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A Software-Defined Queuing Framework for QoS
Provisioning in 5G and Beyond Mobile Systems

Aiman Nait Abbou, Tarik Taleb, and JaeSeung Song

Abstract—There is an ever-increasing demand for network
technologies supporting Ultra-Reliable Low Latency Commu-
nications (URLLC) services and their co-existence with best-
effort traffic. By way of example, reference can be made to
the emerging 5G mobile networks. In this vein, this paper
investigates the Software-Defined Networking (SDN) technology
capabilities for providing Quality of Service (QoS) guarantees.
Specifically, we present a testbed, under development, dubbed
Software-Defined Queueing (SDQ). This framework leverages
QoS provision functionalities of SDN. SDQ can be regarded as a
framework for testing traffic engineering solutions in networks
with deterministic QoS support. By using SDQ, we develop and
test a specific solution that chooses the optimal queue and path for
every incoming flow in order to reduce the workload imbalances
in the network. For the experimental setup, we consider a generic
SDN network whose bridges include three priority queues at
every output port. Furthermore, we compare the aforementioned
solution with a best-effort network and an SDN-enabled network
with QoS support configured by default. The obtained results
show that the envisioned solution outperforms the baseline one
of SDN and the best-effort solution in terms of the average latency
recorded.

Index Terms—SDN, QoS, Deterministic Networking, TSN,
URLLC, 5G and beyond.

I. INTRODUCTION

Best-effort networking technologies, including Ethernet, are
not suitable for time-sensitive applications such as industrial
robotic control and remote automotive control. These indus-
tries have been forced to develop their own digital solutions
using dedicated communication infrastructures. Nevertheless,
none of these infrastructures were satisfying due to the in-
curred deployment costs, lack of flexibility and adaptability,
and lack of real-time configuration capabilities [1].

The recent evolution of mobile technologies has shifted
the efforts towards developing more efficient mobile network
(MN) systems, capable of sustaining ultra-low latency and
highly reliable connectivity. The fifth generation of mobile
communications systems, 5G, is a noticeable example. With
the 5G technology, mobile operators are expected to guarantee
Quality of Service (QoS) with different requirements (e.g.
bounded-latency, ultra-reliability, and zero data loss). Effec-
tively, 5G is expected to support a wide library of services,
that can be categorized into three major areas, namely Ultra-
Reliable Low Latency Communication (URLLC) use cases,
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Massive Machine Type Communication (mMTC) use cases,
and Enhanced Mobile Broadband (eMBB) use cases. As the
name infers, the services of the former category highly depend
on the network latency. However, the main problem resides
in the nature of the underlying networking protocols. For
example, the Transmission Control Protocol (TCP) is not
optimal for the timely delivery of packets [2]. This has made
the efforts to minimize the latency and offer a better QoS for
TCP-based time-sensitive applications highly challenging.

To overcome the limitations of TCP, Deterministic Network-
ing (DetNet) has been proposed. The main goal of DetNet is
a converged network, including the convergence of sensitive
non-IP networks onto a common network infrastructure [3]. In
other words, DetNet aims to allow the co-existence of all types
of services (e.g., critical and best-effort) over a programmable
and cost-effective Ethernet-based forwarding plane. The main
enablers of DetNet are Software Defined Networking (SDN)
and Time Sensitive Networking (TSNs). The latter is an
Ethernet-based technology that can provide deterministic per-
formance guarantees up to Layer 2. The queuing algorithms
defined in TSN standards offer many potentially-configurable
parameters. This flexibility can be exploited through the SDN
concept.

SDN is able to provide network services with real-time pro-
grammability [4]. An SDN controller who has a global view of
the network deals with the decision making and communicates
with Packet Data forwarding devices, this process is done
through a Southbound Application Programming Interface
(API) such as Openflow [5]. This separation between the data
plane and control plane has gotten the attention of researchers
to improve the QoS provisioning of today’s various network
applications. QoS can take advantage of SDN in various ways,
such as routing mechanisms, network monitoring, resource
reservation, queue management, and scheduling mechanisms
[6].

