will be forwarded along a specific path towards a certain server. Below, we present a wide 

spectrum of design directions to fulfill these requirements ranging from solutions of unicast 

nature to solutions of multicast nature.

The first design direction is inspired by source routing. Clients instruct the network about 

which paths their Interests should take through techniques to create path labels for Interest 

forwarding [11]. Each Interest carries such a label, which determines the next-hop that the 

Interest should be forwarded to. At each hop, NDN forwarders use this label for Interest 

forwarding bypassing the FIB lookup process. At the beginning of their operation, NDNTP 
clients will perform a path discovery process, where they will acquire labels for paths to 

different servers. This process will end when a client acquires labels for the desired number 

of servers. The client uses the same path label to collect different time samples from the 

same server, since Interests carrying the same label will be forwarded along the same path 

towards the same server.

Another direction would be to utilize the stateful NDN forwarding plane. Forwarding 

modules (strategies) can be created and deployed on NDN forwarders, so that clients can 

discover multiple NDNTP servers and collect a number of time samples from each of these 

servers. Specifically, NDNTP clients create a “session-like” paradigm with a server, so that 

they request multiple time samples from it. An example namespace to achieve that is 

illustrated in Fig. 3. The name prefix includes the NDNTP name prefix (“/NDNTP/time”), 

followed by: (i) a random hash to by-pass the aggregation of requests from different clients 

as further discussed in Section VI (each different hash identifies a set of sessions initiated by 

a client–each session is with a different server); (ii) a session number that identifies a 

specific session with a server; and (iii) a sample number that identifies a specific time 

sample requested from a server.
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When an NDN forwarder receives an NDNTP request, it dispatches it to the corresponding 

forwarding module, which identifies requests from the same client but from different 

sessions. To this end, time sample requests for the same session number are forwarded along 

the same path, so that they reach the same NDNTP server. At the same time, the stateful 

network forwards requests for different session numbers along different paths towards 

different servers.

Multicast Support: We note that both solutions mentioned above can be extended to 

support multicast Interest forwarding. For instance, during the discovery process of paths 

performed by clients, the path labels can include multiple next hops at each forwarder. As a 

result, client Interests will be forwarded along different paths, potentially reaching different 

servers. In a similar manner, in the second approach, client Interests can include a list of 

session numbers instead of a single session number in order to enable multipath stateful 

forwarding. Clients will re-use the same list of sessions to ensure that subsequent requests 

for time samples reach the same set of servers. However, directions of multicast nature 

require multiple responses (one from each server that received a request) to be forwarded 

back to clients. We discuss solutions to that below.

B. Receiving Multiple Responses Upon Sending Multicast Requests

To address this challenge, one direction would be to enhance the NDN communication 

model, so that forwarders can accept multiple Data packets (one per interface that the 

corresponding Interest was forwarded through). These Data packets will be aggregated into a 

single packet, which will be forwarded back to the forwarder’s previous hop [12]. In this 

way, forwarders can multicast NDNTP requests towards multiple servers, receive a response 

from each of these servers, and aggregate the responses into a single response. This 

“aggregated” response will eventually be received by the requesting NDNTP client. This 

enhancement does not invalidate NDN’s principle of “flow balance, since a single response 

will be returned to clients. However, it can take arbitrarily long for a forwarder to collect 

multiple responses through different paths, since the length of each path and the network 

conditions might differ. This could impede the time synchronization accuracy by skewing 

the round-trip delay measurements of clients.

An alternative direction consists of consuming a PIT entry only after all the expected 

responses have been received. Specifically, a PIT entry will stay alive and bring back one 

response for each outgoing interface that the corresponding NDNTP request was forwarded 

through. This would help clients to collect accurate round-trip delay measurements and 

improve the time synchronization accuracy. However, this direction would invalidate the 

NDN “flow balance” principle, since corresponding PIT entries may stay open and accept 

several Interests.

V. DISTANCE-BASED SERVER SELECTION

While NDN inherently supports reaching the closest server offering the time 

synchronization service, there might be cases where reaching distant servers within a zone 

may be desirable in order to: (i) reduce targeted attacks, where entities controlling a group of 

neighboring servers collude to return bogus timestamps; and (ii) enable load balancing 
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among nearby and distant servers. Reaching servers within similar distances from a client 

may also be desirable in order to reduce jitter in round-trip delays.

