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Abstract—This article introduces a neural network-
based signal processing framework for intelligent reflecting
surface (IRS) aided wireless communications systems. By
modeling radio-frequency (RF) impairments inside the
“meta-atoms” of IRS (including nonlinearity and memory
effects), we present an approach that generalizes the entire
IRS-aided system as a reservoir computing (RC) system,
an efficient recurrent neural network (RNN) operating in
a state near the ‘“‘edge of chaos”. This framework enables
us to take advantage of the nonlinearity of this ‘“fabri-
cated” wireless environment to overcome link degradation
due to model mismatch. Accordingly, the randomness of
the wireless channel and RF imperfections are naturally
embedded into the RC framework, enabling the internal
RC dynamics lying on the edge of chaos. Furthermore,
several practical issues, such as channel state information
acquisition, passive beamforming design, and physical
layer reference signal design, are discussed.

Index Terms—Machine learning, Intelligent Reflecting
Surface, Reservoir Computing, Memory Effects

I. INTRODUCTION

With the unfolding of the 5th generation cel-
lular systems (5G), beyond 5G (B5G) and 6G
technologies are rapidly becoming new buzzwords
in telecommunication academia and industry. The
wireless market analyses suggest that we are ex-
pected to witness the demand for trillions of wire-
less connections and equipment energized by the
surge of affordable and low-energy devices [/1]. This
unprecedented number, however, poses complica-
tions and challenges to the cellular communications
systems design. Intelligent reflecting surface (IRS)
assisted wireless networks are deemed as promising
solutions [2]—[5], where IRSs are utilized to config-
ure a more “favorable” wireless channel between
access points (APs) and mobile stations (MSs).
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IRS controls each reflecting unit (“meta-atoms”)
towards an ideal direction to form a fine-grained
reflecting beam. Furthermore, IRS is primarily im-
plemented by passive RF components, reducing the
cost compared to massive MIMO/small-cell/relay
aided systems that resort to active antenna units.
Thereby, by adding these configurable IRS compo-
nents to the wireless environment, an extra degree
of freedom (DoF) in the wireless environment can
be achieved [3]. By properly adjusting the reflecting
components on the IRS, the newly formed beam can
constructively enhance the desired signal or destruc-
tively anneal interference power amid transmission
streams. Overall, the introduction of IRS forges a
new path for the realization of a programmable
and intelligent channel environment, increasing the
network spectrum and energy efficiencies [3].

A. Main Challenges

Although IRS is deemed as a cost-efficient ap-
proach toward high system efficiency, continuing
innovations on hardware and software of IRS are yet
imperative for the realization, where the following
critical issues are emerged to be addressed:

o Hardware Impairments: Current methods and
apparatus devised for IRS-aided cellular systems
have been developed with the premise of ideal
radio-frequency components as well as a sim-
plistic mathematical modeling approach, such as
the element-wise phase-shift model [5]. However,
the presence of memory effects and nonlinearity
in hardware, particularly when the operation is
configured on the entire frequency band, may
lead to model mismatch which can deteriorate the
performance compared to the theoretical setup.

» Reflection Optimization: An ideal IRS-aided op-
eration is achieved through jointly optimizing the
reflection phase on IRS, a.k.a. passive beamform-
ing, as well as the active beamforming/receiving



on APs and MSs. However, the inherent practical
constraints, such as the finite alphabet feature of
the tunable phase dictionary, the duplex mode,
and the asymmetric number of antennas config-
ured on MSs and APs, make the problem vastly
complicated. Furthermore, hardware implementa-
tions on the meta-atoms, either electronically or
mechanically, have shown potential bottlenecks
on achieving adequately fast phase shifting, in
which the passive beamforming may lag behind
the variations on environment and user mobility.
Needless to say, the problem space would render
a naive exhaustive search intractable.

o Channel Acquisition: To accomplish the joint
beamforming/receiving design, we require multi-
fold channel state information (CSI) which in-
cludes links from AP to IRS, from IRS to MSs,
from AP to MSs, and all the reversed links. For
indirect channels (links with IRS at one end), it is
challenging to obtain the CSI because IRS is de-
ployed without transceiver chains, which makes
the reference signal on IRS unavailable to access.
Meanwhile, IRS is often configured with a large
amount of “meta-surface” [6], which makes the
channel dimension and the overhead on the CSI
estimation prohibitively high. More importantly,
the online reference signals in wireless commu-
nications systems are very limited due to training
overhead constraints defined in communication
standards [/1]]. Besides, environment scatters are
located within the Rayleigh distance of the IRS,
which can fundamentally change the channel
model due to spherical wavefront features.