To support strict end-to-end (E2E) QoS for various time-
sensitive and/or bandwidth-intensive services, it is important
to be able to manage the traffic of these services, not only by
directing them via the right routers and switches but also by
indicating to them the right queue they should traverse at each
network node. A fine-granular SDN paradigm at the queue
management level becomes then mandatory. In this regard,
this paper introduces our Software-Defined Queuing (SDQ)
framework, a testbed under development at MOSA!C Lab [7].

SDQ considers a fully programmable network by defining
queueing algorithms and managing the priority queues on
the data forwarding devices. This prototype is based on two
main modules. The first one manages the queues based on the
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incoming traffic. The second module makes traffic engineering
tasks by finding the optimal path and balancing the load.
The final goal of the SDQ framework is to provide an
experimentation environment to test the different candidate
network solutions for realizing the transport networks of B5G
and 6G and assist the design, development, and evaluation of
Artificial Intelligence (AI)-based solutions for queue allocation
for each flow type. In this paper, we will focus on describing
the configurations required by SDQ to provide QoS support in
SDN-enabled networks. Moreover, we include some prelimi-
nary results validating the proper operations of the described
SDQ setup.

The remainder of this paper is organized as follows. Section
II discusses some related research work. Section III describes
the prototype and highlights some potential use cases. Sec-
tion IV presents the experimental results. Finally, Section V
concludes the paper.

II. RELATED WORKS

In [8], Tomovic et al. proposed a SDN control framework
for QoS provisioning. The authors implement their solution
on top of a Python-based open-source SDN Controller (POX)
with OpenFlow v1.0. This framework relies on Linux built-in
Hierarchical Token Bucket (HTB) for regulating the traffic.
It creates a dedicated queue for every priority flow at ev-
ery output interface. The performance evaluation compared
the proposed solution with best-effort and Integrated service
(IntServ). Unlike this work that focuses on how SDN can
improve the throughput compared to best-effort or IntServ,
our approach envisions scenarios whereby existing queues are
saturated (or simply not suitable) and there is a need to create
and manage new queues to accommodate new traffic with
stricter E2E latency requirements.

Goto et al. [9] introduced a Deterministic Service (DetServ)
framework with two models based on network calculus theory.
The first model, called Multi-Hop Model (MHM), assigns
a rate and a buffer budget to each queue in the network,
while the second model dubbed as Threshold-Based Model
(TBM), specifies a maximum delay for each queue in order to
guarantee the service reliability. In comparison to this work,
the proposed SDQ framework focuses on the E2E latency
in scenarios with filled or not suitable queues. Dutra et al.
[10] proposed a solution that allows for each flow an E2E
QoS based on the queue support in OpenFlow. Unlike SDQ,
this work focused more on improving resource utilization and
reducing the incurred cost, and that is by limiting the number
of switches used for transmissions. Moreover, the multi-path
approach is used to ensure an efficient resource allocation
considering service demands.

YAN et al. [5] proposed HiQoS, an SDN based QoS
solution. HiQoS guarantees a certain degree of availability as
it exploits multiple paths between the sender and the receiver;
the bandwidth can be assured through queuing algorithms for
each traffic type. The performance evaluation of HiQoS shows
its superiority, compared to a single path QoS solution with
and without differentiated services (LiQoS and MiQoS, re-
spectively). Yet, HiQoS was experimented with using mininet

and not a real scenario. Furthermore, SDQ considers balancing
the load instead of a straight multi-path algorithm. Moreover,
the queues and the flow rules are created depending on the
real-time dynamics of the network.

Shu et al. [11] proposed a novel QoS framework for network
slicing based on SDN and Network Function Virtualization
(NFV) for 5G and beyond services. The framework considers
three SDN controllers; each one manages part of the network,
namely Radio Access Network (RAN), Transport Network
(TN), and Core Network (CN). The E2E decisions follow a
hop-by-hop mode whereby the SDN controllers collaborate
with each other. The prototype implements Open Network Op-
erating System (ONOS) as an SDN controller and mininet to
emulate a network environment. The results of the simulations
show the effectiveness of the proposed QoS framework on
scheduling network resources for various network slices and
provide reliable E2E connection service for users according
to pre-configured QoS requirements. The authors of this paper
have targeted the issue of establishing QoS-sensitive network
slices in a 5G network. The envisioned SDQ framework can
complement this work by providing the necessary instructions
to autonomously create queues, define flow rules without
human intervention, and communicate them to the forwarding
devices.

