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How Far Can We Go in Compute-less Networking:
Computation Correctness and Accuracy
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Abstract—Emerging applications such as augmented
reality and tactile Internet are compute-intensive and
latency-sensitive, which hampers their running in con-
strained end devices alone or in the distant cloud. The
stringent requirements of such application drove to the
realization of Edge computing in which computation is
offloaded near to users. Compute-less networking is an ex-
tension of edge computing that aims at reducing computa-
tion and abridging communication by adopting in-network
computing and computation reuse. Computation reuse
aims to cache the result of computations and use them to
perform similar tasks in the future and, therefore, avoid
redundant calculations and optimize the use of resources.
In this paper, we focus on the correctness of the final output
produced by computation reuse. Since the input might not
be identical but similar, the reuse of previous computation
raises questions about the accuracy of the final results.
To this end, we implement a proof of concept to study
and gauge the effectiveness and efficiency of computation
reuse. We are able to reduce task completion time by up to
80% while ensuring high correctness. We further discuss
open challenges and highlight future research directions.

Index Terms—Compute-less networking, computation
reuse, edge computing, in-network computing, computa-
tion correctness

I. INTRODUCTION

The current wave of the Internet of Things (IoT)
revolution drove massive changes in the nature

of applications and users’ requirements, which con-
sequently lead to an enormous number of connected
devices and huge generated data. Many of these
applications are computation-intensive and delay-
sensitive by design. Although cloud computing has
shown great resilience in providing an unrestrained
amount of computing resources, it is not a suitable
model to satisfy stringent low latency requirements,
especially when every millisecond counts. Edge
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computing [1] has been proposed as an extension
of cloud computing to overcome this issue. Edge
computing aims at moving services from the dis-
tant cloud to the near edge servers (i.e., closer
to end-users) and offloading computational tasks
from resource-constrained devices to the edge, and
consequently, meet the desired Quality of Experi-
ence (QoE). However, it is not feasible to move
all cloud’s immense resources to the edge for data
analysis and treatment.

IoT applications share a many-to-one correla-
tion between the service’s input and output data.
The same service may have multiple inputs that
lead to the same output data [2], even if the
inputs are (semi)-similar. Let us assume a smart
tourism example, where a group of tourists visits
the Egyptian pyramids. Visitors could benefit from
their smartphones to take pictures of various statues
and then query related information. Object (statue)
recognition is a CPU-intensive task that can ideally
be offered by near-edge servers. Yet, the edge will
receive different images taken by multiple users
through different angles, yielding (after computa-
tion) the same output (the same statue). Another
scenario is the use of Virtual Reality (VR) services
to experience the environment many centuries ago
(e.g., LithodomosVR1). Users will use their 3D
glasses or headsets to send snapshots of the current
view to the near edge, where the VR service is
executed. Multiple users located at the same spot
can take the same view but from different angles
that yield the same computation results. Tactile
Internet goes even beyond the examples mentioned
above, by enabling real-time transmission of haptic
information. With tactile Internet, it will be possible
to experience and interact with remote objects as
if they were located locally. Edge computing is a
key enabler to meet the ultra-low delays in tactile
Internet. Redundant interactions and computations

1LithodomosVR: www.lithodomosvr.com
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that lead to the same computational results will be
extensively used.

These services share many common facts. The
first is that all of them require a massive computa-
tional capability that cannot be offered by the device
itself, high communication bandwidth that cannot
be guaranteed by the back-haul network, and ultra-
low latency that cannot be provided with the current
mobile networks. The second fact is that the edge
server computes redundant tasks with identical or
(semi)-similar input data that produce the same out-
put [3]. The similarity metric refers to the fact that
tasks have temporal, spatial, or even semantic cor-
relations between the computation’s input and out-
put data. Eliminating these redundant computations
by reusing the output results of previous (similar)
executed tasks instead of recomputing them from
scratch will reduce the execution cost and enable
the edge server with low computation capacity to
sustain the expected quality of experience.