B. State-of-the-Art

There are attempts in the literature to address the
issues raised above:

1) Hardware Impairments: Recent work [7] ana-
lyzes the channel capacity loss by hardware impair-
ments. The analysis characterizes the imperfectness
of the meta-atoms on IRS as additive Gaussian
noise. It shows that both the system capacity and the
derivative of the capacity with respect to the area of
meta-surface decrease when the scale of reflective
components increases. The research in [[8] has in-
vestigated that when the hardware impairments are
modeled as phase errors, the transmission can be
equivalently treated as a point-to-point Nakagami
fading channel. While these are seemingly reason-

able analytical results, they do not provide feasible
solutions to the hardware impairments.

2) Reflection Optimization: Rather than using
active RF components to harness spatial diversities
(such as relay, and backscatter communications,
etc.), IRS seeks to optimize spectral efficiency and
at the same time to consume less energy. To address
the aforementioned challenges raised by the discrete
phase values and large meta-atoms, [9] introduced a
heuristic alternating optimization technique that re-
laxes the discrete variables as continuous variables.
Similarly, energy efficiency in terms of bit-per-
Joule can be considered in the same optimization
framework. This method is infeasible in real-time
and does not explore the dynamics of user mobilities
and channel environments. Another related work
also extended the optimization on the joint design
of pilot patterns and network utilities. Nonetheless,
they typically rely on unrealistic assumptions on
perfect channel knowledge, synchronous controls,
and unlimited user feedback.

3) Channel Estimation: Explicit channel state
information is considered an essential component of
the reflection optimization in IRS systems. Due to
limited RF chains on the reflective surface, the up-
link and downlink reciprocity has been widely lever-
aged in the channel estimation. In [10], it introduced
using compressed sensing and deep learning-based
approaches to infer the entire channel by using only
a relatively small number of accessible active RF
components on the IRS, where the sparsity/low-rank
properties of the channel are leveraged. However,
when receiving RF chains are not installed at the
IRS, this method becomes infeasible. A viable way
to solve this challenge is to use implicit chan-
nel information instead. [11] introduced learning a
beamforming vector via adding a feedback channel
in the IRS system. However, the feedback overhead
becomes prohibitively high as the number of meta-
atoms increases.

C. Our Contributions

The contribution of this paper is the following:

o Unlike the existing formulation of IRS, we con-
sider modeling both the nonlinearity and mem-
ory effects of each IRS component, mimicking
practical RF circuits behave, where the memory
effects are generally not identified and widely
overlooked in the current literature.
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Fig. 1. An illustration of an IRS-aided wireless system: multiple
MSs, one IRS, and one AP.

o By leveraging the similarity between hardware
uncertainties of IRS systems and chaotic features
of reservoir computing (RC) systems, we gener-
alize an entire IRS-aided system as an RC. This
approach does not rely on explicitly modeling
the hardware impairments, whereas it could cir-
cumvent the model mismatch by universal ap-
proximation properties of the RC. This design
offers a promising direction on bridging artificial
intelligence (AI) and wireless systems.

o« We point out some of practical issues in the
implementation of this RC based framework and
further investigate possible solutions such as ref-
erence signal design and training algorithms.

The remainder of this paper is organized as follows.

In Sec. |l we review the formulation and hardware

impairments of IRS systems. In Sec. [[Il, we intro-

duce the RC framework and its mapping to IRS.

The practical issues of applying this technique are

discussed in Sec. Finally, the paper is concluded

in Sec. [Vl

II. SYSTEM FORMULATION AND HARDWARE
MODEL

We first consider an ideal model of IRS-aided
wireless communications systems where multiple
mobile stations (MSs) simultaneously communicate
with one access point (AP) associated with a single
IRS as depicted in Fig. [l The IRS is equipped
with passive reflecting units, namely, "meta-atoms”.
The entire wireless transmission channel can be

conceptually partitioned into three parts (in uplink):
a forward channel from MSs to IRS, a reflecting
channel from IRS to AP, and a direct channel from
MSs to AP. A zero gain of the direct channel
indicates a transmission blockage. The downlink
channel also follows in a similar naming approach.

