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Abstract—Federated learning or FL represents a new machine
learning paradigm, in which it utilizes various resources from
participants to collaboratively train a global model without
exposing the privacy of training data. The learning performance
critically depends on various resources provided by participants
and their active participation. Hence, it is essential to enable more
participants to actively contribute their valuable resources in FL.
In this article, we present a survey of incentive mechanisms for
federated learning. We identify the incentive problem, outline its
framework, and categorically discuss the state-of-the-art incen-
tive mechanisms in Shapley value, Stackelberg game, auction,
contract, and reinforcement learning. In addition, we propose
three multi-dimensional game-theoretical models to study the
economical behaviors of participants and demonstrate their
applicability in cross-silo FL scenarios.

Index Terms—Federated learning, incentive mechanism, per-
formance improvement, cross-silo FL.

I. INTRODUCTION

As a promising distributed learning paradigm, Federated

Learning (FL) has been proposed to collaboratively train a

global model with plenty of participants who value their data

privacy as top priority [1]. FL enables each participant to

train a local model with its private data and only exchange

model parameters with a server (or other peers) instead of raw

data. The unnecessity of uploading training data improves the

data privacy for participants. This salient feature accelerates

widespread applications of FL in a series of settings. For exam-

ple, Google applies FL to its product Gboard to improve user

experience [1]. Similarly, Apple employs FL to QuickType

and “Hey Siri” of iOS13. Some industrial examples include

biomedical data analysis in Owkin, finance and insurance data

analysis in Swiss Re, and drug discovery in MELLODDY [2].

Incentive design is paramount and indispensable to FL. FL

consumes plenty of multi-dimensional resources from partic-

ipants, such as computation power, network bandwidth, and

private data, most of which are constrained in some scenarios

like Mobile Edge Computing (MEC). In addition, participants

still worry about security and privacy threats in FL, where

several attacks have already been reported recently [1]. All

these factors hinder the active participation in FL without

enough payback. Furthermore, FL training performance in

terms of model accuracy and training speed will deteriorate
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without sufficient training data, communication bandwidth,

and computation power provided by participants [3]. In other

words, deficient resources might cause FL to malfunction in

reality. Therefore, incentive mechanism is required to motivate

more clients with high-quality data and sufficient resources

to engage in FL, which finally achieves the goal of overall

performance improvement.

Fortunately, incentive mechanism has attracted increasing

attention and many impressive studies mushroomed in the

last two years. Among them, Zhan et al. presented a survey

of incentive mechanisms for FL and summarized the exist-

ing studies into three categories, i.e., clients’ contribution,

reputation, and resources allocation [4]. Compared with [4],

we provide another valuable survey of incentive design with

distinct understanding, comprehensive taxonomy, innovative

summary, and insights for future investigation. Furthermore,

most previous studies on incentive design focus on cross-

device FL which consists of massive resource-constrained

nodes with occasional availability, and few literatures except

[2] study incentive issue in the cross-silo scenario, where a

group of giant organizations trains a model with sufficient

communication and computation resources. Our work differs

with [2] in the target problem, design goals, and main tech-

niques.

In this article, we first identify the problem of incentive

design in FL and highlight that its final goal is to improve

the training performance like global model accuracy, training

time, etc. Then, we point out three components of incentive

mechanism, namely contribution measurement, node selection,

and payment allocation, and present a novel taxonomy for

further review. Also, we explicitly summarize the existing

studies along the roadmap of major related techniques, in-

cluding Shapley value, Stackelberg game, auction, contract

theory, and reinforcement learning. Among them, Shapley

value is mostly adopted for contribution measurement, while

payment allocation mostly involves Stackelberg game, auc-

tion, contract theory, and non-convex optimization. Some

cutting-edge techniques, such as reinforcement learning and

blockchain, are adopted as auxiliary tools for node selection,

contribution evaluation, and robustness improvement. From

these results, we pinpoint some insights and opportunities for

future investigation.