Preliminary Experiments: To investigate whether NTP pool shares the above objectives 

and better understand how it operates, we performed a set of experiments. Specifically, we 

deployed NTP clients–two in North America (in Missouri, US and in New Mexico, US) and 

two in Europe (in Zurich, Switzerland and in Athens, Greece)–and we configured them to 

use NTP pool for time synchronization. Each client queries four NTP pool servers and 

collects four time samples from each of these servers (i.e., the default configuration options 

for NTP) every minute over a 24-hour period1.

Fig. 4 presents the CDF of the unique NTP pool servers sorted by popularity (i.e., number of 

times a server is selected) in the four traces (results collected from each client). We notice 

that both North American traces have very similar trends characterized by almost identical 

CDF distributions, while the European traces have different properties compared to the 

traces from North America. Based on the European traces, the unique servers discovered are 

15 to 20× fewer than those discovered in North America (e.g., 14 unique servers in the trace 

from Athens compared to 300 in the Missouri trace). Our understanding is that this is due to 

the difference in the zone sizes for the US and the European countries (Greece and 

Switzerland). For example, at the time of the experiments, there were 774 NTP servers in the 

zone of the US, while only 15 NTP servers in the zone of Greece.

Moreover, we found that the NTP pool servers in Europe are closer to the clients than the 

servers in the US. For example, more than 80% of the servers discovered from Athens are 

within 50 kilometers from the client, while less than 10% of the servers discovered from 

New Mexico are within 1000 kilometers from the client (i.e., 250× further than the 50-

kilometer neighboring circle in Athens). This is due to the different physical sizes of the 

countries–in terms of landmass, the US is 9,833,000 km2, while Greece is only 131,957 

km2.

In Fig. 5, we illustrate the average distances (in kilometers) and the standard deviations per 

run of the NTP protocol (four servers are selected and four times samples are collected from 

each server per run) for the (a) Athens and the (b) New Mexico traces respectively2. First, 

we notice that the four servers selected in each run tend to have similar distances from the 

client as shown by the lower values in standard deviation distributions of Fig. 5. 

Furthermore, we observe that in 40% of the runs for the Athens trace, requests reached four 

servers within the same distance of 45 to 50 kilometers. On the other hand, the four servers 

selected in each run of the New Mexico trace have different distances from the client, 

resulting in larger standard deviation values. Our understanding is that this is due to the 

larger physical surface of the US compared to Greece.

1The datasets consisting of the raw timestamps and servers probed are available at https://github.com/amtibaa-cmu/NTP-Data-Traces.
2For better readability, we selected one trace from Europe and another from the US. We have verified the validity of our conclusions 
for all collected traces.
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A. Lessons Learned

The lessons we learned from these experiments fall into three main categories: (i) zone 
probing: NTP pool employs a zone probing scheme that consists of reaching (nearby and 

occasionally distant) NTP servers from within the client’s (continental and/or country) zone; 

(ii) similar distance probing: most servers selected in each run of the NTP protocol are 

within similar distances from the client, thus responses return to the client with similar 

delays; and (iii) reaching a different set of NTP servers in each run: NTP clients that make 

use of NTP pool reach, in general, a different set of servers for every run. Our data showed 

that the same US servers are rarely selected more than a few times in the 24-hour period. 

However, in zones, such as in Greece and Switzerland, where the number of NTP servers in 

the zone is small, servers are selected multiple times. In addition to that, distant servers are 

selected, although infrequently (as shown in Fig. 5), to reduce the reliance on a small set of 

servers that may form a collaborative malicious group (collusion attacks).

B. Distance-Based Server Selection in NDNTP

According to the lessons we learned from our experiments, NDNTP needs to be able to 

reach servers within a given “zone” and within controlled distances from clients. While a 

zone in an IP-based NTP pool design refers to a country or a continent, which may have 

largely variable sizes, we define a zone as the region within a certain number of hops from a 

client. For instance, a client in New Mexico will be able to reach servers within h hops 

making the case of reaching servers in a different country likely in addition to reaching 

servers in other US states. This can be achieved through the deployment of stateful 

forwarding modules that allow clients to reach not only the closest but also distant NDNTP 
servers. We propose two client-based directions that enable fine-grained control over how far 

a request can travel.