A. Conventional IRS Formulation

According to the standard definition of IRS, the
incoming electromagnetic waves are reflected in the
desired direction by using predefined phase-shifts.
The conventional embodiment of IRS is constructed
by massive meta-atoms, each of which is enabled
with software-controllable properties on configuring
the reflecting direction. The entire formed meta-
surface passively forwards RF signals with mod-
ified amplitude and phase, in which the opera-
tion is fundamentally different from the concept of
amplify-and-forward relay which requires active RF
chains [3]. The reconfigurability is either achieved
electronically, by means of positive-intrinsic nega-
tive (PIN) diodes or field-effect transistors (FETS),
or mechanically via microelectromechanical system
(MEMS) switches.

Conventionally, each meta-atom is assumed to
be capable of changing the amplitude and phase
of the incident signal and constructing a reflection
towards a new direction independently. In other
words, no signal-coupling effects between IRS units
are assumed. A math formulation of this perfect
reflection is via a diagonal matrix. Each diagonal
entry represents the imposed amplitude and phase
change to the incident signal contributed by the cor-
responding meta-atom. Optimizing these entries can
bring an improved ‘augmented’ channel between
MSs and AP. However, this formulation, governed
by the ideal physical characteristics of the meta-
surface can lead to model misspecification issues as
we pointed out in the introduction.

B. Hardware Nonlinearity in IRS

Overall, an IRS is composed of layered materials,
generally three layers, as demonstrated in Fig. [2|
The outer layer is made of an array of reflect-
ing elements printed on a dielectric substrate, in
which the reflecting elements can interact with RF
signals. This would provide desired amplitude and
phase shifts to incident signals based on the device
characteristics, including the geometrical alignment
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Fig. 2. A realization of an IRS made of a control circuit, a copper
plate and an array of reconfigurable reflecting elements.

between reflecting elements. The intermediate layer
is built of a copper plate to avoid energy leakage
from incident signals. Lastly, the inner layer is
a control circuit to calibrate reflecting elements
in real-time based on the desired amplitude and
phase. An ideal IRS implementation is considered as
with this reconfigurability without nonlinearity and
memory effects. However, in practice, the memory
effect is inherently subsistent to devices due to
the charge accumulation along with the reactive-ion
etching during the fabrication process.

Passive devices could satisfy the necessity of re-
configurability as required by the IRS. The second-
order resistor and capacitor (Res-Cap) model is a
simple implementation approach where a digitally-
controlled resistor with two adjacent capacitors
are employed. By controlling the model’s resis-
tance state, the resistor can be switched between
its high-resistance-state (HRS) and Low-resistance-
state (LRS). Eventually, energy from RF signals is
dissipated according to the resistance state, and thus,
controlling the reflection amplitude. Furthermore,
various phase shifts of the reflecting elements can
be realized independently as different time constants
are achieved based on the resistance state.

In recent years, the Ferroelectric Field-Effect
Transistor (FeFET) [12] and the Resistive Random-
Access Memory (ReRAM) [13] have been intro-
duced in neuromorphic applications as two emerg-
ing building blocks for emulating artificial neural
networks. This makes these emerging devices pos-
sible candidates for implementation of IRS, due
to their intrinsic reconfigurability. The FeFET, a
descendant of the MOSFET, consists of a ferroelec-
tric layer in between its electrode and conduction
region. The ferroelectric thin film could remember
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Fig. 3. A realization of reservoir computing - echo state network: the
input is first mapped to a high dimensional space to create reservoir
states, then the output is obtained through a readout mapping.

the electric field to which it had been exposed,
switching the capacitance of the device from high to
low, or vice versa. By controlling the biasing signal
across the device, different amplitude and phase
changes can be achieved as the energy dissipated
in the device is controllable. Similar to the classical
Res-Cap model, the ReRAM is a controllable resis-
tor through its conductive filaments. By altering the
biasing signal across the device, various resistance
states can be achieved, and thus, realizing different
amplitude and phase changes.

In practice, the ideal linearity assumption of re-
flecting units cannot be satisfied due to the inherent
properties thereof. We can extend our previous for-
mulation by including a time-dependent state equa-
tion, where the current state would be determined
by the previous state as well as the current incident
signal, and the state transitions are according to a
nonlinear function. This new formulation leads to a
modeling scheme that accounts for both nonlinearity
and the memory effects.