Following some observations from our survey, we concen-
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Fig. 1. The system model of FL and its framework of incentive mechanism

trate on the cross-silo FL setting and propose three multi-

dimensional game-theoretical models to analyze the econom-

ical behaviors of participants and improve the global model

accuracy. Specifically, we consider cross-silo FL as a per-

fectly competitive market and propose the Cournot model,

Stackelberg-Cournot (SC) model, and Cournot-Stackelberg

(CS) model for equally-dominant, coordinator-dominant, and

participant-dominant cases, respectively. Then, we use gradient

descent to approximately compute the Nash Equilibrium (NE)

solution. We perform extensive experiments on a cluster and

the experimental results demonstrate that our proposed models

can improve the learning accuracy and system designers can

achieve their goals with distinct models.

II. THE INCENTIVE FRAMEWORK AND RESEARCH

OPPORTUNITIES IN FL

A. The Incentive Problem & Framework in FL

FL is a distributed training paradigm that targets minimizing

the loss function of global model with many participants in a

collaborative way, as shown in Fig. 1. An incentive mechanism

aims to motivate more clients to participate in FL training and

provide sufficient and various resources. In this article, we

argue that the final goal of incentive scheme is to improve

the training performance, which makes it different from the

incentive design in other scenarios like crowdsensing. Besides

this design goal, incentive schemes also aim at the properties

of Incentive Compatibility (IC), Individual Rationality (IR),

fairness, Pareto efficiency, collusion resistance, etc.

An incentive mechanism for FL includes three major design

elements: contribution measurement, node selection, and pay-

ment allocation. Contribution measurement endeavors to get

the accurate and fair evaluation of contribution to FL training

performance for each participant [15]. In FL, contribution

comes from not only training data but also many other

resources. It is challenging to fairly and efficiently consider

these resources together in their contribution evaluation. Node

selection is to choose a subset of candidates to join in FL

training. In nature, node selection tends to gather sufficient

resources from participants with the economical budget con-

strained by the system designer or model owner. Additionally,

node selection should consider different types of resources

simultaneously, since a participant with low computing power

and sufficient data might delay the training process. How to

design an efficient mechanism with the goal of performance

improvement and several constraints is one of main challenges

for node selection. Payment allocation decides the payment for

each participant. The payment, offered by the system designer,

model owner [2], or the coordinator server [3], includes money,

the usage of global model, and some other reputation rewards.

We only consider the payment of currency in this article. Most

payment allocation problems are NP-hard, and thus it is critical

to efficiently obtain approximate solutions to these problems.

Note that these components might be interdependent.

The existing studies of FL incentive schemes can be cat-

egorized in terms of application settings (cross-silo FL and

cross-device FL), the FL phase (training and prediction), major

related techniques (Shapley value, Stackelberg game, contract

theory, auction, and reinforcement learning), and the assump-

tion of information symmetry (complete information, weakly

complete information, and incomplete information). In Section

V, we review state-of-the-art FL incentive mechanisms from a

technical perspective, and the skeleton of these techniques is

illustrated in Fig. 2.

B. Opportunities & Challenges in Future Investigation

The study of incentive mechanism in FL is still in its in-

fancy, and we point out four directions for future investigation.

(1) We reiterate that incentive mechanism should involve the

training performance improvement of FL with several

constraints by inspiring more participants. The absence

of performance improvement makes incentive mechanisms

useless, even though they can motivate massive partici-

pants to join in FL.

(2) FL has already found widespread applications in cross-silo

settings, making incentive schemes more indispensable. In

cross-silo FL, players are a few large and stable companies

or organizations with sufficient resources instead of many

volatile end users with limited resources. We need to

analyze the economical behaviors of large organizations

and design appropriate incentive mechanisms for them.

(3) Some comprehensive and lightweight incentive schemes

are required for FL in some scenarios like MEC, 5G/B5G,

etc., which might introduce additional constraints to the
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Fig. 2. The skeleton of main techniques for incentive mechanisms in FL

incentive design. For instance, participants in mobile

networks appreciate lightweight incentive schemes, since

resource-constrained nodes hesitate to perform expensive

computation or contribute their network bandwidth.

