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Abstract—The interconnection of vehicles in the future fifth
generation (5G) wireless ecosystem forms the so-called Internet
of vehicles (IoV). IoV offers new kinds of applications requiring
delay-sensitive, compute-intensive and bandwidth-hungry ser-
vices. Mobile edge computing (MEC) and network slicing (NS)
are two of the key enabler technologies in 5G networks that can
be used to optimize the allocation of the network resources and
guarantee the diverse requirements of IoV applications.

As traditional model-based optimization techniques generally
end up with NP-hard and strongly non-convex and non-linear
mathematical programming formulations, in this paper, we
introduce a model-free approach based on deep reinforcement
learning (DRL) to solve the resource allocation problem in MEC-
enabled IoV network based on network slicing. Furthermore,
the solution uses non-orthogonal multiple access (NOMA) to
enable a better exploitation of the scarce channel resources.
The considered problem addresses jointly the channel and power
allocation, the slice selection and the vehicles selection (vehicles
grouping). We model the problem as a single-agent Markov
decision process. Then, we solve it using DRL using the well-
known DQL algorithm. We show that our approach is robust
and effective under different network conditions compared to
benchmark solutions.

I. Introduction
The Internet of vehicles (IoV) is an emerging concept that

enhances the existing capabilities of vehicular communication
by integrating with the Internet of things (IoT). IoV is a
key use-case in the upcoming beyond fifth generation (5G)
wireless networks [1, 2]. IoV creates diverse new applications
with extremely diverse service requirements including ultra-
high reliable and delay-sensitive, bandwidth-hungry as well as
compute-intensive applications [3]. For example, accident re-
ports require ultra-reliable and extremely low latency whereas
high definition map sharing require high bandwidth. An impor-
tant open question in today’s IoV networks is “how to support,
using a unified air interface, future IoV services while guar-
anteeing their extremely diverse performance requirements?”
Network slicing (NS) is a potential solution to respond to this
question [4–6]. NS is a tool that enables network operators
to support virtualized end-to-end networks that belongs to
the principle of software defined networking [7]. It mainly
allows creating different logical networks on the top of a
common and programmable physical infrastructure. Another
technology, namely mobile edge computing, or better known
as multi-access edge computing (MEC), is considered as an
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important building block in the future IoV ecosystem. The
joint implementation of NS and MEC is a key enabler for
IoV networks. These two technologies can be used not only
to guarantee the diverse requirements of IoV applications but
also to deploy the diverse vehicular services at the appropriate
locations [3].
Optimal resource allocation in IoV would go through tradi-

tional model-based optimization techniques. Due to the com-
plex and highly dynamic nature of IoV, such a model-based
approach is not very appealing. In fact, such approach ends
up with strongly non-convex optimization problems that are
generally NP-hard [8]. Thus, a model-free machine learning
approach is crucial.
Reinforcement learning (RL) is a useful technique in solving

NP-hard optimization problems. It has been applied success-
fully to solve very hard problems in different research areas
including wireless networks [9]. It is based on Markov decision
process (MDP) modeling where agents learn to select the best
actions through repeated interactions with an unknown envi-
ronment by receiving numerical reward signals [8]. Deep RL
(DRL) uses the strong ability of neural networks to generalize
across enormous state spaces and reduce the complexity of a
solution, thus improving the learning process.
In this paper, using DRL, we propose a new solution frame-

work to solve the challenging problem of resource allocation in
a MEC-enabled IoV network. More specifically, we focus on
the in-coverage scenario of 5G-new radio (5G-NR) in which
vehicles communicate with each other through a base station,
e.g., NodeB (gNB), that performs MEC-based tasks [10]. We
focus on the broadcast communication technique. Due to the
scarce spectrum resources, non-orthogonal multiple access
(NOMA) is also used in our proposed framework. NOMA is
a promising technique to increase the spectral efficiency in
vehicular networks [11].
In more detail, the considered resource allocation problem,

called IoV resource allocation (IoVRA), involves the allocation
of four resources: the slice (deciding which packet to send),
the coverage of the broadcast (deciding the range of the
broadcast), the resource blocks (RBs), and the power. By
carefully allocating these four resources, and by applying the
successive interference cancellation (SIC) at the corresponding
destination vehicles, NOMA can help in boosting the capacity
of the IoV network. The use of NOMA in broadcast com-
munications is different from the usual uplink and downlink
NOMA techniques, which is due from the broadcast nature
in IoV networks, i.e., two source vehicles broadcast with two
distinct transmission powers to the same group of destination
vehicles.
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Fig. 1: Two network slices in an IoV-based MEC network.

