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Abstract—Realizing human-like perception is a challenge in
open driving scenarios due to corner cases and visual occlusions.
To gather knowledge of rare and occluded instances, federated
learning assisted connected autonomous vehicle (FLCAV) has
been proposed, which leverages vehicular networks to establish
federated deep neural networks (DNNs) from distributed data
captured by vehicles and road sensors. Without the need of
data aggregation, FLCAV preserves privacy while reducing
communication costs compared with conventional centralized
learning. However, it is challenging to determine the network
resources and road sensor placements for multi-stage training
with multi-modal datasets in multi-variant scenarios. This article
presents networking and training frameworks for FLCAV per-
ception. Multi-layer graph resource allocation and vehicle-road
contrastive sensor placement are proposed to address the network
management and sensor deployment problems, respectively. We
also develop CarlaFLCAV, a software platform that implements
the above system and methods. Experimental results confirm the
superiority of the proposed techniques compared with various
benchmarks.

I. INTRODUCTION

Perception determines the way a connected autonomous
vehicle (CAV) understands the world by transforming envi-
ronments into digits via sensors, signal processors, and deep
neural networks (DNNs) [1]. Conventionally, DNN training
is based on centralized learning, which collects the datasets
from CAVs, trains the DNNs at the cloud, and deploys
trained DNNs on CAVs for inference. This paradigm is
effective in closed driving areas where the owner of data-
collection vehicles is also the DNN provider. However, future
CAV systems must cope with multi-variate open scenarios,
which involves corner cases due to infinite scenario space
and visual occlusions due to high scenario complexity [1].
CAV companies, e.g., Tesla, Waymo, Baidu, suggested that
these challenges be tackled via lifelong multi-stage training
that updates the DNN parameters whenever rare or occluded
objects are detected (e.g., Tesla Autopilot and over-the-air
updates solution https://karpathy.ai/). In this case, sensor data
is inherently distributed at customers’ vehicles and contains
high-resolution human-related private information, leading to
the potential of sensitive information leakage [2].
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Federated (deep) learning assisted CAV (FLCAV) is an
emerging paradigm to overcome the privacy issue by training
DNNs via parameter and output aggregation instead of dataset
aggregation [2]–[7]: parameter aggregation leverages vehicular
networks to migrate knowledge among different vehicles [4],
[5]; output aggregation leverages road sensors’ perception
results to annotate occluded objects for local parameter up-
dates [6], [7]. The performance of FLCAV highly depends on
the associated network resources and road sensor placements.
Existing works on FLCAV design these factors from either a
driving (e.g., [2], [3]) or networking (e.g., [4], [5]) perspective,
which ignores the interdependency between driving tasks (i.e.,
data consumer) and vehicular networks (i.e., data provider).
This research gap has been identified as the core issue in CAV
systems [8]. Yet, how to close this gap for FLCAV is still an
open issue.

This article integrates driving and networking features for
system-level FLCAV perception under practical network re-
source constraints. Frameworks of vehicle-edge-cloud net-
working, multi-stage DNN training, and multi-task gener-
ation, are presented. On top of these frameworks, multi-
layer graph resource allocation (MLGRA) and vehicle-road
contrastive sensor placement (VRCSP) are proposed. The
MLGRA jointly allocates the limited network resources across
different stages, tasks, and modalities to minimize perception
errors. The VRCSP automatically reduces (increases) the
number of sensors in low (high) complexity scenarios. To
verify the above methods, it is necessary to implement a
simulator with high-fidelity rendering qualities, driving be-
haviors, and software interfaces [9], as FLCAV needs long-
term training that cannot be quickly tested in reality. However,
currently there is no such close-to-reality FLCAV simula-
tor. We thus develop CarlaFLCAV (https://github.com/SIAT-
INVS/CarlaFLCAV), an open-source software platform for
design and verification of FLCAV systems. The platform
contains dataset generation, perception tasks, FL frameworks,
and optimization modules, and aims to provide a concrete step
towards FLCAV in the real world.