(4) Some cutting-edge technologies like graph neural net-

works, generative adversarial networks, and multi-agent

reinforcement learning might find their potential applica-

tions in the incentive design of FL.

III. THE INCENTIVE DESIGN FOR CROSS-SILO FL

In this section, we propose an incentive scheme of multi-

dimensional game-theoretical models to analyze the economic

behaviors of participants in cross-silo FL scenarios, where par-

ticipants are relatively stable, and the performance impact of

each participant is comparatively large. Our proposed scheme

aims to motivate fixed participants to provide multiple types

of resources as well as to improve the training performance.

A. Multi-dimensional Game Models for Cross-silo FL

In cross-silo FL, there are two types of players, i.e., one

global coordinator (a special participant) and N − 1 common

participants. The coordinator not only performs local training

but also orchestrates the training process, and all the players

join in FL by considering their resource provisions and oth-

ers’ reactions. According to the procedure of training, cross-

silo FL can be categorized into three types, i.e., simultane-

ous decision-making, coordinator-move-first, and participants-

move-first. These three cases are separately formulated by

Cournot model, Stackelberg-Cournot (SC) model and Cournot-

Stackelberg (CS) model in Fig. 3. Note that players in Cournot

model make their decisions simultaneously and independently,

while Stackelberg game models a sequential decision-making

process. The combination of these two models can properly

describe the cross-silo FL. Taking SC model as an example, it

formulates the cross-silo FL scenario where powerful Western

Union Bank (coordinator) cooperates with many smaller Bank

of California (participants) to train a global deep learning

model. In SC model, the coordinator first maximizes its profit

π0 by considering others’ reactions and the total requirement

denoted by the inverse demand function P (·) and then broad-

casts its decision q0. After the declaration of q0, participants

perform Cournot game to make their decisions with fixed

external provision q0. The detailed explanations of the other

two models are skipped due to the space limitation.

What is the “common product” in cross-silo FL? We point

out that resource provision should be multi-dimensional and

consider all the variables related to training performance such

as data size, data quality (e.g., label accuracy), CPU/GPU

computing power, communication bandwidth, etc. To trans-

form multi-dimensional resource provision variables into a

single scalar in our game models, we need to employ a linear

utility function, perfect substitution utility function, or Cobb-

Douglas utility function, which are separately denoted as qi =
αi,1qi,1+ · · ·+αi,Mqi,M , qi = min{αi,1qi,1, · · · , αi,Mqi,M},

and qi = q
αi,1

i,1 q
αi,2

i,2 · · · qαi,M

i,M , where qi,j is the resource

provision of type j for participant i, and variable αi,j is its

corresponding weight.

B. Approximate NE Solution with Gradient Descent

NE solution is critical to analyze the economic behav-

iors of participants, and it enables all the participants to

maximize their own profits with rational resource provision.

Unfortunately, it is infeasible to get the NE solution manually

especially when the number of participants is slightly large.

In this article, we borrow the idea of gradient descent and

backward induction to obtain the numerical NE solution.

Due to the limited space, we only present the approximation

algorithm for SC model as an example. This algorithm can

fully describe the core idea of gradient descent and backward

induction in all three approximation methods.

In Algorithm 1, we first compute the total provision function

Q(q0) as Q(q0) = q0 + q1(q0) + · · · + qN−1(q0), among
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Fig. 3. Three multi-dimensional models of cross-silo FL

Algorithm 1: The Approximation Algorithm for SC Model

Input: The inverse demand function P (·) and cost function Ci(qi)

Output: NE solution (q
[SC]
0 , q

[SC]
1 , · · · , q[SC]

N−1)

1 q0 = 0;
2 while q0 ≤ qmax

0 do
3 (q1, · · · , qN−1) = Cournot(q0);