Even though we propose a MEC-based IoV solution for
the case of vehicle-to-vehicle (V2V) communications, our
proposed system model is valid for vehicle-to-infrastructure
(V2I) communications as well. Indeed, in V2I communica-
tions, a vehicle communicates with a gNB-type road side
unit (RSU) or a user-type RSU through the cellular Uu or
the sidelink (SL) connectivity [12]. For the case of user-type
RSU communications, the coverage range selection decision
will simply include the RSU. For the case of gNB-type
RSU communications, the broadcast coverage range selection
could be ignored and replaced by RSU association. Thus, our
proposed solution framework is still valid for both V2V and
V2I communications.
To the best of our knowledge, this is the first work that

proposes a model-free DRL framework to solve IoVRA in
MEC-enabled IoV networks based on broadcast, NS and
NOMA. The contributions of our work are the following. We
model IoVRA as a single agent MDP. Next, we propose a
deep-Q-learning (DQL) algorithm to solve it. Finally, we show
that our proposed DQL algorithm outperforms benchmark
algorithms.

A. Organization
The article is organized as follows. Section II presents

the system model, the single agent MDP, and describes the
proposed DQL algorithm. Section III presents benchmark
algorithmic solutions and gives the simulation results. Finally,
section IV draws some conclusions and discusses interesting
open research questions.

II. Proposed DRL for Internet of Vehicles
A. Internet of Vehicles Model
We consider an IoV network composed of a set of source

vehicles that generate packets, and a set of destination vehicles
that receive packets. All vehicles operate in the in-coverage
scenario of 5G-NR [10] and thus they are covered by some
gNB that performs edge computing. A source vehicle uses
broadcast communications to transmit to a subset of the
destination vehicles. The time is slotted into a set of slots.
The total bandwidth is divided into a set of frequency slots.
A resource block (RB) is given by the pair (frequency, slot).
The proposed system model supports several use cases,

including advanced driving with trajectory sharing, extended
sensors [13] and is valid for both V2V and V2I communica-
tions. To provide guaranteed quality of service requirements
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to the different use cases, NS is used, which is an efficient
solution in IoV networks [6]. It mainly creates logical networks
on the top of a common and programmable MEC-enabled
IoV infrastructure. We create two network slices. The first
slice (slice 1) is designed for non-safety applications such as
video streaming. The second slice (slice 2) is designed for
safety applications such as emergency warnings. An example
of the MEC-enabled NS system model is given in Fig. 1, where
vehicles communicate with gNBs that are connected to MEC
servers. On top of this network infrastructure, two network
slices are created to support IoV applications. Slice 1 is
designated for high throughput or enhanced mobile broadband
communication (eMBB) and slice 2 is designated for ultra-
reliable and low latency communication (uRLLC).
Each source vehicle has two different packets for each slice,

where slice 1’s packet (pkt𝑛) requires high throughput whereas
slice 2’s packet (pkt𝑠) has stringent latency requirements. For
any packet to be delivered successfully, the corresponding
source vehicle requires a set of RBs such that the achievable
data rates are above the minimum requirements. Packet pkt𝑛
can be transmitted using any RBs from the frequency-slot
resource pool with a carefully chosen transmission power per
each RB. However, pkt𝑠 , having an arrival time and a deadline,
can be transmitted using any frequency slot but only using slots
between its arrival time and deadline with a carefully chosen
transmission power per each RB. The wireless channel gain
between two vehicles includes fast and slow fading.
A source vehicle has to decide which packet to send, at what

range to broadcast, what RBs to use, and what transmission
powers to allocate. The range broadcasting optimzation is
smilar to the classical vehicle clustering [14–17]. To improve
the spectral efficiency of the IoV network, we use NOMA to
superimpose the transmissions of the source vehicles transmit-
ting to some destination vehicle, which uses SIC to decode the
superimposed transmissions.