II. FL MEETS CAV

A. CAV Perception: Concept, Challenges, and Trends

1) CAV Perception: As shown in Fig. 1a, a CAV perception
system is an ensemble of the following functionalities [1]: 1)
semantic perception, e.g., recognition of lanes, road arrows,
and traffic signs, which outputs semantics for rule understand-
ing; 2) geometry perception, e.g., road edge detection and ob-
ject detection, which outputs poses (including positions, sizes,
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Fig. 1: a) Categories of CAV perception. b) Multi-task multi-modal deep learning for CAV perception. From top to bottom: 1)
weather classification (task 1); 2) sign recognition (task 2); 3) object detection (task 3); 4) trajectory prediction (task 4). From
left to right: 1) sensors map the environment into digits (raw data) using active or passive electromagnetic waves; 2) signal
processors clean, rotate, crop, or complete the raw data; 3) DNNs extract features and generate semantic, geometry, motion,
and prediction outputs. All datasets are generated by the CarlaFLCAV platform.

and orientations) for collision-avoidance motion planning; 3)
motion perception, e.g., object tracking, which outputs kine-
matic data (velocities) for multi-agent interaction. 4) extended
perception, e.g., trajectory prediction, which outputs future
states of agents for look-ahead decision making. As shown
in Fig. 1b, each functionality is decomposed into a set of
heterogenous tasks, calling for multi-modal sensors such as
RGB/infrared camera, LiDAR, radar, GPS and IMU to exploit
their complementary features, e.g., field of views (FoVs). Each
task is accomplished by sensors, processors, and DNNs. For

instance, in trajectory prediction, images generated by multi-
view cameras are fed to vision transformers, generating bird’s-
eye-view data sequences that are fed to the long short-term
memory (LSTM) module to forecast what the observed traffic
agents shall do. By observing the past coordinates of a vehicle
(marked in red box), this pipeline successfully predicts future
coordinates of a vehicle moving through the cross-road.

2) Perception Challenges: Major challenges of CAV per-
ception in multi-variate open scenarios are summarized below.

• Corner Case. Scenario space in open areas grows expo-
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nentially, making it impossible to enumerate all the pos-
sible cases during the training stage [1]. In other words,
there always exists new data outside the distribution of
training datasets, which are corner case instances.

• Visual Occlusion. In complex urban scenarios (e.g.,
cross-road, T-junction, roundabout), an object can be oc-
cluded by another in the FoV, which leads to incomplete
data and perception errors [6].

• Verification Cost. Releasing new DNNs requires rig-
orous verification. The cost of real-word testing is not
acceptable due to the long-term training required by
FLCAV and difficulties of testing in dangerous scenarios
(e.g., crashes, overtaking, bad weather) [10].

3) Research Trends: Possible solutions to address the above
challenges are as follows.

• Lifelong multi-stage training, which updates the param-
eters whenever a corner case is detected, is a promising
solution to address the first challenge [3]. The update is
executed on DNN copies, making sure that the inference
DNNs are fixed during the training process. Releasing
new-version DNNs requires the acknowledgement of
DNN providers and customers.

• As for the occlusion issue, the solution is cooperative
perception with road sensors. Practical road sensors are
authoritative, having absolute positions, broader FoVs,
and highly-optimized hardware units [6]. Furthermore,
the probability of a target object being occluded in FoVs
of all road sensors is significantly smaller than that in
the FoV of a CAV. As such, the perception error due to
occlusions is significantly mitigated.

• To reduce the high verification cost in reality, CAV
simulation becomes a necessity [9]. Various CAV simu-
lators have been released, e.g., Intel Car-Learning-to-Act
(CARLA), Nvidia DRIVE, Microsoft Aerial-Informatics-
and-Robotics-Simulation (AirSim), LG Silicon-Valley-
Lab (LGSVL), Baidu Augmented-Autonomous-Driving-
Simulation (AADS), UCLA OpenCDA, SJTU V2X-Sim
[7], [9], [10].

B. Paradigm Shift: From Centralized to Federated Learning

1) Federated Learning: The need for multi-stage training
results in the shift of learning paradigms. In one-stage train-
ing, the owner of data-collection vehicles is also the DNN
provider and the aggregated datasets can be directly fed to
DNN training pipelines. However, for multi-stage training,
the abnormal data is distributed at customers’ vehicles and
contains human-related private information. As a consequence,
conventional centralized learning is no longer applicable. To
this end, FLCAV emerges, which trains the DNNs from dis-
tributed datasets via parameter aggregation, thus conveying the
knowledge of corner cases to other vehicles and remote servers
while preserving data privacy [2]. In addition, communication
costs are reduced, since the size of a DNN is significantly
smaller than that of a data sequence, e.g., the size of a 1-minute
point-cloud sequence is 1000MB while that of a standard
object detection DNN is 60MB [1] (FL takes multiple rounds

of communication; but with proper pre-training, only a few
rounds are needed).