The first design direction consists of taking advantage of the hop limit field in Interest 

packets. Clients that would like their requests to reach servers at least h hops away will set 

the hop limit value of their requests to h. Each forwarder decrements the hop limit value of 

NDNTP Interests and forwards them through the outgoing interface with the highest cost–in 

NDN, outgoing interfaces for a given name prefix are associated with a cost, thus the lower 

the interface cost is, the closer a server that can satisfy Interests for this name prefix is. 

When the hop limit value of an Interest reaches a given threshold, the forwarding plane 

switches to using the outgoing interface with the lowest cost for this Interest. As a result, 

after this point, the Interest will be forwarded with the goal of reaching the closest server(s). 

Through this approach, all the selected servers are at least h hops away and within similar 

distances from clients, so that round-trip delays for requests are similar.

The second direction would be to enable clients to include a probability to the name of their 

NDNTP requests. The lower this probability is, the higher will be the cost of the outgoing 

interface chosen by forwarders. For instance, a request with a name “/NDNTP/time/P=0.3” 

would be handled by forwarders so that they choose the outgoing interface with the highest 

cost with a probability of 0.7 and the lowest cost interface towards a server with probability 

of 0.3. This method allows clients to have fine-grained control over when requests should 
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reach closer versus more distant servers, however, it does not ensure reaching servers at 

certain distances (e.g., at least h hops away) from clients.

VI. IN-NETWORK CACHING AND REQUEST AGGREGATION IN NDNTP

In this section, we discuss how to achieve time synchronization in the face of in-network 

caching and request aggregation.

In-network caching:

To avoid fetching outdated cached responses, the requests of NDNTP clients need to be 

satisfied directly by NDNTP servers rather than in-network caches. To this end, servers can 

set the value of the Freshness Period field of the responses they generate to a reasonably low 

value (or even 0), so that their responses become (almost) instantly stale when they are 

cached in the network [13]. Subsequently, clients send NDNTP Interests that contain the 

MustBeFresh field to avoid retrieving stale cached NDNTP responses.

An additional challenge arises when servers misbehave by ignoring this guideline and assign 

a large Freshness Period value to the generated responses. To this end, appropriate cache 

management policies can be deployed in the network to prevent forwarders from caching 

NDNTP responses for a long period of time or entirely avoid caching NDNTP responses. 

Note that this solution assumes trusted forwarders–we discuss security considerations and 

potential solutions in cases of malicious NDNTP servers and forwarders in Section VII-C.

NDNTP request aggregation in PIT:

NDNTP requests may be aggregated in PIT when a forwarder has a PIT entry for a request 

with the same name. As a result, subsequent NDNTP requests with the same name may not 

be forwarded to a server, but will be satisfied when the response to the first pending request 

is received by a forwarder. This can skew the client round-trip delay measurements posing 

another challenge for clients to accurately infer the current time. To address this challenge, 

NDNTP clients can randomize the name of their Interests, so that they avoid PIT 

aggregation. This can be achieved by attaching a random hash in the Interest name. Given 

that the NDNTP request name prefix is used for forwarding purposes, the randomization 

should happen in the request name suffix. We presented a mechanism to achieve name 

randomization in Section IV-A.

VII. DISCUSSION

In this section, based on the fundamental NDNTP design requirements and goals mentioned 

in Section III, we highlight and discuss potential extensions of the NDNTP design as well as 

the different research directions that may be pursued as a continuation of this work.

A. In-network Time Synchronization

Given that NDN forwarders are aware of the communication context, they can identify 

whether a specific Interest is an NDNTP request and whether a specific Data packet is an 

NDNTP response. This can be particularly useful in the following cases: (i) forwarders that 

have an up-to-date estimation of the current time (e.g., they recently received a timestamp 
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from an accurate NDNTP server) can directly respond to NDNTP client requests with their 

own time. These responses are signed by the forwarder itself. This paradigm may constitute 

a distinct mode of operation that forwarders can enable/disable based on their load, available 

resources, and management policies; and (ii) forwarders can utilize ongoing exchanges 

between NDNTP clients and servers to satisfy their own time synchronization requirements. 

Specifically, forwarders can set their own clock based on the content of NDNTP responses 

forwarded by them back to clients.