B. Proposed Deep-Q-Learning Algorithm
Vehicles operate in the coverage of gNB with MEC, that

collects information about vehicles and performs pilot estima-
tion to obtain the channel statistics. Based on the obtained
feedback information, gNB observes the IoV environment and
makes decisions. It plays the role of an intelligent entity in
a single agent MDP. With the help of DRL, gNB learns to
solve efficiently the complicated IoVRA problem. Specifically,
gNB implements the well-known DQL approach [18]. DQL
has mainly two parts: training and inference. In training, gNB
trains a deep-Q-network (DQN), whereas in inference, it takes
actions according to its trained DQN. DQL is an improvement
of the so-called QL algorithm that is based on a tabular
method which creates a table of state-action pairs. QL explores
the action space using an exploration policy, e.g., 𝜖-greedy.
Despite the proven effectiveness of QL, it generally fails when
the state and action spaces become large as in IoVRA.
DQL is a promising technique that is proposed to solve the

curse of dimensionality in RL by approximating the Q action-
value function using deep learning. One way to solve IoVRA
is through multi-agent DRL by combining independent QL for

each agent. That is, each agent tries to learn its own policy
based on its own observations and actions while treating all
other agents as part of the environment. This badly influences
the result of the training as it creates a non-stationary envi-
ronment that changes as other agents take decisions. For this
reason, a MEC-enabled IoV network facilitates the training
in such situation by modeling IoVRA as a single agent who
performs the training at the edge of the IoV network. The
system architecture of the proposed DQN approach is given
in Fig. 2, in which gNB and MEC server interact with the IoV
environment and take decisions accordingly.
Before describing in detail DQL, first, IoVRA is modeled as

a single agent MDP given by the quadruple: state space, action
space, reward function and transition probability. The agent in
this MDP is the gNB, which takes an action, receives a reward
and moves to the next state based on its interaction with the
unknown IoV environment. This interaction helps gNB gain
more experiences and improves its accumulated reward.

1) The State Space: At any slot, any state of the IoV
environment is unknown directly to gNB. Instead, gNB re-
ceives an observation from the IoV environment. In our model,
an observation includes local channel state information (CSI)
and the transmission behavior of the source vehicles. More
precisely, an observation includes the large and small-scale
fading values between vehicles. These values can be accurately
estimated by the destination vehicles and fed back to gNB
without significant delay [19]. The observation also includes
a decision variable that indicates whether the source vehicles
transmitted in previous slots and if so which packet did they
transmit. The third observation indicates the number of leftover
bits of packets that each source vehicle needs to send (e.g.,
initially, the number of leftover bits correspond to the packets
sizes). The fourth observation element includes the arrival time
and the deadline of slice 2 packets.

2) The Action Space: IoVRA is solved in an online fashion
where at each slot, gNB makes a decision that includes (i) the
broadcast coverage range selection (ii) the slice selection (iii)
the RB allocation, and (iv) the power allocation. For (i), we
define a discrete set of coverage distances (including zero).
Thus, if gNB chooses a coverage distance (or 0), then it will
broadcast (or does not) to all destination vehicles within the
chosen coverage circle having as radius the indicated range.
For (ii), we define a discrete set of packets (including the
empty set) that indicates which packet gNB will decide to
transmit. At each slot, each source vehicle has three possible
choices: it does not transmit, it transmits a slice 1 packet, or
it transmits a slice 2 packet. For (iii), the RB allocation is
about choosing the frequency slot to be used in the current
slot. For (iv), gNB carefully chooses the transmission power
per RB. Note that continuous power allocation makes the
implementation of DQL more complex and thus, to keep things
simple, we use a discrete set of power levels that gNB can use.
Finally, the action space of gNB is given by the Cartesian
product of these four discrete sets.

3) The Reward Signal: We mainly focus on maximizing the
packet reception ratio (PRR) [20] in IoV broadcast networks.
PRR is defined in as follows: for one packet and one source
vehicle, the PRR is given by the percentage of vehicles with
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Fig. 2: IoV-based DRL architecture.