III. RESERVOIR COMPUTING-BASED
REFORMULATION

In this section, we begin by briefly introducing
the architecture of RC. Then, we discuss how RC
is analogous to IRS systems. Finally, we elaborate
on how the main challenges (pointed out in the
introduction) are accordingly addressed.

A. Preliminary

RC is a computational framework motivated by
RNN mechanism which consists of three parts:
an input mapping, a fixed dynamic system, and a
trained readout network. A realization of RC, echo
state network (ESN) [14], is illustrated in Fig.
The constitutive modules of an ESN are as follows:



1) Input Mapping: The ESN input is first pro-
jected to a higher dimensional space by multi-
plying to a weight matrix that is initialized with
random values. Mapping the input signal into a
high-dimensional space is useful for pattern analysis
which is a shared concept of kernel-based methods.

2) Reservoir Dynamics: The underlying reser-
voir dynamics are characterized by a recurrent equa-
tion. The equation basically describes a Markov
process of the internal states stimulated by the input.
In addition, an activation function is added between
two consecutive internal states to offer nonlinear-
ity. Furthermore, the internal state transition matrix
stays fixed during the training stage. In practice,
improperly initialized internal weights often lead to
diminishing generalization performance. To circum-
vent this issue, certain algebraic properties of the
transition matrix has to been satisfied, such as echo
state property (ESP) which states that given an input
sequence, the output should not differ far from two
different initial states, that is, the effect of initial
conditions should vanish as time proceeds.

3) Learning Readout: Given the states of reser-
voir, the output is obtained via a dimension reduc-
tion process on a subset of the reservoir states. The
coefficients of the readout mapping are determined
via minimizing a predefined loss function, where the
loss measures the dissimilarity between targets and
predicted outputs. The optimization on the loss can
be either solved using gradient descent or through
the least-squared framework when Frobenius norm
is selected as the loss function.

B. Reformulation

Now, we consider how the IRS-aided wireless
system can be treated as an RC system, specifically
as an end-to-end RC-based auto-encoder. We analo-
gize the signals sent out from all active stations (APs
or MSs) to the IRS as the input of the RC; thereby,
the IRS serves as the reservoir. Accordingly, the
readout layer is considered as a three-layered feed-
forward neural network with identity activation
functions, which is comprised by IRS coefficients,
reflection channel, and receiving processing matri-
ces for the uplink or precoding matrix for the down-
link at AP. The link between active stations and IRS
is considered as the input layer of the RC. A similar
idea of analogizing wireless communication systems
to neural networks can be found in [[15]], where IRSs

are modeled as feed-forward neural networks. How-
ever, the formulation is not sufficient to capture the
inherent dynamics (by hardware memory effects)
of IRS. Accordingly, we optimize a loss function
that measures the link-level transmission reliability
or efficiency using the passive beamforming matrix,
active receiving and precoding matrices as variables.
Technically, the loss function is defined as a distance
between the received signal and the desired signal
using training dataset.

C. Remarks

Regarding the challenges enumerated in the in-
troduction, the introduced RC-based approach has
the potential to address them, as elaborated below:

1) Hardware Impairments: The hardware im-
pairments are solved since the nonlinearity and
memory effects are circumvented by altering the
distortion as needed nonlinear internal state tran-
sitions of RC, where chaotic internal states can
create rich representations of the input. On the
other hand, deploying more meta-atoms on the IRS
is equivalent to using higher-dimensional internal
states which can reduce the learning loss value,
however, increases the risks on overfitting.

2) Passive Beamforming: The optimization pro-
cedure on the phase-shift and amplitude adjustment
is naturally considered as learning one of the output
layers of RC. Meanwhile, the receiving processing
matrix is considered as the final output layer of the
RC, whereas the active precoding matrix is treated
as the first layer of the RC in downlink transmission.
Since the memory ability is enabled by RC, the
learning can essentially capture the underlying long
term features of the channel environment. Thus,
the learned beamformer is to act in a proactive
manner to handle the interference by leveraging the
historical data, which can potentially solve the lag
effects brought by the computation.