All the above-mentioned studies adopted experimental and
prototyping approaches to evaluate the performance of their
respective solutions. Goto et al. [12] took a different path as
they analytically evaluated the performance of SDN (more
specifically OpenFlow–based) networks. They suggested a
queuing model to analyze an OpenFlow–based SDN network
as realistically and accurately as possible. This approach also
considers a classification of the incoming packets to a switch
from the controller.

III. SOFTWARE DEFINED QUEUEING (SDQ)
A. Use cases

Providing QoS is becoming an important aspect of any
network architecture. The new emerging applications and
services have different specifications. Industrial Internet of
Things (IIoT) networks such as smart factories have strict
requirements in terms of ultra-low delay, high reliability, and
flexible dynamic configuration. For instance, performing real-
time tasks on a millisecond scale in cycle time is highly
challenging. As a result, research on URLLC has drawn a
lot of attention in recent years.

TSN has been developed to address these requirements,
but it is still far from maturity. Effectively, TSN depends
heavily on time-synchronization [13], and any unpredictable
event can disrupt the communication. Furthermore, it lacks
flexibility and is known for its inefficient usage of the network
resources, which make TSN-based solutions far from being
cost-effective. Additionally, they do not support best-effort
services. In contrast, the QoS research community aims to
support reliable deterministic services alongside best-effort
services, without the need for any special equipment or major
upgrades in the existing infrastructure.

In Industrial Internet, the production is customized for each
service and the requirements are listed as per the order of
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Fig. 1: 5G physical network divided into several network slices
with different QoS requirements.

their priority. Moreover, deterministic services are a must
for communications either intra-subfactory from sensors to
actuators or inter-subfactories. SDQ framework is developed
to accomplish these requirements. It is a centralized traffic
engineering framework, built for the real-time guarantees of
deterministic latencies, by transferring the intelligence of the
network to an SDN controller with a global view of the
network. The controller can dynamically apply more complex
network resource management policies and mechanisms such
as dynamic optimal path routing or network reconfiguration
based on real network conditions [14]. In this framework, the
SDN controller works alongside a management protocol to
configure the forwarding devices according to the requirements
of the services and their dynamics. SDQ is able to create,
on-demand and in real-time, a maximum of 65,000 queues
on each port with different priorities and guaranteed band-
widths on multiple switches. This can be massive especially
for Industrial networks with long-distance communication or
multiple hops. The main objective of SDQ is to ensure that the
E2E communication path, formed from the switches traversed
and even the queues within each switch, can accomplish the
expected E2E latency requirements while still providing best-
effort services. Figure 1 illustrates SDQ combination with a 5G
Network. Depending on the use case, we have several network
slices sharing the same physical infrastructure [15]. Moreover,
the traffic of each slice goes via different groups of queues
within each switch.

Another use case that can take advantage of SDQ framework
is Extended Reality (XR). Technically XR sits in the middle of
URLLC and eMBB. Moreover, XR applications need a highly
precise latency and high-reliability demands depending on the
expected feedback (i.e., visual, visual, and haptic). Figure 2
breaks down a potential scenario of SDQ and XR applications.
First, due to the limitations of battery and processing power
capabilities, the computation duties are shifted from the data
source to the edge cloud. In this particular use case, AI can be
leveraged to forecast the field of view and the user’s location to
minimize the latency, SDQ can be exploited to ensure bounded
and low E2E latency from the data source to the edge. In order
to achieve these strict delay requirements, SDQ selects the

Fig. 2: SDQ combination with AI and Edge computing for
URLLC use case (XR)

right combination of path/port/QoS/queue to ensure the E2E
latency for that service.

