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Securing Federated Learning:
A Covert Communication-based Approach
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Abstract—Federated Learning Networks (FLNs) have been
envisaged as a promising paradigm to collaboratively train
models among mobile devices without exposing their local pri-
vacy data. Due to the need for frequent model updates and
communications, FLNs are vulnerable to various attacks (e.g.,
eavesdropping attacks, inference attacks, poisoning attacks, and
backdoor attacks). Balancing privacy protection with efficient
distributed model training is a key challenge for FLNs. Existing
countermeasures incur high computation costs and are only de-
signed for specific attacks on FLNs. In this paper, we bridge this
gap by proposing the Covert Communication-based Federated
Learning (CCFL) approach. Based on the emerging communica-
tion security technique of covert communication which hides the
existence of wireless communication activities, CCFL can degrade
attackers’ capability of extracting useful information from the
FLN training protocol, which is a fundamental step for most
existing attacks, and thereby holistically enhances the privacy
of FLNs. We experimentally evaluate CCFL extensively under
real-world settings in which the FL latency is optimized under
given security requirements. Numerical results demonstrate the
significant effectiveness of the proposed approach in terms of
both training efficiency and communication security.

Index Terms—Federated learning, secure aggregation, covert
communication, privacy attacks.

I. INTRODUCTION

Federated Learning Networks (FLNs) [1] have been pro-

posed as a distributed privacy-preserving collaborative model

training approach to alleviating societies’ concerns on the

exposure of sensitive data when building artificial intelligence

applications. In FLNs, a server and a large number of mobile

devices (MDs) perform multiple rounds of training iterations

through wireless model updates to build machine learning

models for specific tasks [2]. However, FLNs with frequent

model updates and communications are vulnerable to various

types of privacy attacks, such as eavesdropping attacks, infer-

ence attacks, poisoning attacks and backdoor attacks, which

in turn, have inspired a myriad of defense mechanisms (a.k.a.

countermeasures) [3].
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However, there are still major limitations for existing

countermeasures. On the one hand, each countermeasure is

designed to address a specific attack. Hence, to tackle multiple

different attacks, separate countermeasures are required. Such

a defense strategy can be costly. On the other hand, existing

countermeasures address attacks individually without unified

security protection for FLNs. There are potential conflicts be-

tween some countermeasures when deployed together, which

can further complicate FLN security issues. There is an urgent

need for a unified, efficient, and highly secure solution to

provide low-cost and effective defense for FLNs, and bring

this field closer to real-world applications.
Recently, Covert Communication (CC) has been introduced

as a promising security technique to prevent adversaries from

detecting the existence of wireless transmission links [4], [5],

[6]. Historically, the spread spectrum technique was adopted

to achieve CC through spreading the transmitted signal power

over a large time-frequency space. However, its covertness

cannot be well analyzed. Hence, channel artifacts, such as

additive white Gaussian noise channels, are used to hide

communications. The fundamental information-theoretic limits

of CC over random channels (i.e., the square root law) were

explored in [7]. Specific CC techniques, such as Artificial

Noises (AN) or jamming signals, were widely used to prevent

attackers from detecting the legitimate transmissions [4], [6].

Compared with the traditional cryptography and Physical

Layer Security (PLS) technologies, CC can provide higher-

level security by hiding transmissions that attract attackers’

attention [5].
As eavesdropping on the FL communication channels is

often the first step for malicious third parties to launch

attacks, we envision a Covert Communication-based Federated

Learning (CCFL) approach to secure the model transmissions

from the MDs to the FL server. The following key technical

challenge when re-contexting CC into FLNs needs to be

resolved. When the jamming signals are introduced to help

hide the model transmissions from the MDs to the server

in FLNs, they inevitably degrade the transmission rates and

thus increase the latency of FL. Hence, CCFL must jointly

optimize the transmit power of each MD, the jamming power

of the friendly jammer, and the local model accuracy at the

MDs. This envisioned approach can contribute to the federated

learning literature in the following ways:

1) Holistic Security: CCFL provides a unified and holistic

security framework to mitigate a broad range of attacks

on FL which involves eavesdropping on the communi-

cation channels between the MDs and the FL server.

http://arxiv.org/abs/2110.02221v1
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2) Cost Effectiveness: As CCFL is aimed at the key

enabling step for malicious third parties to launch attacks

on FLNs, it can preclude such attacks. In this way,

MDs are no longer required to host computationally

expensive countermeasures. This enables more resource-

constrained devices to participate in FL.