successful reception among the total number of receptions.
PRR directly relates to the number of successfully received
packets. Therefore, our main goal is to maximize the later.
The reward signal at any slot is the sum of individual

rewards of each source vehicle. Hence, the reward signal
depends on whether each source vehicle has successfully
transmitted its packet or not. Technically, since we aim to
maximize the number of successfully received packets, we
set the reward to one once a packet is successfully delivered
and zero otherwise. However, this leads to poor design since
the zero individual reward leads to no useful information for
learning. Thus, we build the individual reward design based
on the following. When a packet is not successfully delivered
or the delivery has not been completed yet, the individual
reward is set to the normalized achievable rate between the
corresponding vehicles. The normalization is used to upper-
bound the reward. When the packet is successfully delivered,
the individual reward is set to the chosen upper-bound. In the
first case, upper-bounding the individual reward helps gNB
acquire useful information for future decisions whereas in the
second case, choosing the individual reward to be the upper-
bound teaches gNB the best possible decisions to take in the
future and helps in maximizing the number of successfully
delivered packets. The achievable data rate is calculated based
on the signal to interference-plus-noise ratio (sinr) according
to uplink NOMA. The overall reward signal that gNB receives
is thus the sum of individual rewards of each source vehicle.
The goal of DQL is to maximize the cumulative reward over

the long-run, given some initial state of the IoV environment.
This cumulative reward is the sum over many time steps of
the weighted rewards where the weight is proportional to
some constant called the discount factor. This discount factor
makes future rewards more important for gNB agent as their
corresponding weight becomes larger. In IoVRA problem,
since the proposed MDP model consists of episodes of finite
length, i.e., each episode lasts a finite number of slots, IoVRA
belongs to the finite horizon set of problems [21]. Further,
since we aim to maximize the number of successfully delivered
packets, then the MEC-based gNB agent can simply choose
the discount factor to be one or a number that is close to one in
order to accumulate higher rewards and thus a higher number
of successfully delivered packets.

4) The Probability Transition: The probability of moving
to the next state while being in an old state and taking some
action depends on the highly dynamic IoV environment and
cannot be explicitly calculated. This transition happens due to
the channel coefficients variation and vehicles mobility.

5) Training in DQL: The DQL algorithm is composed of
two parts: training and inference. The training is composed
of several episodes where each episode spans the number of
slots. DQL uses DNNs to approximate the Q function. We
leverage DQL with prioritized replay memory and dueling. In
general experience replay memory helps to remember and use
past experiences. Standard replay memory is used to sample
experience transitions uniformly without paying attention to
the significance of the sampled experiences. Prioritized expe-
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rience replay memory is proposed to pay more attention to
important experiences. This indeed makes the learning better.
Also, dueling is proposed as a new neural network architecture
that represents two estimators for the Q function.
In detail, the training lasts a number of episodes and requires

as input the IoV environment which includes the vehicles,
the channel coefficients, the packet requirements, the available
RBs and any other relevant IoV network parameter. It returns
as output the trained DQN. The first step in DQL is to start
the simulator which generates the vehicles and all network
parameters, then it initializes the DQN hyperparameters. In
the beginning of the first slot, the initial state of the IoV
environment (initial distances of the vehicles, etc.) is revealed
to gNB. Next, DQL iterates the episodes. For each episode, the
environment is built by (i) updating the network parameters,
e.g., the leftover bits of each source vehicle are updated
based on the previous episodes, and (ii) moving the vehicles
according to the mobility model. Next, the exploration rate
𝜖 is annealed based on the episode index. Annealing the
exploration rate over time is a technique used in RL to solve
the dilemma between exploration and exploitation, i.e., as
the time goes by, we decrease 𝜖 to increase the exploitation
probability as the agent starts to learn something useful.
After a few episodes, the value of 𝜖 is no longer decreased.
Then, gNB chooses for each source vehicle an action that is
a tuple of the coverage distance, the packet, the frequency
slot, and the power level. Once gNB agent chooses its action
according to the annealed 𝜖 , it calculates the reward signal.
Specifically, a destination vehicle calculates the received sinr,
finds the number of bits a source vehicle is transmitting,
and communicates this information to gNB using feedback
channels. The environment moves to the next state and gNB
adds to its prioritized replay memory the actual experience
with some associated priority, i.e., the obtained tuple (state,
action, reward, next state) is associated some priority. Initially,
gNB assigns random priorities to its experiences but the
priorities change as it starts to learn and updates its DQN
parameters. gNB samples a mini-batch from its prioritized
replay memory according to their priorities that forms a dataset
used to train the DQN. gNB uses a variant of the well-known
stochastic gradient descent to minimize the loss and it updates
the priorities of the sampled experiences proportionally to the
value of the loss. Finally, once in a while, the trained DQN is
copied into the target DQN.