2) Federated Distillation: FL can be integrated with coop-
erative perception, giving rise to the federated distillation (FD)
technique [7]. In the FDCAV framework, all road sensors and
CAVs upload their bounding boxes and perception uncertain-
ties to a road server. The server computes the weighted average
of these outputs and this road-average output is downloaded to
surrounding vehicles. Each vehicle updates its local parameters
by minimizing the contrastive loss between its bounding
boxes and the road-average boxes [7]. Note that there exist
non-negligible computation and communication delays during
the vehicle-to-infrastructure output fusion progress. However,
FDCAV is a long-term DNN-update framework rather than
a real-time detection method for collision avoidance. There-
fore, it is possible to associate data from the roadside in-
frastructure with that from CAVs by fusing a sequence of
data frames via pose graph optimization, which removes the
effects of random errors by extracting multi-frame spatial-
temporal patterns. FDCAV can also adopt spatial contexts of
road maps for generating ground-truth semantics and training
associated DNNs. For instance, the Road Experience Man-
agement (REM) of Mobileye (https://www.mobileye.com/our-
technology/rem/) adopts road sensors and maps to realize
automated road semantic identification and annotation.

C. Related Work on FLCAV

1) Limitations of Existing Work: Current literature on
FLCAV can be categorized into two types: 1) network-layer
designs (e.g., FL resource allocation), and 2) application-
layer designs (e.g., FL perception and planning). Specifically,
network-layer designs, e.g., [4], [5], [11], aim to improve
FL performance by controlling the communication-related
variables such as topology, throughput, latency, and device
scheduling. These works address the challenges of FL from the
network perspective while taking the high mobility of vehicles
into account. However, they fail in matching FL to domain-
specific CAV scenarios, tasks, datasets, and DNNs. On the
other hand, application-layer designs, e.g., [2], [3], [6], [7],
improve the safety and efficacy of CAV systems by designing
DNN structures and associated information fusion methods.
These works provide solutions to CAV issues such as train-
ing, inference, synchronization, calibration, and simulation.
Nonetheless, communications among CAVs, edge servers, and
cloud servers therein are assumed to be perfect, which does
not hold for practical CAV systems with limited resources.

2) Research Opportunities: Since both types of designs
have different pros and cons, it is necessary to integrate them
to achieve lower detection/classification/tracking errors under
network resource and sensor implementation constraints. This
leads to new technical problems, which cannot be tackled by
conventional methods.

• Opportunity 1 (Network Resource Allocation): How
can we effectively distribute the network resources across
different stages, tasks, and modalities to minimize the
perception errors of final-stage DNNs while satisfy-
ing the stringent wireless and wireline communication

https://www.mobileye.com/our-technology/rem/
https://www.mobileye.com/our-technology/rem/
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Fig. 2: a) Network architecture of FLCAV with vehicle, road, and cloud components and their associated V2X and the Internet
links; b) Multi-stage training pipeline of FLCAV with intra-stage and inter-stage network flows.

constraints? Existing literature does not analyze CAV-
domain-specific datasets and ignores the interdependency
across different stages.

• Opportunity 2 (Sensor Placement): How can we ef-
ficiently place the road sensors to detect and annotate
more occluded objects under the implementation cost
constraint? Conventional approaches adopt integer pro-
gramming (IP) solvers or heuristic methods to maximize
the coverage with a fixed number of sensors, which
ignores the learning requirements for FLCAV.

• Opportunity 3 (Software Engineering): How can we
implement a high-fidelity FLCAV simulator that is close
to reality? Existing methods of network-layer designs
are tested in simple classification tasks (e.g., recognition
of handwritten digits). Emerging autonomous driving
simulators do not support FL and associated optimization
functionalities.

III. SYSTEM-LEVEL DESIGN FOR FLCAV PERCEPTION

A. Network Architecture
As shown in Fig. 2a, FLCAV consists of CAV, road,

and cloud components, forming a wide-range cyber-physical
system. CAVs are integrated systems equipped with multi-
modal sensors, mobile computing platforms, and advanced
communication units that 1) connect the vehicle sensors,
computers, and bases via controller area network (CAN), and
2) connect the vehicles with the cloud and road via vehicle-
to-everything (V2X) technology [13]. CAV is a server within
its CAN and a client within its V2X network.