We carry out a case study grounded in real-world scenarios

to showcase the potential benefits of CCFL, in which the AN-

based CC technique is leveraged to hide the model transmis-

sions from the MDs to the FL server from a warden (i.e., an

attacker). Numerical results demonstrate significant advantages

of the envisioned CCFL approach.

II. PRELIMINARIES

In a typical centralized learning network, the MDs are

required to upload their local data to the central server through

wireless links. Then, machine learning models are trained in

the server (e.g., through Stochastic Gradient Descent (SGD)

[8]). Nevertheless, the broadcast nature and limited spectrum

of wireless networks as well as centralized data storage have

led to critical issues including risks of privacy leakage, high

communication overhead, and limited scalability.

To address the issues, FLNs have been proposed. As shown

in Figure 1, the MDs obtain a shared global model broadcast

by the FL server. They then train the local models with their

data, and upload the local model parameters (e.g., gradients)

to the server. After that, the server updates its global model

by aggregating the received model updates (e.g., through fed-

erated averaging [2]). These steps are repeated until the global

model converges. During this process, the MDs transmit the

model parameters instead of their local data. As a result, FLNs

significantly reduces communication overheads and avoids

privacy leakage by design.

A. Attacks on FLNs and Countermeasures

Due to the exposure of the communications between the

MDs and the server to any interested and capable parties,

FLNs generally have a large attack surface. Various attacks

such as eavesdropping attacks, inference attacks, poisoning

attacks, and backdoor attacks have been successfully mounted

against FLNs [3]. In the following part of this section, we

present common attacks in FLNs and discuss the correspond-

ing countermeasures.

1) Eavesdropping Attacks: In FLNs, the trained models

can leak some sensitive information about the owners of

the MDs (e.g., gender, occupation, and location) [9], [10].

In this context, eavesdropping attacks can occur when an

adversary intercepts, deletes, or modifies these models that

are transmitted between the FL server and the MDs. Since

eavesdropping attacks are relatively easy to perform and can

escalate to more severe cyber-attacks (e.g., Denial of Service

(DoS)1 and jamming2), they are considered as one of the

most common and fundamental attacks. Based on whether

1DoS can overwhelm the server by making it go offline and deny further
connection requests.

2Jamming can cause a poor model accuracy or even interrupt model
transmissions.

the attacker listens to private conversations passively or ac-

tively, eavesdropping attacks can be categorized into passive

and active eavesdropping attacks (a.k.a. man-in-the-middle

attacks). Note that man-in-the-middle attackers pretend to be

the intended FL server or MDs between these two entities

in FLNs, and get access to control the traffic and fake the

model transmissions. Unlike the passive eavesdropping attacks

which are often regarded as less harmful, the man-in-the-

middle attacks are severely harmful to FLNs.

Countermeasures: To mitigate eavesdropping attacks,

cryptographic methods and PLS have been proposed. The

cryptographic methods encrypt the transmitted models through

a secret key that is only known by its intended receivers

(e.g., the FL server). However, these methods also incur high

computation costs and system complexity. This is especially

challenging for FLNs involving a large number of MDs.

Unlike the cryptographic methods, the main idea of PLS is to

exploit the randomness of wireless channels and the AN (i.e.,

the jamming signal) to limit the quantity of models extracted

or intercepted by an eavesdropper. Nevertheless, PLS cannot

provide adequate security since the attackers are still able to

capture part of the confidential FL model by side-channel

analysis [5].

2) Poisoning Attacks: The two major types of poisoning

attacks are data poisoning and model poisoning. Through

modification of the training data (e.g., by flipping the labels

randomly or specifically), the malicious MDs can launch

data poisoning attacks and update incorrect model updates.

Furthermore, the malicious MDs can flip the sign of benign

model updates or adopt a predefined compromised model

to craft poisoned model updates, which tamper with the FL

model and reduces its performance [8]. Model poisoning can

be regarded to include data poisoning, since data poisoning

attacks ultimately act on the updated model, too.

Countermeasures: Two types of countermeasures are com-

monly employed to mitigate poisoning attacks on FLNs: 1)

anomaly detection-based, and 2) robust aggregation. Anomaly

detection-based methods are used to differentiate benign and

poisoned model updates. For example, poisoned model updates

can be identified and removed through analyzing their cosine

similarities or mapped low-dimensional representations [8].