B. Prototype

SDQ is an application installed on top of ONOS. It contains
two main modules, namely queue management, and traffic
engineering. The former utilizes ONOS Command Line In-
terface (CLI) and the Open vSwitch Database Management
(OVSDB) Protocol to manage queues at the switches while the
latter decides on the flow rules to communicate to switches.
Based on these rules, flows are being handled by having their
packets traverse designated queues at each switch along the
communication path. Figure 3 (A) illustrates the high-level
architecture of the SDQ framework.

In SDQ, for every flow newly coming into the network, a
packet-in message is generated by the respective access node
(i.e., edge bridges of the SDN forwarding plane). In response,
the process shown in Figure 3 (B) is triggered. In the remainder
of this section, we describe the main operations of the two
SDQ modules.

• Traffic engineering: This module is responsible for choosing
an E2E path for every incoming flow. Firstly, it checks if there
is already an allocated path (flow rule) for the incoming packet.
Otherwise, it lists all available paths between the source and
the target destination and computes a weight for each of them
as follows:

Weight = 100−
(
100 ∗ AvailableBW

MaximumBW

)
(1)

whereby MaximumBW and AvailableBW denote the maxi-
mum and available E2E capacity for a given path, respectively.
The AvailableBW , in turn, can be computed as:

AvailableBW = MaximumBW −OccupiedBW (2)

whereby OccupiedBW is the bandwidth already reserved
along the path for the ongoing flows.

As can be observed from Equation (1), the weight value
computed for every candidate path ranges from 0 to 100, where
100 represents a path fully loaded (i.e., there is at least one
link in the path whose utilization is 100%). Indeed, the traffic
engineering algorithm will choose the path with the smallest



4

(A) SDQ framework architectural model

(B) SDQ Workflow

Fig. 3: SDQ components and functionalities

weight or, in other words, the least loaded one. In this way,
the algorithm reduces the load imbalances in the network. The
chosen path (i.e., that with the lowest weight) is used as a
reference to install the QoS settings and the required queues.
The data forwarding devices along the selected path are then
communicated the necessary flow rules according to which
packets of the target flow will be handled and that is using the
queues designated for the flow.

• Queue Management: For each flow, this module enforces the
QoS settings, received from the SDQ controller, on the for-
warding devices along the communication path selected for the
flow. This module implements the different queue management
functions, such as creating queues, modifying queues, deleting

queues, and specifying the scheduling algorithms, and setting
the parameters for these queues. The detailed workflow is
described in Figure 3 (B).

IV. PERFORMENCE EVALUATION

A. Technical details

In order to evaluate the performance of SDQ, we consider
a network composed of three virtual switches as depicted in
Figure 4. Each SDN switch has a non-preemptive strict priority
scheduler at every output port. We use ONOS as an SDN
controller, and OpenVSwitch (OVS) to implement the SDN
bridges. Table I includes all technical details of the envisioned
emulation setup.

In the performance evaluation, the following four scenarios
are considered and that is as shown in Figure 4.

• Scenario 1 (HighPriority): Host 1 generates a total of
20,000 High Priority (HP) packets (traffic of interest).
Host 2 generates the same amount of packets as H1 but
it is subdivided between a Medium and Low priority (MP
and LP) packets (interfering traffic).

• Scenario 2 (MediumPriority): Host 1 generates MP
packets. Host 2 generates HP and LP packets.

• Scenario 3 (LowPriority): Host 1 generates LP packets.
Host 2 generates MP and HP packets.

• Scenario 4 (Best-Effort): Host 1 generates 20,000 pack-
ets without any specific priority as a traffic of interest,
and Host 2 does the same with the flow of interference.

For each queue, SDQ can allocate a minimum rate and
a ceiling (maximum) rate. In the envisioned scenarios, the
HP queue (htb 1:2) will have at least 80% of the available
bandwidth if the output port has LP or MP packets on the
lower queues. Otherwise, the HP queue can take advantage of
the full bandwidth. For the medium queue (htb 1:3), it depends
on whether the HP packets exist or not. In the envisioned
scenarios, we give it a minimum of 10%; this means that in
the worst-case scenario while competing with the HP queue,
the MP queue will still get at least 10% of the bandwidth, the

TABLE I: Technical details of the emulation setup.