Roadside infrastructure can be categorized into road sen-
sors, road communication units, and road computing servers
[8]. First, the pose of a road sensor includes position and
yaw/roll/pitch angle, which directly determines the coverage of
the environment and objects therein. Second, road communica-
tion units adopt the V2X to link surrounding vehicles, forming
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a vehicular edge network. Finally, road servers are parameter
servers for edge FL and process real-time tasks, e.g., feeding
the data of road sensors into road DNNs, merging the multi-
sensor data using fusion techniques (e.g., iterative closest point
(ICP)).

A cloud server differs from a road (edge) server since the
Internet is a part of the end-to-end communication. Therefore,
cloud servers execute long-term tasks, e.g., dataset annotation,
DNN training, simulation, and resource management. Note
that to prevent potential cyber attacks, any vehicle joining
FLCAV should be registered with a unique identifier allocated
by authorities. The cloud server is responsible for maintaining
the identifier and also executes security key generation and
certification [8].

B. Training Pipeline
Training FLCAV perception systems in Fig. 2b consists of

cloud pretraining, edge FL, and cloud FL stages. Specifically,
cloud pretraining adopts annotated datasets on the cloud to
transform initial DNNs into pretrained DNNs that are released
to all CAVs. Then, an FL request is generated at the CAV
upon a false detection event (e.g., due to occlusions or corner
cases). The FL request is sent to the edge parameter sever,
who calls for roadside infrastructures and other vehicles to
join the edge FL group via V2X. This helps the CAV fix
the bug residing in its local DNN, as the knowledge migrates
from other agents to it and vice versa. With a few rounds
of output and parameter exchange, the edge parameter server
can form edge DNNs that serve as good representations of the
local region. Finally, the FL group can be enlarged by cloud
FL, which aggregates the edge DNNs from remote areas via
the Internet. To improve robustness, the cloud FL stage may
adopt personalization such that each edge client trains its own
regional DNNs while contributing to the global cloud DNNs
[12].

From the application perspective, FLCAV needs to train
a set (let N denote its cardinality) of DNNs for associated
perception tasks in 3 (or more) consecutive stages. From
the network perspective, FLCAV involves two types of com-
munications, i.e., wireless and wireline communication, and
their transmission capacities are finite. Combining both, the
summation of wireless/wireline throughput (in MBytes) over
N tasks and 3 stages should be smaller than the network
throughput budget, and there exists a tradeoff among different
tasks and stages. Here we consider the uplink transmission
in Fig. 2b, as the downlink counterpart is usually not the
bottleneck in practice.

1) For Stage I, data samples should be uploaded from
vehicles to the edge and then to the cloud. The product of
the number of samples and the data size of each sample
should not exceed the minimum throughput of wireless
and wireline communication allocated to Stage I.

2) For Stage II, parameters are exchanged between the edge
server and vehicles through wireless communication. The
product of the number of edge FL rounds, the number of
vehicles in each FL group, and the data size of DNNs
should not exceed the wireless throughput allocated to
Stage II.

3) For Stage III, parameters are exchanged between the edge
and cloud servers through wireline communication. The
product of the number of cloud FL rounds, the number
of edge servers, and the data size of DNNs should not
exceed the wireline throughput allocated to Stage III.

Note that perception outputs (e.g., bounding boxes) are also
shared among nodes, but the associated communication over-
head is negligible compared with those of samples and DNNs.

C. Task Generation

Tasks should match scenarios [14] and their construction
shown in Fig. 3a consists of the following 4 steps.

1) Operational Design Domain (ODD) Specification.
Given the target ODD, e.g., urban (focus of this paper),
rural, campus, mine, port, or parking-lot, we define the
key parameters including traffic density, speed limits,
rules, and FoV requirements [15].

2) Scenario Sampling. Scenarios are sampled inside the
ODD according to industrial standards such as ISO and
SAE [15]. Learning and optimization based methods can
also be adopted for scenario space exploration. Car-
laFLCAV provides straight-road, cross-road, T-road, and
roundabout scenarios.

3) Task Generation. Scenario-specific tasks are generated,
where each task is defined as a set of data, labels and
DNNs [14]. We construct fewer tasks for low-complexity
scenarios to save computational costs and redundant tasks
for high-complexity scenarios to guarantee driving safety.

4) Task Evaluation. Perception tasks are categorized into
different priorities via a task importance evaluator, which
removes a task from the task list and observes the
associated performance loss. A task is deemed important
if the performance loss is significant [14].