On the other hand, robust aggregation methods aim resist

poisoned model updates. COMED, GEOMED, COTMED and

KRUM are the commonly-used robust aggregation methods

which replace the model averaging FL aggregation approach

with component-wise median, geometric median, component-

wise trimmed median and the shortest Euclidean distances

from others, respectively [8]. In addition, these two types of

countermeasures can be combined to into a workflow. The

main drawback is that they incur high computation costs, and

are not suitable for deployment on MDs.

3) Inference Attacks: Inference attacks fall largely into two

categories: 1) membership inference attacks and 2) property

inference attacks [3]. The membership inference attacks aim to

determine whether an exact data point was used to train a given

model. By observing SGD-based gradient updates, attackers

can infer a significant amount of private information and then

may launch a powerful attack (e.g., gradient ascent attack)
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Fig. 1. Covert communication-based model updates for secure FLNs.

against other MDs. On the other hand, property inference

attacks aim to infer properties of training data that are in-

dependent of the characterized features of a class. Meanwhile,

the attacker is assumed to have auxiliary training data correctly

labeled with the property they intend to infer.

Countermeasures: Differential Privacy (DP)-based solu-

tions and encryption-based solutions are commonly used to

mitigate inference attacks on FLNs. For DP-based solutions,

a rigorous randomization mechanism (e.g., a Gaussian noise

mechanism), is designed to inject additive noises into the

trained parameters before they are uploaded to the FL server

[10]. This guarantees that the addition or removal of a single

data sample or model parameter does not affect the outcome

of any inference. For example, [11] introduced a differentially

private SGD algorithm that can effectively protect the privacy

of parameters trained by deep neural networks. However, due

to the added noise in the local models from the MDs, the

overall model accuracy suffers. Encryption-based solutions

leverage encryption techniques to secure the data privacy

of the MDs when the local model parameters are shared.

On this basis, [12] proposed a homomorphic encryption-

based technique, which can protect sensitive information while

preserving model performance. Nevertheless, they incur high

computation costs and require complex system designs.
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TABLE I
SUMMARY OF VARIOUS HIGH-RISK ATTACKS ON FEDERATED LEARNING NETWORKS (FLNS) AND THE CORRESPONDING COUNTERMEASURES

Attack types Attack effect Source of Vulnerability Countermeasures Limitations

Eavesdropping attacks
Medium

but prevailing
MDs, compromised server

wireless transmission
Cryptographic methods/PLS

High computation costs/
inadequate security

Poisoning attacks High MDs, compromised server
Anomaly detection-based methods/

robust aggregation methods
High computation costs

Inference attacks High MDs, compromised server
Differential privacy-based protection/

encryption-based solutions
Relatively poor model accuracy/

high computation costs
Backdoor attacks High MDs Pruning and fine-tuning Low-rank security

4) Backdoor Attacks: Backdoor attacks aim to inject a

malicious task into the FL model without affecting the per-

formance of the model on the actual learning task. Compared

with poisoning and inference attacks, backdoor attacks are

more subtle. Hence, the backdoor attacks are significantly

more challenging to detect, especially when the accuracy of

the model on the intended learning task does not show any

variation which can alert the users to investigate the causes.

Countermeasures: There are two commonly used defenses

against backdoor attacks: 1) pruning and 2) fine-tuning. By

eliminating neurons that are dormant on clean inputs, pruning

reduces the size of a compromised network, thereby disabling

backdoor behaviors. However, a stronger pruning-aware attack

can be mounted to evade pruning-based defense by concen-

trating the clean and backdoor behavior on the same set of

neurons. Hence, [13] proposed the fine-tuning defense which

retrains a small number of local models on a clean training

dataset. Nevertheless, neither of these countermeasures offer

adequate protection against backdoor attackers at the moment.

Existing countermeasures can protect FLNs against the

corresponding attacks to different extents. However, as sum-

marized in Table I, all countermeasures have some limitations

when addressing these diverse attacks. They often incur high

computation costs or decrease the efficiency of FLN training,

which makes deployment on MDs challenging. Moreover, in

the worst-case scenario in which multiple types of attacks are

launched simultaneously, the detection of such attacks and

deployment of countermeasures might result in unintended

complications in addition to the prohibitively high resource

requirements and system complexity. Thus, a unified, efficient,

and highly secure FLN protection framework is needed for this

technology to become widely adopted.