Operating
System (OS) Ubuntu 19.04

Softwares and pro-
tocols

ONOS 2.3, OpenVSwitch 2.11.0, Nping 0.7.70,
OpenFlow 1.4,

Topology Linear
Packets
generated

Total of 40,000 Packets divided between Host 1
and Host 2 (20,000 packets each)

Generation rate 1000 packet/second
Packet size 162 bytes

Flows Flow of Interest (H1) and flow of interference
(H2)

Priority queues High, Medium, Low and best-effort.
Bandwidth Default 10Gbps on each OVS port
QoS Maximum
rates S1-eth4 : 1Mbps, S1-eth2 and S2-eth2 : 10Mbps

Queues minimum
rate

HP htb 1:2 (80% of the QoS maximum rate),
MP htb 1:3 (10%), LP htb 1:4 (7.5%) and best-
effort htb 1:1 (2.5%)

Queuing
mechanism Hierarchical Token Bucket (HTB)
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Fig. 4: Network topology illustrating the envisioned scenarios.

LP queue (htb 1:4) has a minimum rate of 3.8% of the total
bandwidth, and all queues can have the full bandwidth if the
higher queues are empty. This approach can help us visualize
and study the network performance under realistic conditions
whereby we stress the switches (especially Switch 1) with a
large number of packets and ensure none of the queues is
empty.

B. Experimental Results

In the performance evaluation, since we target low latency
communications, we consider the network latency as the main
comparison metric. Figure 5 depicts the obtained results.

Figure 5 (A) shows the average latency experienced by
packets of best-effort traffic as well as of traffic handled by
an SDN-based QoS enforcement solution. In both experiments,
we adopted a reactive forwarding based on the shortest path
selection metric. As expected, the HP flow has the lowest
latency followed by the MP flow. The best-effort traffic
actually experiences a shorter latency than the LP traffic. This
is mainly due to the fact that packets of best-effort traffic and
LP traffic are considered the same, and are forwarded in a
FIFO fashion exploiting the full available bandwidth (1Mbps
in this case). From Figure 5 (A), we can also notice that all
packets of the HP and MP traffic experience more or less
the same latency whereas the latency experienced by packets
of best-effort traffic varies significantly. Indeed, it fluctuates
for the first 1000 packets and then converges to an average
value afterward (i.e., from the 1000th packet and onward).
It is also noticed that the latency experienced by LP packets
decreases after the 12,000th packets. This is mainly since more
bandwidth becomes available.

It is worth mentioning that when SDQ is not in use, packets
of all traffic types traverse the shortest path (i.e., from Switch 1
to Switch 3 as in the envisioned network topology). However,
even though both ports s1-eth2 and s1-eth4 have the same
configured link speeds, the QoS setting configured on the
ports is different. Indeed, the maximum rate of s1-eth4 is
1Mbps and that of s1-eth2 is 10Mbps. This intuitively makes
the long path (Switch 1 to Switch 2 and then to Switch 3)
more attractive in terms of performance. The SDQ framework
exploits this metric and selects the long path through switch
2. From Figure 5 (B), we observe that the average latency of
the three types of services are comparable. Indeed, exploiting
the high bandwidth offered through Switch 2, SDQ could
handle incoming packets at each switch faster and without
significant queuing delays. It shall be also noticed that the

(A) The average latency experienced by the packets handled by SDN-based
QoS enforcement solution

(B) The average latency of the packets handled by SDQ framework

Fig. 5: Experiment results of each solution

latency experienced by packets of the same traffic category
does not fluctuate frequently and remains stable below a target
value, which is in line with the core spirit of deterministic
networking.

V. CONCLUSION

This paper introduces our envisioned SDQ framework. For
each flow, the core idea beneath SDQ is to explore all available
E2E paths and to select the optimal one in terms of both QoS
performance (i.e., E2E latency) and load distribution. For each
selected path, SDQ also makes queue management in real-time
by creating new queues, deleting or updating existing ones
as per the deterministic networking needs of the target flow.
The performed experiments have shown a stable, bounded,
and very low latency for packets of high and medium priority
traffic. Whilst in the conducted experiments, the selection of
communication paths and queues was done manually, our
future research work will focus on the automation of this
selection leveraging artificial intelligence techniques.
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