IV. RESOURCE OPTIMIZATION FOR FLCAV PERCEPTION

A. Multi-Modal Resource Allocation

1) Motivation: Intuitively, more resources should be al-
located to perception tasks accomplished by deeper neural
networks. Consider training a convolution neural network
(CNN) for weather classification and a sparsely embedded
convolutional detection (SECOND) network for object detec-
tion. Due to larger number of parameters (∼5 millions) in
SECOND, the FLCAV network should allocate more com-
munication resources to vehicles that upload point clouds for
pretraining SECOND in Stage I, and call for more vehicles
and FL rounds for sharing SECOND parameters in Stages II
and III. In current vehicular networks, the purpose of resource
optimization is to improve key communication metrics, which
treats data equally and violates the above intuition.

2) Method: Since communication (i.e., a data pipeline)
becomes a sub-task in the FLCAV paradigm, we need to
directly minimize the perception error instead of maximizing
the communication throughput. The problem becomes how
to model the relation between perception errors and network
flows. Here we present a multi-layer graph resource allocation
(MLGRA) approach shown in Fig. 3a. For layer 1, vertex
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Fig. 3: a) Illustration of the MLGRA method and the good fitness of the performance predictor to the experimental data
generated by CarlaFLCAV; b) Illustration of the road-assisted FD and the VRCSP. The black box is the ground truth; the blue
box is from the CAVs; the red box is from the road sensors.

represents task or DNN, while edge represents training weight;
for layer 2, vertex represents DNN or data modality, while
edge represents training parameters (e.g., number of training
samples, number of FL rounds); for layer 3, vertex represents
data or CAV, while edge represents vehicle throughput.

• Task-DNN Graph. Tasks are clustered into groups such
that similar tasks share the same DNN and annotated
dataset. For example, the tasks of box regression (i.e.,
determining the poses of objects), object classification
(e.g., determining if the object is a car or a truck),
and orientation classification (e.g., determining the front
side) can be accomplished by one DNN with a common
feature extractor and 3 separate headers. The training loss
function is the weighted sum of three metrics.

• DNN-Modality Graph. Different DNNs may be trained
with different data modalities, and their connections
form a DNN-modality graph. The required resource for
a DNN-modality pair can be obtained by fitting per-
formance predictors to historical datasets. For instance,
inverse-power models are adopted to predict perception
accuracies of 3 DNN-modality pairs (i.e., CNN-Image,
YOLOV5-Image, SECOND-PointCloud) under different
communication resources in Fig. 3a. The predictions
match the experiment data very well for all DNNs.

• Modality-Vehicle Graph. For each data modality (e.g.,
point cloud data), the associated data samples may come
from multiple CAVs. If the data is independent and
identically distributed (IID) among different vehicles, we
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Fig. 4: Illustration of multi-modal multi-view sensor fusion
at the roadside infrastructure.

can maximize the total throughout via some optimization
algorithm. If the data is non-IID due to different FoVs,
it is necessary to evaluate the quality of vehicles’ data.

B. Road Sensor Placement

1) Motivation: For FLCAV, the key is to upgrade the
onboard DNNs instead of monitoring the environment. There-
fore, in contrast to conventional methods that maximize the
number of visible objects [6], we place sensors at critical
scenarios that contain adversarial objects that can defeat the
DNNs. To illustrate their difference, we adopt CarlaFLCAV
to generate an urban traffic map with straight-road and cross-
road scenarios, where 9 possible sensor locations are marked
as red boxes in the middle of Fig. 3b.

• Conventional methods [6] place the road sensor suite (i.e.,
consisting of a 360-degree LiDAR and an RGB-camera)
at location 8, as we set its nearby traffic density to the
highest value. However, the vehicle DNN would not learn
any new knowledge, as the bounding boxes generated by
the vehicle (e.g., CAV 2) and the road sensor 8 are similar.

• Our method places the road sensor suite at location 3,
despite the fact that its nearby traffic density is low.
Here, the CAV could change its local parameters to the
maximum extent with the road’s outputs. This is because
the bounding boxes generated by the vehicle and road
sensor 3 are very different. For example, CAV 1 misses
two objects since its FoV is occluded by its front car.