III. COVERT COMMUNICATION-BASED FEDERATED

LEARNING

A. Covert Communication

Covert Communication (CC), a.k.a. low probability of de-

tection (LPD) communication, aims to mask the existence of

a legitimate wireless transmission from a watchful adversary

under the requirement of a certain covert rate for the intended

user [4], [7]. Generally, CC provides three major advantages.

Firstly, different from PLS which prevents an adversary from

knowing the messages sent by the transmitter, CC prevents

an adversary from knowing whether the transmission has

occurred. If the adversary cannot detect the transmission, it

will be unable to launch further attacks. Secondly, unlike

encryption technologies, CC is low-cost, and its performance

does not depend on the adversary’s computation capability.

Thirdly, CC has wide compatibility and can be easily adopted

to complement advanced distributed artificial intelligence tech-

niques, such as FL.

To improve the covertness of wireless links, various ap-

proaches have been developed based on the CC technique [4].

1) Noise Uncertainty: Two major sources of uncertain

noises are leveraged: background noise and random

AN [4]. The background noise is easily affected by

environmental factors such as temperature and humidity.

Hence, an appropriate communication scenario or time

should be chosen to enhance the covertness of the

communication link. Conversely, the random AN can

flexibly and efficiently amplify interference dynamics

and confuse the adversary [4]. In contrast to background

noise, the random AN is highly controllable and can be

designed to exhibit different distributions, which greatly

improves communication link covertness.

2) Multi-Antenna Technologies: By adequately exploiting

spatial degree of freedom, multi-antenna technologies

can help enhance the covertness of wireless links from

all directions [14]. Its realization requires beamforming

to generate spatial selectivity. Specifically, a beamformer

adjusts the corresponding amplitude and phase of the

signals on each element of an antenna array in such

a way that the superimposed radiation pattern is con-

structive in the desired direction and destructive in

other directions. As a result, the transmitted signals can

reach the desired receiver to enhance the data rate and

simultaneously null the transmission at the adversary

site. As the number of antennas increases, the antenna

array will have a higher beamforming resolution which

can be utilized to achieve a more reliable covert rate.

3) Jammer-Aided Technologies: There can be two types

of friendly jammers for enhancing the stealthiness: 1)

scheduled jammers, and 2) random jammers [6]. A

scheduled jammer is informed about the transmission

of the legitimate transmitter and releases its AN with

optimized parameters (e.g., jamming power). In contrast,

a random jammer is unaware of the transmission by

the legitimate transmitter and rather randomly or con-

tinuously transmits its AN. Compared with the random

jammer, the scheduled jammer is more efficient and has

more reliable covertness performance. For example, at

the time the legitimate transmitter starts to transmit a

codeword, the scheduled jammer turns down the power

of the transmitted Gaussian noise, which is turned back
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up at the moment the transmitter finishes transmitting.

4) Cooperative Relaying: By leveraging the cooperation

from intermediate node(s), cooperative relaying can

achieve CC [4]. Note that the access distance shows a

significant effect on covertness. For long-distance com-

munication, high transmit power is required to achieve

a target rate, which unavoidably impairs the covertness.

To remedy this issue, multi-hop forwarding-based coop-

erative relaying is used. The fundamental is to shorten

the communication distance of each hop to maintain the

required transmit power low, leading to a low detection

probability of the adversary. Through this technique, the

covertness performance can be considerably enhanced.

CC has demonstrated its superiority. It is a promising

foundation for building a holistic security framework for

FLNs. To achieve this goal, there are still several technical

challenges that need to be resolved. On the one hand, the

unified security of CC may not be enough to counter some

attacks, especially when the adversary possesses strong detec-

tion capability. Hence, it is necessary to introduce additional

covertness techniques. On the other hand, the enhancement

of system covertness may be at the expense of other system

performance metrics, such as latency or transmission rate. This

motivates us to focus on the overall resource optimization of

FLNs and forge a well-functioning system. In the next section,

we discuss a vision towards a covert communication-based

federated learning (CCFL) framework.