The computation reuse concept – can be realized
either fully (i.e., the previously-stored output is used
to satisfy the execution of newly arrived tasks), or
partially (i.e., the output is used to fully satisfy
part of the execution, the rest can be completed via
a computation from scratch), is one of the pillar
techniques used in compute-less networking [4]. A
compute-less network is built on top of the edge
computing paradigm through a set of communi-
cation and computation optimization mechanisms,
such as service offloading, in-network computing,
task clustering and aggregation, etc. Services are
offloaded to the edge server and stored based on
their popularity and the edge capacity. Compute-
less networking attempts to reduce the amount of
computation at the network, minimize the amount
of content traversed in the network, meet the strict
quality of experience requirements, and lessen re-
source utilization [5].

Motivation. Whatever the advantages of the com-
putation reuse concept in compute-less networking
are, producing the same intact output based on
different inputs is always a challenge. Even if the
surjective property (i.e., an output can be obtained
via different inputs) of the service could be irrevo-
cable by design, the correctness and accuracy of the
final output are dubious especially when relying on
partial computation reuse. This research question is
the main motivation behind our work, in which we

will investigate the correctness and accuracy of the
computation reuse concept.

Contributions. The main contribution of this work
is not limited to studying the correctness of com-
putation reuse concept, but also to investigating
its effectiveness and efficiency in improving com-
putation and communication. To the authors’ best
knowledge, this is the first work that investigates
the correctness of computation reuse at the network
level. Indeed, this paper has multifold contributions
that can be summarized as follows: (i) we study
the applicability of compute-less networking in dif-
ferent domain-specific applications and real-time
systems, (ii) we design a proof of concept to gauge
the accuracy and correctness of output data when
computation reuse concept is applied, and (iii) we
investigate the effectiveness and efficiency of com-
pute-less networking and highlight different issues
and future research directions.

The rest of this paper is organized as follows:
in Section II, we introduce the compute-less net-
working concept. In Section III, we present different
scenarios and use-cases that integrate compute-less
networking in real-world applications. In Section IV,
we elaborate on the computation correctness and
accuracy by presenting a proof of concept along
with its performance. Section V highlights some
issues and provides future research directions, and
in Section VI, we conclude our work.

II. COMPUTE-LESS NETWORKING: A BIRD’S
EYE VIEW

End-users are now (or will be soon) using vari-
ous applications that require more computation and
short delay (e.g., augmented reality, tactile Inter-
net). Yet, their mobile devices do not have enough
resources to perform these heavy computations.
The edge computing paradigm attempts to meet
strict application requirements by moving compu-
tation from the distant abundant cloud servers to a
near satisfactory edge server [5]. Other additional
paradigms include the integration of networking
and computing to further improve response times
and the utilization of network and computing re-
sources. Different IETF research groups such as
the Computing in the Network Research Group
(COINRG) [6] and the Routing Area Working Group
(RTGWG) [7] are exploring numerous possibilities
to integrate computation with networking. Work
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Fig. 1: An example of integrated compute-less networking in real-world use-cases.

in [8] explored the applicability of computing in
the network concept and the existing challenges and
issues. Researchers in [9] designed a Compute First
Networking (CFN) architecture that leverages both
computing and networking to determine the optimal
edge network among multiple edge networks within
different geographic locations.

In high-density networks (e.g., big cities, Indus-
trial IoT), most services require location-aware com-
puting, where end-users profusely invoke the same
service with different input data, and most of these
computations have an input-output correlation [10].
In compute-less networking [4], network systems
need to perform the absolutely minimum amount of
computation and communication. In doing so, we
need to ensure that the computation is offloaded to
the near edge server and the execution of duplicate
computations is highly eliminated. Indeed, compute-
less networking is an enhancement of edge and
in-network computing [11]. This can be enabled
through the fact that received tasks for execution
may share parts of the required computation in
common. The computation reuse concept can be
adopted to reuse (partially or fully) the results (final
or intermediate) of already executed tasks for the ex-
ecution of newly received tasks. Computation reuse
can contribute to the minimization of the execution

of duplicate computation, and hence enhance the
quality of service and improve resource utilization.
However, identifying if multiple tasks are (semi)-
similar is not a straightforward process. To this end,
edge servers need to identify tasks, store the results
of previously executed tasks, and efficiently search
for parts of these tasks that can be reused for the
execution of each newly received task [12].