2) Method: To find the critical scenarios, our VRCSP
minimizes the pose similarity between the detected objects
at the CAV and those at the road sensor. In particular, we
deploy the pretrained DNN on a CAV and test the vehicle
in a target map containing multiple scenarios, each specified
with zone limits. If the CAV fails to detect an object or
generates a false positive in its FoV, the 3D position of this
object (false positive) e is registered into a database. Let
the set E = {e1, e2, · · · } denote all registered error items
after sufficient simulation time, and scenarios containing false
detections are deemed important. The cardinality of the set

{e ∈ E : ‖e − x‖ ≤ r} represents the expected number of
false detections that could be calibrated by the road sensor,
which is to be maximized, where x and r are the position
and accurate-detection range of the road sensor. The problem
of optimizing x is a discrete optimization problem where a
finite set of possible locations is available, as sensors can only
be attached to utility poles. In addition, r is a monotonically
increasing function of the infrastructure cost. For example, in
object detection task, r increases with the number of laser
channels, but this will also increase the LiDAR price. The
VRCSP method can be adopted to determine the positions of
multiple sensor suites (x1,x2, · · · ). The associated result is
shown in Fig. 4, where we have placed 2 road sensor suites
at the cross-road (i.e., positions 1 and 4) and 1 sensor suite at
the straight-road (i.e., position 8). The perception range of the
roadside infrastructure is significantly improved by adopting
the multi-modal multi-view sensor fusion techniques. The road
sensors are connected via optical fiber so that the associated
transmission delay can be ignored.

V. IMPLEMENTATION AND EXPERIMENTS

A. Software Architecture

CarlaFLCAV (shown in Fig. 5a) is an open-source FLCAV
simulation platform that supports: (1) multi-modal dataset
generation, including point-cloud, image, radar data with asso-
ciated calibration, synchronization, and annotation; (2) training
and inference examples for CAV perception, including weather
classification, traffic sign detection, object detection, and tra-
jectory prediction; (3) various FL frameworks, including Fe-
dAvg, device selection, noisy aggregation, parameter selection,
distillation, and personalization; and (4) optimization mod-
ules, including network resource and road sensor placement
optimization. The implementation of (2) is based on LeNet-5,
Yolov5, OpenPCDet, LSTM, with the associated results shown
in Fig. 1b. The implementation of (4) is illustrated in Fig. 3.
Below we focus on (1) and (3).

Specifically, raw sensory data is recorded using CARLA
[10], which adopts Unreal Engine 4 for state-of-the-art visual
rendering and physics simulation. Then, calibration represents
sensed information in a common coordinate system via ro-
tation and transition matrices. CarlaFLCAV assumes perfect
calibration, but practical systems may involve errors since
sensors’ intrinsic (e.g., shape of the camera lens) and extrinsic
(i.e., pose) parameters need to be estimated. Time stamping
adopts LiDAR as a reference, i.e., each laser spin is a frame.
Synchronization among different sensors can be realized via
hardware or software trigger, and the worst-case time differ-
ence is at the millisecond level. Finally, data annotation tracks
the categories, poses, and occlusions of objects via CARLA
APIs (https://carla.readthedocs.io/en/latest/).

For wireline FL, the DNN parameter exchange can be
implemented based on the Robot Operating System (ROS)
communication, which offers inter-process communication
among distributed nodes by publishing/subscribing topics. For
wireless FL, due to limited capacity of wireless channels, only
a subset of CAVs can be selected to convey their parameter
updates at each FL round. Thus, CarlaFLCAV implements

https://carla.readthedocs.io/en/latest/
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Fig. 5: a) Software architecture and supported functionalities of CarlaFLCAV; b) Training DNNs in the CarlaFLCAV simulator
and testing with real world datasets. The DNN trained with CarlaFLCAV successfully detects all objects in the real world.

importance-aware device selection, where vehicles with larger
gradient norms are assigned a higher probability to be sched-
uled. Besides, CarlaFLCAV includes noisy aggregation, which
injects random noises into the DNN parameters as a mask
to protect the data privacy against model inversion attacks.
DNN frozen is optional, which fixes partial layer parameters
to reduce the communication cost.

B. Experimental Validation

First, to evaluate how close CarlaFLCAV is to real-life
conditions, we train the SECOND (in Fig. 1b) with 3000 point
cloud samples generated by CarlaFLCAV for 60 epochs and
test the trained SECOND on a real-world dataset KITTI. The
mean average precision (mAP) at IoU= 0.5 is 58% for object
detection. Qualitative results are shown in Fig. 5b, where the
DNN trained with CarlaFLCAV detects all objects in real data.