6) Implementing DQL: The inference of DQL is as follows
(see Fig. 2). First, the trained DQN is loaded. Also, the
annealed 𝜖 is loaded from the last training episode (the index
of the episode is also revealed). Then, for each episode (which
represents a new random channel realization), the environment
is reset and built—initializing the network parameters and the
transmission behaviors of each agent. Next, for each slot, gNB
agent, after observing the environment, chooses the best action
according to its trained DQN after feedback communication
between itself and the destination vehicles. Then, the reward
signal is obtained, and the next episode starts with a new
random channel realization.
The inference in DQL is done in an online fashion. That

is, it is executed in each slot without knowing the future

observations. The training in DQL is the most computationally
intensive task. It is executed for a large number of episodes
and can be done in an offline manner with different channel
conditions and IoV network topologies. Note that training in
DQL needs to be re-executed only when the topology of the
IoV network undergoes significant changes, depending on the
IoV network dynamics.

III. Performance Evaluation
In this section, we validate the proposed DQL method. The

simulation setup is based on the highway scenario of [20] and
most simulation parameters are taken from [22, 23]. We con-
sider a six-lane highway with a total length of 2 km where each
lane has a width of 4 m. There are three lanes for the forward
direction (vehicles move from right to left) and three lanes for
the backward direction. The source and destination vehicles are
generated according to spatial Poisson process. Vehicles’ speed
determine the vehicle density and the average inter-vehicle
distance (in the same lane) is 2.5s × 𝑣 where 𝑣 is the vehicle
absolute speed. The speed of a vehicle depends on its lane:
the 𝑖th forward lane (from top to bottom with 𝑖 ∈ {1, 2, 3}) is
characterized by the speed of 60+2(𝑖−1) ×10 km/h, whereas
the 𝑖th backward lane (from top to bottom with 𝑖 ∈ {1, 2, 3})
is characterized by the speed of 100 − 2(𝑖 − 1) × 10 km/h.
The number of source vehicles 𝑚 and destination vehicles 𝑛
is randomly chosen. The important simulation parameters are
given as follows [22, 23]. The carrier frequency is 2 GHz, the
per-RB bandwidth is 1 MHz, the vehicle antenna height is 1.5
m, the vehicle antenna gain is 3 dBi, the vehicle receiver noise
figure is 9 dB, the shadowing distribution is log-normal, the
fast fading is Rayleigh, the pathloss model is LOS in WINNER
+ B1, the shadowing standard deviation is 3 dB, and the noise
power 𝑁0 is −114 dBm.
Unless specified otherwise, the slice 1 packet’s size is

randomly chosen in {0.1..1} Mb. The slice 2 packet’s size
is 600 bytes. gNB chooses a coverage (in m) from the set
{100, 400, 1000, 1400} ∪ {0}. The power levels (in dBm) are
given by {15, 23, 30} ∪ {−100} where −100 dBm is used to
indicate no transmission. We set 𝑚 = 3, 𝑛 = 4, 𝐹 = 2, and
𝑇 = 20; each slot has duration 5 ms. The DQN is trained
in the Julia programming language using Flux.jl. The DQN
consists of an input and an output layer and of three fully
connected hidden layers containing respectively 256, 128, and
120 neurons. The ReLu activation function is used in each
layer. The ADAM optimizer with a learning rate of 10−5 is
used. The training lasts 3000 episodes with an exploration rate
starting from 1 and annealed to reach 0.02 for the 80% of the
episodes.
To the best of our knowledge, there are no current research

works that solve IoVRA while considering the slice selection,
the broadcast coverage selection, the RBs and the power
allocation. We implement three benchmarks: two are based
on NOMA and one is based on OMA. The partial idea of
all benchmarks comes from [24] which is based on the swap
matching algorithm. All benchmarks are centralized in the
edge and offline. They are called OMA-MP, NOMA-MP, and
NOMA-RP. In OMA-MP, every RB is used by at most one