III. SCENARIOS AND USE-CASES

As depicted in Figure 1, compute-less network-
ing can be integrated into different real-world use-
cases, including but not limited to smart cities,
autonomous vehicles, augmented reality, and tactile
Internet. In the following, we present a review of
different use-cases that can benefit from compute-
less networking paradigm.

Smart Cities. Smart and autonomous services
are widely expanded in the realization of smart
cities. Smart devices such as cameras are essentially
deployed for people/objects detection and recog-
nition. In an airport, for example, cameras are
used in terminals and gates to monitor individuals
for unusual activity in the boarding process and
identify suspicious passengers. The automated ID
control process is also used to automatically detect
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the information from ID using Optical Character
Recognition (OCR). The OCR system can further
be employed to detect handwriting and then provide
panels and text translation to different languages.
The common thing among these use-cases is that the
same process can be done multiple times yielding
the same output [4].

Autonomous Vehicles. Let us consider a scenario
where self-driving vehicles use cameras to detect
crossing people and avoid obstacles around so that
they navigate without human intervention towards
the destination. In doing so, the vehicle relies on
object detection services offered by the near edge
server. Multiple cameras and sensors deployed on
different vehicles may take the same snapshot for
the same object(s) but from different angles. Road
panels detection and recognition follow the same
concept, where all vehicles on the same driving
lane/road are required to detect the panel’s infor-
mation. The same remark can be applied to image
segmentation, in which the service aims to segment
vehicles, bicycles, pedestrians, obstacles, sidewalks
from the same snapshot. All these services are
executed multiple times but using similar data [10].

Augmented Reality. Augmented Reality (AR) al-
lows sweeping our daily lives via a variety of
mobile-based services. For instance, services such
as Google Daydream, Earth VR, and Lithodomos
VR enable virtual content like 3D models, ani-
mations, and annotations to be placed on top of
a real-world environment. Similarly, mobile-based
AR games, such as Pokémon GO, allow players
to use their location to challenge other players by
enhancing the game with real and virtual world
interactions using the smartphone camera. These
services are usually invoked via similar inputs
(e.g., view in ancient cities, spots in big cities,
etc) [13].

Regardless of the context of the provided service,
the common factor between these use-cases is that
the service will most likely receive multiple invo-
cations with different input data that produce the
same output. The inputs of these invocations are
similar, either partially or fully, which implies that a
common computation is executed redundantly. Yet,
using partial computation may mislead the intact
computation output. In the next section, we present
a proof of concept to study the correctness and
accuracy of computation reuse.

Ressources
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y

Computation 
Reuse

Computation 
Offloading

Tasks

Fig. 2: Evaluation network.

IV. COMPUTATION CORRECTNESS: A PROOF OF
CONCEPT

In this section, we study the correctness when
the computation reuse concept is adopted. We start
by describing the experiment environment and then
discussing the obtained results.

Experimental Setup. The main objective of this
work is to study if the computation reuse concept
will lead to an accurate computation output similar
to what computation from scratch achieves. In doing
so, we implemented the Proof of Concept shown
in Figure 2. We consider an object detection use-
case that can be either executed at the edge or
cloud server. A list of end-users sends up to 100
tasks, following the Zipf distribution. Tasks carry
different images, which are considered input data for
object detection. The service is offloaded to the edge
network to meet the computation delay constraints.
The cloud server is located 8 hops from end-users
with significant resources, while the edge server
is located only 2 hops away with fewer resources
compared with the cloud server. The further away
the tasks are forwarded, the more resources are
available, but the largest delay occurs. Additionally,
we extended the edge server with a compute-less
paradigm by performing computation reuse. The
edge server keeps track of previously executed tasks
in a Reuse Table by storing the task’s input and
output data, which is also used to complete the
execution of incoming tasks. To keep the Reuse
Table compact, we applied Least Frequency Used
(LFU) policy to clean the table by removing the
entries that have a smaller frequency usage rate. The
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computation can be done in three different models:

• At the cloud: all tasks are sent to the cloud
server for remote execution. Although the
cloud has limitless computing capacity, it is
located far away from end users.

• At the edge: all tasks are executed at the edge
server that is located near to the end-user, yet
has fewer computing resources compared with
the cloud server.