4 Q(q0) =
∑N−1

i=0 qi;
5 q0 = q0 + η;

6 end
7 q0 = 0, i = 0;
8 while (q0 + δ) ≤ qmax

0 do
9 γ = (Q(q0 + δ)−Q(q0))/δ;

10 Q(x) := γ(x− q0) +Q(q0);
11 (q0[i], π0[i]) = GetOptimal(x ∗ P (Q(x))− C0(x)), x ∈ [q0, q0 + δ];
12 q0 = q0 + δ;
13 i++;

14 end

15 (q
[SC]
0 , π

[SC]
0 ) = GetMax(π0[0], · · · , π0[i− 1]);

16 (q
[SC]
1 , · · · , q[SC]

N−1) = Cournot(q
[SC]
0 );

which q1(q0), · · · , qN−1(q0) are responses to the coordinator

q0 according to Cournot model, and then solve the profit

optimization problem (the maximization of obtained payment

minus cost) of the coordinator according to backward induc-

tion. In details, we sample q0 and approach function Q(q0)
with a piecewise linear function in a small interval. In the

computation of Q(q0), we play Cournot game with fixed

external quantity q0, which can be further solved by the

approximation method of Cournot model. After obtaining the

approximate Q(q0), we can get the optimal strategy q0 by

solving univariate optimization problem (Line 11 in Algorithm

1) in each small interval. When q0 is computed, q1, · · · , qN−1

are correspondingly determined as Line 3 in Algorithm 1. In

this way, we can obtain the numerical NE strategies of SC

model. Note that the computing complexity of this algorithm

is not a key issue and can be neglected, since the number of

participants in cross-silo FL is not huge, and each player has

sufficient computing resource.

IV. EXPERIMENTS AND EVALUATIONS

We implement a cross-silo FL with our proposed models in

a HPC cluster of 7 nodes. The specifications of these 7 nodes

include Intel Xeon E5 CPU with 4 Cores and Linux Ubuntu

18.04.4 OS. All these nodes are connected by a 10Gbps

Ethernet switch. We train a classic CNN model with MNIST

dataset in FedML framework. The CNN model has 6 layers

with structure similar to [3]. All the results are the average of

five trails, and experiments with another dataset CIFAR10 also

show similar results. The inverse demand function is P (Q) =
10Q−0.5 and the cost function for node i is ci(qi) = aiqi,
where the coefficient ai is randomly chosen from [4, 4.1]. The

multi-dimensional resources include data size q1 (the number

of data item) and data quality q2 (the percentage of data

item with correct label) in our experiments. Data quality is

controlled by randomly choosing data items with a certain

percentage for each class and setting them with false labels.

We assume a simple linear function qi = αi1qi1 + αi2qi2,

where αi1 = αi2 = 0.5.

The first group of experiments aims to study the perfor-

mance improvement of cross-silo FL due to our proposed

incentive scheme. The results of training accuracy in three

game models are shown in Fig. 4. Since the work [2] only

considers a single type of resource and does not target the

learning performance, we choose random resource provision

with fixed Q as our baseline. From Fig. 4, we can observe that

NE solutions of three models achieve better training accuracy

than the random baseline. The average improvements are

separately 28.1%, 28.3%, and 44.3% after 20 communication

rounds. In addition, the accuracy of random schemes might

degrade after a few communication rounds. Since we need to

set Q in baseline as the NE solution for fairness concern, at

least one participant with low data quality exists and lowers

the accuracy of global model after the global model starts to

learn some trivial details of training data.

The other group of experiments focuses on comparisons of

three game models. In Fig. 5, there are several takeaways from

our results: (1) the coordinator’s profit in SC model is larger

than that in Cournot model while the profit of coordinator

in CS model is the smallest among three models. This result

indicates that the coordinator prefers to choose SC model to

maximize its profit when it dominates the incentive model

selection; (2) the total provisions Q in SC model and CS

model are similar, and both of them are larger than that in

Cournot model. It indicates that Stackelberg game incurs much

competition among players, which are also proved by the

results of participants; (3) The profit of participant in Cournot

model dominates the other two models, while the quantity
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Fig. 5. The comparisons among our three models

provision of participant in Cournot model lies between SC

model and CS model; and (4) system designers can choose

distinct models to achieve their goals like large resource

quantity Q, the increased profit of coordinator, small total

payment, etc.