Next, to verify the effectiveness of the multi-stage FLCAV,
we consider the single-task case (i.e., task 3 in Fig. 1b) and
compare the mAP of final DNNs for different schemes, under
the same wireless and wireline uplink resource budgets (i.e.,
4GB). The settings and results are shown in Fig. 6a. Our
findings are summarized below.
(i) All FL schemes achieve higher mAPs than centralized

learning. This demonstrates the necessity of exploiting
domain-information of Town05.

(ii) With cloud FL, the mAP is improved, since the CAVs in
Town03 provide new knowledge about corner-case and
occluded objects.

(iii) With equal resources in different stages, the VRCSP plac-
ing the road sensor at position 3 significantly improves
the mAP compared with the conventional method placing
the sensor at position 8.

(iv) By jointly optimizing the network resources across three
stages, the mAP is further increased to 84.58, which
demonstrates the effectiveness of MLGRA. Our result

implies that more wireless (wireline) resources should be
allocated to the edge (cloud) FL stage.

(v) Under the same VRCSP and MLGRA methods, the mAP
score with device selection is slightly higher than direct
FL, as the stragglers are removed from FL groups.

Finally, we simulate the multi-task multi-modal perception,
including tasks 1–3 in Fig. 1b. The settings and results are
shown in Fig. 6b. Our findings are summarized below.
(i) Since our goal is to maximize the perception accuracy of

all tasks, a larger area indicates better performance. The
baseline scheme (i.e., blue dotted-line) has the smallest
area, which can be treated as a worst-case performance
bound.

(ii) Leveraging the performance predictor in Fig. 3a, the equal
MLGRA method (i.e., red dashed-line) achieves a larger
triangle area than that of the baseline. This is because it
automatically allocates more resources to object detection
and sign recognition as shown in Fig. 6b, which are
harder tasks.

(iii) With joint resource allocation across different stages and
tasks, the proposed MLGRA method (i.e., black solid-
line) achieves the largest triangle in Fig. 6b. The per-
ception accuracies are 99.0, 88.8, 78.16 for tasks 1, 2, 3,
respectively.

(iv) For task 2, the proposed MLGRA successfully detects
the STOP sign in cloudy days, while other methods
misclassify the STOP sign as a traffic light. For task 3,
the proposed MLGRA successfully detects all the objects
at the cross-road, while other methods involve inaccurate
detections and false positives.

VI. CONCLUSION

This article has reviewed the integration of FL and CAV for
overcoming perception challenges in open driving scenarios.
The multi-tier networking, multi-stage training, and multi-task
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Fig. 6: a) Comparison among different schemes for single-task perception. Dataset: 5000 point-cloud samples in Town02 for
pretraining; 4 CAVs (each with 500 samples) in Town05 for edge FL; 3 CAVs (each with 500 samples) in Town03 for cloud
FL; 2432 samples in Town05 for testing. b) Comparison among different schemes for multi-task perception. Task-1 dataset:
4000 RGB images in Town02 for pretraining dataset; 4 CAVs (each with 100 images) in Town05 for edge FL; 3 CAVs (each
with 100 images) in Town03 for cloud FL; 2000 images in Town02 for testing. Task-2 dataset: 2500 RGB images in Town02
for pretraining; 4 CAVs (each with 1000 images) in Town05 for edge FL; 3 CAVs (each with 1000 images) in Town03 for
cloud FL; 3279 images in Town05 for testing. Task-3 dataset: same as Fig. 6a with road sensor placed at position 3.

generation frameworks of FLCAV were presented. The ML-
GRA and VRCSP methods were proposed to solve the network
management and sensor placement problems, respectively. The
frameworks and methods were verified in a software platform
CarlaFLCAV. Future directions are listed below.

Simulation-to-reality transfer. Real-world CAV datasets
involve far more physical mechanisms (e.g., illuminations)
and interactive behaviors (e.g., competitions) than simulation
datasets. Hence, there exists a non-negligible gap between the
simulation and the reality, making transfer learning and real-
world testing indispensable for FLCAV.

Autonomous driving under perception uncertainties.
Perception uncertainties will propagate to the subsequent
planning system. Hence, scientific approaches for computing
the perception uncertainties and adjusting the safety distance
in collision avoidance constraints are needed. End-to-end au-

tonomous driving that directly maps sensor inputs into vehicle
actions is also a promising solution to address the uncertainty
propagation issue.
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