• At the edge with computation reuse: the edge
performs computation reuse for each newly
received task, if applicable. Otherwise, com-
putation from scratch is performed.

In compute-less networking, when an edge server
receives a new task, the server checks first if a
(semi)-similar match exists on its local Reuse Table.
We implemented Locality-Sensitive Hashing (LSH)
algorithm that tends to hash similar input data to
the same bucket. The space complexity of LSH is
𝑂 (𝑙𝑛𝑘), where 𝑙 is the number of hash tables, 𝑛

number of elements in each table, and 𝑘 is the
dimension of hash vector. By ignoring lower-order
terms, the space complexity is 𝑂 (𝑛1+𝜌), where 𝜌

determines the time/space bounds of LSH algo-
rithm. The time complexity to find a match in a
hash table is 𝑂 (𝑙𝑘). For each candidate, we spend
𝑂 (𝑑) time to compute the distance. Ignoring lower-
order terms, the query time is 𝑂 (𝑛𝜌). If a match
is found, the stored output will be used as an
output of the received task without performing any
extra computation. Otherwise, a computation from
scratch will be performed. Probabilistic models and
machine learning techniques can be applied to im-
prove the matching ratio. It is important to highlight
that the same task can use multiple computation
reuse outputs from different previously-stored tasks
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(e.g., segmenting an image into multiple parts and
each segment has an object that is stored on the
Reuse Table).

We used the standard image dataset, Ima-
geNet [14]. The dataset contains over 4000 types of
labeled images taken from different viewpoints and
lighting conditions. We used the Yolo framework
for object detection service [15]. End-users send
selected images from the dataset with a redundancy
rate. Figure 3 depicts the redundancy rate for each
set of requested tasks. This metric refers to how
many times an object frequently appears in the
list of requested images received by the server,
which can be either a redundant image in the list
(i.e., full redundancy) or the same object in multiple
images (i.e., partial redundancy). In the following,
we present the 90th percentile of the results collected
after 10 trials.

Results and Discussions. To evaluate the cor-
rectness of computation reuse and to gauge the
efficiency of compute-less networking, we consider
four main metrics: task completion time, task com-
putation time, correctness rate, and completion gain.

Task completion time. It is measured as the overall
time elapsed between end-users issuing their tasks
for execution and receiving back the execution re-
sults. Figure 4 depicts the average task completion
time. Cloud has the largest completion time since
the server is located far away from end-users, and
transmitting a large size of input data takes more
time. On the other hand, as the edge server is located
near to end-users (e.g., one hop), we notice that the
completion time is reduced compared to the cloud
since we eliminated the transmission of a huge
amount of data in the network, yet the edge server
has a significant waiting time to execute all received
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tasks. However, by adopting computation reuse, we
can observe that the completion time is much better
than for edge computing, and decreased when the
number of tasks increased (up to 80%). This is due
to the fact that the received tasks witness a grow-
ing redundancy rate that accelerates the completion
time. When the redundancy rate (Figure 3) reaches
0.8, the completion time for compute-less networks
decreases up to 0.08 (𝑠) compared to 0.27 (𝑠) for
edge computing.

Task computation time. It is measured as the
overall time elapsed between receiving the task’s
input data (at the server) and producing the final
output. Figure 5 outlines the average computation
time. Indeed, this result proves that the transmission
time has a high impact on the performance of
cloud computing even with unlimited computation
resources, while the waiting time impacts the edge
server capacity to perform fast computation. Yet,
the waiting time at the edge is negligible com-
pared to the transfer time for the cloud (refer to
Figure 4), which proves the outperformance of the
edge compared to the cloud. On the other hand,
compute-less exceeds even the cloud performance
by processing a very negligible lookup process to
find a match on the Reuse Table. This is due to
the fact that services have a high complexity that
requires resources (at the cloud), while the lookup
process is weightless (with compute-less). When the
redundancy of received inputs is high, compute-less
witnesses a very fast computation since it finds a
quick match compared to computing the task even
with the immense resources at the cloud server.