V. RELATED WORK

1) Shapley Value: Shapley value is adopted by contribution

evaluation and payment allocation. Instead of quantifying

multi-dimensional resource provisions, Shapley value consid-

ers the contribution from the utility or after-effects of recruited

resources on the FL training performance. The Shapley value

of each participant, referred to as its contribution, is the

weighted average of marginal impacts on FL training per-

formance with and without its resource provision in different

participant subsets. Unfortunately, the computation complexity

of Shapley value is NP-hard and one possible solution is to

trade additional storage of local gradients for the calculation

of contribution without the need of retraining each model [4].

The disclosure of user privacy is a potential threat to

Shapley value in FL, where the direct adoption of Shapley

value might reveal feature information or data distribution.

One solution is to employ Shapley group value to measure

the utility of a subset without revealing the data distribution

of any specific participant. Furthermore, some techniques such

as differential privacy and homomorphic encryption can be

applied to enhance the privacy of FL. It is a promising

direction to simultaneously protect user privacy in FL training

and Shapley value calculation.

2) Stackelberg Game: Stackelberg game is a sequential

game model commonly applied to formulate the interactions

between different players in the sell or procurement of com-

mon products. In Stackelberg game, a player called leader

moves first to declare its decision which optimizes its profit

by considering the expected reactions of others. A player who

moves after the leader is named as follower, and it observes

the action of leader, optimizes its own profit, and responds to

the leader. From the definition, we find that Stackelberg model

can solve the payment allocation problem from a sequential

game perspective.

Some issues require to be tackled when Stackelberg model

is adopted in FL settings. (i) What is the “common product” in
FL? One group of studies relates to training data. Intuitively,

the simplest product is local data evaluated by its quantity,

and the model owner trades rewards for data [5]. The second

type of product is computation or communication resource.

For example, Ding considered a multi-dimensional product

of computation speed and start-up computation time [6]. (ii)
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How to obtain NE solution with incomplete information? For

incomplete information and stochastic information scenario,

Ding found that the computation complexity of NE solution

is increased with additional N(N − 1) IC constraints, where

N is the total number of players [6]. In [5], Zhan used deep

Reinforcement Learning (RL) to dynamically adjust players’

strategies and optimize their profits in scenarios with incom-

plete information and ambiguous contribution. In fact, both

heuristic algorithm and RL appeal to approximate NE solution

in incomplete information scenarios. (iii) Does the proposed
model relate to the training performance? [6] provides a

performance-aware incentive scheme with Stackelberg game

and shows that the optimal recovery threshold of MDS codes

should be linearly proportional to the number of players N .

3) Auction: Auction is another efficient mathematical tool

for payment allocation and node selection. When applying

auction to FL, the model owner or global coordinator serves as

a single auctioneer and orchestrates the auction process, while

participants serve as bidders and respond to the auctioneer with

various local resources and their bids. The winners in auction

are chosen as the selected participants for FL training, and

their payments are given based on their bids. Auction allows

participants to actively report their true bids to maximize their

profits, which makes it more fascinating for FL.

It is challenging to apply auction to FL in a computation-

efficient way, and [3], [7], [8], and [14] are four representa-

tive studies on auction-based incentive schemes. Specifically,

Zeng proposed a lightweight and multi-dimensional incentive

scheme FMore with procurement auction of K ≤ N win-

ners for FL in MEC [3]. In [8], Deng proposed a quality-

aware auction scheme in a multi-task learning scenario. They

innovatively formulated the winner selection problem as an

NP-hard learning quality maximization problem and devised

a greedy algorithm to perform real-time task allocation and

payment distribution based on Myerson’s theorem. Meanwhile,

Zhou considered another practical scenario where clients are

scheduled at different global iterations to assure the completion

of FL job and proposed an auction approach to decompose the

goal of social cost minimization into several winner selection

problems which are further solved by greedy algorithm [14].