B. Strata Organization and Synchronization

NTP servers are organized in strata that determine their distance from a reference clock. The 

larger the stratum number, the further away a server is from the reference clock. Servers that 

belong to stratum N + 1 synchronize their clocks with servers that belong to stratum N, 

servers that belong to stratum N synchronize their clocks with servers of stratum N − 1, etc. 

NTP servers of the same stratum can also peer with each other to address clock 

inconsistencies and achieve reliability. To achieve this synchronization/peering process, 

NDNTP servers that belong to a specific stratum can announce a name prefix “/NDNTP/

time/stratum=<stratum-number>”. For example, servers that belong to stratum 2 use the 

namespace “/NDNTP/time/stratum=2” for peering purposes with other servers of the same 

stratum. To synchronize their clocks with servers of stratum 1, they use the namespace “/

NDNTP/time/stratum=1”.

C. Security

NDNTP utilizes NDN’s network-layer security principles for response authentication 

purposes. Specifically, clients based on the signature of responses can: (i) verify that the 

responses have not been spoofed (e.g., due to man-in-the-middle attacks); and (ii) decide 

whether they trust the servers that generated responses based on a pre-established set of trust 

anchors [14].

NDN also provides a solid foundation for the mitigation of DDoS attacks directly at the 

network layer. The NDN stateful forwarding plane can limit/throttle DDoS traffic close to its 

source(s) on a per name prefix basis. In packet delay attacks, adversaries delay time 

synchronization requests and responses between clients and servers in an asymmetric 

manner in order to skew the round-trip delays measured by clients [15]. Such attacks can be 

mitigated through mechanisms for forwarding NDNTP requests over different network paths 

towards time servers. Furthermore, a threshold value for acceptable round-trip delays 

between time synchronization requests and the corresponding responses can be introduced–

clients discard responses with round-trip delays larger than the threshold.

None of the mechanisms above protects against servers that turn malicious over time (e.g., 
due to a security breach) or rogue forwarders that cache server time samples in order to 

satisfy client requests with outdated time samples. To address such cases, we can use a 

Distributed Ledger (DL) to log transactions (i.e., timestamps received from servers) and 

verify if specific servers have sent inaccurate/bogus timestamps to clients. This DL can be 

implemented through an NDN distributed dataset synchronization protocol. Clients and a 

number of Verifier Nodes (VNs)–for example, a group of clients or trusted entities–form a 
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synchronization group, so that transactions added to the DL are received by every party in 

the group. The verification process can be: (i) proactive, where VNs mine the DL to verify 

the transaction correctness; or (ii) reactive, where clients report inconsistent/inaccurate 

timestamps triggering the verification process (assuming that the majority of selected servers 

is legitimate).

VIII. CONCLUSION AND FUTURE WORK

In this paper, we presented the challenges of designing NDNTP, a time synchronization 

protocol that provides functionality analogous to NTP over NDN, and we discussed general 

directions for its design. Our concluding remarks indicate that the legacy NDN architectural 

design needs to be augmented to support the requirements of an NTP-like protocol, such as 

reaching multiple time servers at the same time and returning multiple responses (one from 

each time server) back to clients, requesting multiple time samples from a set of selected 

servers, and reaching time servers within certain distances from clients. Future directions 

include designing in detail, implementing, and evaluating an NDNTP prototype that takes 

advantage of the NDN feature enhancements proposed in this paper for accurate time 

synchronization. We also plan to extend this work by performing an analytical study to 

improve the server selection process using a multi-objective function.
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Fig. 1: 
Zones of NTP servers based on their geolocations in NTP pool; clients reach servers in the 

same or a nearby zone.
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Fig. 2: 
Challenge to collect multiple Data packets for a single multicast Interest. The client sends an 

Interest that reaches all servers S1, S2, S3. Link delays indicate that S1 will receive and send 

its data back earlier than the other servers.
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Fig. 3: 
Namespace design enabling clients to: (i) reach multiple NDNTP servers; and (ii) collect 

multiple time samples from a specific NDNTP server
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Fig. 4: 
Distribution of server occurrences; servers are sorted from the most to the least selected in 

the New Mexico (NM), Missouri (MO), Zurich (Zur), and Athens (Ath) traces. The inside 

plot is in log scale zooming into the distribution of the most popular servers.
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Fig. 5: 
CDF of the average distances (AVG) and standard deviations (STD) per run for the (a) 

Athens and the (b) New Mexico traces
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