6

vehicle and the maximum transmission power is allocated. In
NOMA-MP and NOMA-RP, every RB can be shared, and the
maximum transmission power or a random transmission power
are allocated, respectively. The coverage and slice selections
are decided randomly at the beginning of each slot. The
allocation of the RBs to the vehicles is done similarly in all
benchmarks. First, an initial RB allocation is executed that
gives the highest sum of channel power gain between a source
vehicle and its destination vehicle. Once the initial allocation
is obtained, a swap matching is performed to improve the
number of packets successfully received. If no swap improves
the matching, then the algorithm terminates.
In the simulation results, we present two performance met-

rics: the cumulative rewards for training the DQL and the
number of successfully received packets for the inferring DQL.
In the training, the reward signal received by gNB is given
by the sum of the individual rewards of each source vehicle.
The individual reward is equal either to (i) the upper-bounded
achievable rate or to (ii) the upper bound. The event (i)
happens when a packet is not yet delivered whereas the event
(ii) happens when a packet is completely and successfully
delivered. In the inference, the reward signal is simply given
as the total number of successfully delivered packets.
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Fig. 3: Training rewards.

Fig. 3 illustrates the convergence of the proposed DQL
algorithm versus training episodes. The figure shows the
cumulative average rewards per episode where the average is
taken over the last 200 episodes. It is clear that the average
reward improves as the training episodes increase. This shows
the effectiveness of the proposed algorithm. The training in
DQL gradually converges starting from the episode number
≈ 2700. Note that the convergence of the algorithm is not
smooth and contains some fluctuations which is due mainly
to the high mobility nature of the IoV environment. Based
on Fig. 3, DQN is trained for 3000 episodes to provide some
convergence guarantees.
In the next two figures, we present, as a performance metric,

the reward obtained in the inference part of DQL, which
is the number of successfully received packets. We show
this performance metric as stacked bars where each bar is
divided into two parts: the lower part indicates the number

of successfully delivered slice 1 packets and the higher part
indicates the number of successfully delivered slice 2 packets.
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Fig. 4 shows the performance of DQL against the bench-
marks when varying the slice 2 packet sizes. We can see
that DQL succeeds in delivering more packets without having
the full and future CSI as in the benchmarks. For example,
DQL can, on average, deliver successfully almost 9 packets.
However, other benchmarks can only deliver, on average,
almost 6 packets. NOMA-RP achieves the lowest performance
as expected. Further, DQL achieves a higher number of
successfully delivered slice 2 packets. This is particularly
important in IoV communication as slice 2 packets are mainly
safety packets and thus must have a higher priority of being
delivered.
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Fig. 5: Impact of safety message
deadlines

Fig. 5 shows the performance of DQL against the bench-
marks when varying the slice 2 packets deadlines. DQL



7

still achieves the best performance when the deadline of the
safety packets increases. The gap between DQL and other
benchmarks widens further as the deadline increases. We
further notice that NOMA-RP has the worst performance for
all algorithms which shows the need of a suitable power
allocation method in IoVRA.
We notice from both Fig. 4 and Fig. 5 that there is an

unfair allocation of resources between the packets of the two
slices. This is mainly due to highly dynamic nature of the
IoV network (e.g., vehicle positions, their speeds, etc.). For
example, if a source vehicle is located close to a destination
vehicle, then the quality of the wireless link between both
vehicles will likely be good. Thus, gNB learns through DQL
to equally likely transmit both packets. However, in the case
where the source vehicle is located far away from the corre-
sponding destination vehicle, the quality of the wireless link
between both parties will probably be poor and thus, gNB
will likely learn through DQL to transmit only slice 2 packets
to guarantee a successful V2V communication (since slice 2
packets might not require a large number of RBs compared
to slice 1 packets). It is thus important to study the fairness
among different slices in such IoV network, which will be
investigated in our future works.

IV. Conclusions and Future Works
In this paper, we developed an online MEC-based scheme to

solve the slice selection, coverage selection, resource block and
non-orthogonal multiple access power allocation problem in
the Internet of vehicles network. We modelled the problem as
a single agent Markov decision process and developed a DQL
algorithm. The proposed DQL algorithm is proven robust and
effective against various system parameters including the high
mobility characteristics of IoV networks. It also outperformed
some baseline benchmark algorithms that are based on global
and offline decisions. In future works, we will investigate a
two-time scale DRL approach that decides for coverage and
slice selection on a slower time scale. Further, we will study
the fairness of multiple slices. Finally, we will extend our
system model to include mmWave communications.
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