Actually, most of winner selection and payment allocation

problems are computationally intractable, and randomized

auction can be applied as an approximate solution for FL [7].

4) Contract Theory: Contract theory studies how players

achieve optimal agreements with conflicting interests and

different levels of information. In incentive mechanisms of FL,

the global server/coordinator offers a list of contracts, each of

which is a tuple of the quantity of resource provision and the

corresponding payment to participants, without being informed

about the private cost of participants. Then, each participant

proactively picks a specific option designed for its type and

performs local training with the chosen resource provision.

The technique of contract embodies the self-revealing property

which could elicit the optimal provisions from participants

with the presence of information asymmetry.

The existing studies can be categorized into two groups,

i.e., multi-dimensional contracts and contracts with differ-

ent assumptions of information asymmetry. The first group

of studies considers various resource provisions and applies

multi-dimensional contracts to motivate participants in FL.

For example, a 3-dimensional contract item might look like

(communication bandwidth, computation power, data size,

payment), and the coordinator provides a collection of such

contract items to participants for their selection. The second

group of studies assumes the information asymmetry between

the task publisher and participants, since the private informa-

tion of data size and various resources is unknown to the global

coordinator [12].
5) Reinforcement Learning: As a prevalent learning tech-

nique, RL approaches to the optimal solution by successive

decision-making trials. In FL training, the coordinator mod-

elled as an agent performs the action of node selection or

payment allocation to elicit high-quality participants to join in

FL training. The agent iteratively makes decisions by trial and

error and gets responses from participants (considered as re-

wards) to achieve the optimal training performance. From this

formulation, the incentive process can be properly modeled by

RL. Furthermore, we can adopt RL to derive approximation

solutions in incentive design, since many incentive problems

are NP-hard. In sum, RL can be innovatively applied to

incentive design.

The existing studies of incentive schemes with RL can be

classified into RL with discrete action space and RL with

continuous action space. Most RL-based schemes with discrete

action space focus on the node selection problem. The work

[9] used the technique of double Deep Q Network (DQN) to

select candidates to improve FL learning performance by coun-

terbalancing the data distribution bias. Another example [7]

also applied DQN to randomized multi-dimensional auction

to improve social welfare in node selection. The other group

of studies with continuous decision space mainly concentrates

on contribution measurement and payment allocation in FL.

For instance, an impressive work [15] proposed a fair and

efficient contribution measurement approach with RL in a

privacy-preserving manner. Zhan applied PPO algorithm to

compute the payment of participant in Stackelberg game with

incomplete information in [5].
6) Others: Some other studies include incentive design in

cross-silo FL [2], the incentive of predication phase [11],

fairness-aware and sustainable incentive design [10], robust

and tamper-proof incentive scheme [10], etc. In [11], Weng

firstly studied the incentive issue in the predication phase of

FL, where the prediction accuracy and privacy are their top

priority. In the cross-silo setting, Tang proposed an incentive

scheme from a public goods perspective and formulated this

problem as a social welfare maximization problem with non-

convex objective function [2]. But [2] considers a single-

dimensional product and neglects FL training improvement,

both of which are the focus of our proposal.

VI. CONCLUSION

In this article, we provide a survey of incentive mechanism

design for FL, from which we figure out four avenues for

future investigation. Following two of them, we propose three

game-theoretical models with multi-dimensional resource pro-

visions to analyze the economical behaviors for cross-silo
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FL. Our proposed models exemplify the multi-dimensional

incentive design in a new scenario of cross-silo FL. Our exper-

imental results demonstrate the training accuracy improvement

by the proposed game-theoretical models, which conforms to

our statement in the survey. The comparison results also imply

some future research directions with different design goals in

cross-silo FL.
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