3) Channel Acquisition: In the joint optimization
on the uplink passive and active beamforming,
the CSI from MSs to IRS is no longer needed.
This is because it is treated as the input layer
of RC, which does not require to be known in
the framework of RC. Conversely, the downlink
active precoding and passive beamforming can
be obtained by using channel reciprocity. More
importantly, the channel environment between
AP and IRS is relatively static, where this static
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Fig. 4. Energy Efficiency evaluation of (a) a model-based optimiza-
tion approach, and (b) RC based learning approach in an IRS system
which is properly trained.

property can be further leveraged to reduce the
training overhead. Therefore, the reference signal
resources for CSI acquisition would be significantly
reduced compared to conventional approaches.

A comparison between RC-based IRS and the
method introduced in [3]] (referred as a model-based
approach) is presented in Fig. ] For simplicity,
the evaluation scenario is configured with one MS,
one IRS and one AP. In our analysis, the hardware
impairments are equivalently characterized as
channel estimation errors and power dissipation
at IRS, where the CSI is utilized by model-based
approach for passive beamforming design, and
power dissipation leads to additive interference on
the transmission link. Remark that more meta-atoms
can lead to stronger interference though it poten-
tially offers higher beamforming gain. The RC-
based approach demonstrates advantages over the
conventional one in terms of energy efficiency (EE),
which can be attributed to its ability to overcome
model mismatch by leveraging training dataset.

IV. DISCUSSION

The RC framework is envisioned as an efficient
(in terms of spectrum and energy) and effective
(in terms of handling hardware impairments) sig-
nal processing framework for passive and active
beamforming/receiving design of the IRS system
thanks to the chaotic and high dimensional features
of the reservoir. In this section, we discuss related
practical issues of using this framework. There are
two prerequisites for conducting the learning for
the RC: 1) the reference signals for adjusting link-
level demodulation, namely, training dataset; and
2) the CSI from IRS to AP and from MSs to AP
for formulating the learning loss function. To this
end, we can directly leverage the reference signal
structure defined in 5G New Radio (NR) standards.
For instance, the reference signals are comprised
of demodulation reference signals (DMRS) and the
channel state information reference signals (CSRS).
Accordingly, DMRS can be utilized as the training
dataset, whereas CSRS can be applied to track the
CSI. Since the channel environment from IRS to
AP is relatively static, the CSI of IRS-AP can be
initialized by a channel sounding process at the very
beginning of the IRS deployment.

In an attempt to track environmental changes
between IRS and AP, we introduce a channel ac-
quisition method based on the uplink-downlink reci-
procity. Remark that only AP and MS can send the
reference signals due to the availability of active RF
chains. To facilitate the estimation, we assume that
full-duplex transmission is enabled at AP. In this
method, AP sends CSRS to IRS before receiving
the reference signals reflected back by the IRS.
Since the received reference signals contain the
back and forth channel information between AP
and IRS, the channel variation can be accordingly
tracked by learning common features of the row
space and column space of the received reference
signals. In addition, we can incorporate a round-
robin scheme into this method by estimating the
channel variations of a subset of the IRS units at
each turn. Accordingly, the entire CSI of the AP-IRS
is attained after all the meta-atoms are traversed.

Furthermore, the RC-based framework can be ex-
tended to other chaotic neural networks based learn-
ing paradigms, such as extreme learning machines.
However, structurally and operationally, there is a
clear agreement between IRS and RC-based net-



works that is absent for other neural networks such
as LSTM. In addition, LSTM is very challenging
to train, whereas RC is known to achieve better
generalization performance compared to other NNs
using extremely limited training dataset [14], where
the limitation on the training data is one of the
fundamental challenges raised in the introduction.
The RC characterized IRS also can be incorporated
as a policy network in a reinforcement learning
(RL) framework. Accordingly, the objective be-
comes maximizing the cumulative reward of the
underlying policy with passive and active beam-
forming as the actions. In general, this RL enabled
approach is more robust in dynamic settings - where
it operates the passive and active beamforming in a
proactive way.

V. CONCLUSION

In this article, we provided a roadmap for the
application of RC-based processing techniques in
the design of IRS-aided wireless systems. We drew
parallels between reservoir computing and the IRS
transmission link, and introduced an ideal mapping
thereof. We also pointed out an equivalence between
learning readout layers of RC and designing passive
beamforming as well as active receiving.
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