Correctness Rate and Completion Gain. The cor-
rectness refers to the percentage of achieving ac-
curate output data (results) similar to computation
from scratch. The highest the correctness, the better
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the accuracy. The completion gain refers to the non-
utilized resources by adopting computation reuse
compared with computation from scratch at the
edge. Figure 6 shows that compute-less networking
is able to reach almost 0.9 of correctness rate, which
means 90% of the reuse operations are absolutely
correct. The missed 0.1 reverts to the fact that some
of the computations have not been stored in the
Reuse Table or have been evicted by the replace-
ment policy. Hence, there is a need to compute them
from scratch. This means that the final output is
reached via a mix of computation reuse and a com-
putation from scratch. On the other hand, the gain is
increased when the number of tasks increases. The
redundancy factor of received inputs has a direct
impact on this result since high redundancy implies
more computation reuse, and consequently more
gain and less resource utilization.

V. ISSUES AND FUTURE DIRECTIONS

Input Similarity Detection. The functions’ in-
put values are rarely identical. Yet, they can be
correlated temporally, spatially, or semantically, and
mapped to the same output. Finding if multiple in-
puts are similar drives to find the most similar record
(i.e., distance measure) that is the nearest to an
input, known as the nearest neighbor. This process
is often computationally costly and time-consuming.
Therefore, numerous methods have been proposed
to undertake this issue. Hashing is one of the com-
mon solutions. Locality-sensitive hashing, indeed,
aims at regrouping similar inputs into the same
buckets based on hash functions that map a similar
input to the same hash code with a higher prob-
ability of dissimilar inputs. Near neighbor search
techniques can also be used to find the nearest
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similar input in a set of data.

Multiple Inputs Aggregation. Input data ag-
gregation process is an essential constituent for
data management in modern services, which is core
to enhancing the quality of deployed service and
decreasing the design effort. Inputs data aggregation
is a built-in pre-process on (some or all) functions
that form the service. It is defined as the process
of producing synthesized forms from multiple input
data items. Its main goal is to provide a compact
data format easily processed by the function. In-
network input data aggregation will help to reduce
the amount of transmitted data (less communication)
while ensuring better resource exploitation.

Microservice-based Applications: Serverless
technology has recently started gaining more at-
tention due to the enormous features it affords
such as scalability, reliability, and pay-as-you-go
with affordable computational. A serverless-based
application is no more than a distribution of loosely-
coupled functions among different edge servers.
These functions work in coordination with each
other to achieve the desired tasks aiming at reducing
the development cost and deployment effort. These
types of applications usually share some functions
with each other. The duplication of these functions
in various locations (edge servers) is also possible
to withstand failures and ensure high availability.
This will contribute perfectly to computation reuse
opportunities since shared functions are likely more
requested compared to others, which increases the
reuse gain. Moreover, the computation reuse of
a serverless application will not only depend on
its previous computations but also on the other
applications’ computations since they are all sharing
the same functions to build the complete service.

Input/Data Privacy. As far as data privacy is
concerned, end-users should authorize the service
provider to store their input/output data at the
edge server and be able to reuse it to satisfy
other computations. The same edge server can ac-
commodate multiple services offered by multiple
providers (e.g., shared edge server), computation
sharing across these services is also feasible and will
help in improving the quality of experience. Simi-
larly, computation sharing among multiple nearby-
edge servers is worthwhile instead of forwarding
the request to a distant cloud. In either example,

it is mandatory to deploy an efficient data privacy
scheme that enables the server to take advantage of
the existing or nearby stored information without
concern for user/data privacy.

VI. CONCLUSION

Cloud computing has given great support to
CPU-intensive applications by providing immense
computing resources. Emerging applications require
strict constraints such as a low response delay, for
which the cloud model is no longer suitable. Of-
floading the computation toward the edge network,
closer to consumers, is promising to address this is-
sue. Yet, the network still witnesses heavy amounts
of computation and communication closer to the
edge. Compute-less networking promises to reduce
the amount of computation and communication by
eliminating redundant computational at the network
level through the computation reuse concept. This
paper is the first study of its kind, which emphasizes
the correctness and accuracy of computation reuse
and the efficiency of compute-less networking. To
this end, we designed a proof of concept where we
were able to reduce the task completion time by up
to 80% while ensuring high correctness.
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