B. The Envisioned CCFL Approach

In FLNs, the learning process involves multiple rounds of

communications between MDs and the FL server. Adversaries

can launch eavesdropping attacks and extract model parameter

information via a weak channel condition. By detecting the

existence of model updates, it is possible for eavesdropping

attacks to escalate into more severe forms of attacks (e.g., DoS,

jamming, and black holes) to manipulate FL model updates

and aggregations.
To curb these cyber attacks effectively and preclude them

from escalating, we envision incorporating CC into the FLN

training process to hide the occurrence of model update

transmissions. Without awareness of these transmissions, it is

hard for the adversary to lunch attacks effectively. Since the

large-scale FL devices are always configured with orthogonal

channels, CC can deliver holistic security for the FL MDs

through distributedly deploying it to each orthogonal channel.

In addition, the distributed power control for CC incurs

lower computation costs than existing countermeasures such as

cryptographic methods and PLS. Multi-antenna technologies

and cooperative relaying are more suitable for the downlink

global FL model broadcast. The noise uncertainty and jammer-

aided techniques are useful for securing the more vulnerable

uplink FL model updates.

C. A Case Study of CCFL

We show a case study in which the jammer-aided technol-

ogy is used to secure the local models transmitted from the

MDs to the FL server for defending against eavesdropping

attacks.
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Fig. 2. Jammer-based covert communication for FLNs.

1) System Model: We consider an FL network as shown in

Figure 2 which consists of N devices, one FL server located at

a Base Station (BS), and an attacker Willie. To achieve high

efficiency, the orthogonal frequency-division multiple access

technique is used for local model uploading by the MDs.

A friendly jammer with N antennas is deployed to transmit

AN signals continuously with total power pj to Willie. To

secure the model transmissions of all the devices, the jammer

leverages the barrage jamming technique that transmits the AN

signals over the full bandwidth occupied by the devices. Note

that the AN signals also cause interference to the BS and may

reduce the Signal-to-Interference-plus-Noise-Ratio (SINR) at

the BS. The jammer is self-interested and rational. Thus, the

server needs to pay the jammer a fee for the jamming service.

For simplicity of discussion, a linear cost model is adopted in

which the cost paid to the jammer is linearly proportional to

pj .

The FL model training process involves multiple iterations.

In each iteration, the MDs train their local models to achieve

a local accuracy η (in terms of training error). At the end

of each iteration, each MD can decide to transmit or not to

transmit its local model to the FL server with a pre-defined

transmission probability. When a device decides to transmit

its model update to the server, and Willie judges that the

device does not execute the transmission, then a miss-detection

occurs. When Willie judges that the device is transmitting the

update while the device does not, then a false alarm occurs.

We define the covert probability for a device as the sum of

the false alarm probability and the miss detection probability.

We expect a high covert probability for situations in which

Willie cannot correctly detect the model transmission of any

device in the network. For this, the cover probability for the

device in the FL network needs to be greater than a security

requirement (1 − ǫ) [15], where ǫ is the security threshold.

This is the CC constraint.

To prevent Willie from detecting the local model transmis-

sions by the devices, the server can request the jammer to

transmit the AN signal with a higher power. However, this
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Fig. 3. The number of devices is set as N = 50. The devices, jammer, and Willie are distributed randomly in a square area of size of 500 m × 500 m.
The transmission probability of the devices is 0.7, and their maximum power is 10 dBm. Each device has 500 data samples for its local training, and the
device has a maximum computation capacity of 2 GHz. The total bandwidth for the model transmissions of the devices is 20 MHz. The price per jamming
power unit is 0.5$ that is set by the jammer, and the budget of the server is 30$. The security requirement is ǫ = 0.1.

increases the cost that the server needs to pay the jammer and

also reduces the SINR at the BS, leading to an increase in FL

latency. Otherwise, the server can increase the local accuracy η

at the devices to reduce the number of local iterations, thereby

reducing the computation time at the devices. However, this

approach requires more global iterations to achieve high

accuracy, thereby increasing the FL latency. Therefore, the

joint optimization problem must simultaneously consider: 1)

jamming power, 2) transmit power of the devices, and 3)

local accuracy at the devices, in order to minimize the FL

latency, subject to: 1) the CC constraint, 2) the maximum

power of the devices, 3) the maximum power of the jammer,

and 4) the FL server’s budget. Here, the FL latency is defined

as the maximum latency among the devices. The objective

function and the CC constraint are non-convex. Thus, the

optimization problem is non-convex. To solve the problem,

we can adopt an alternating descent algorithm. The algorithm

divides the original problem into two sub-problems that are

alternately optimized at each iteration using successive convex

approximation.

2) Numerical Results: This part discusses the impact of

important parameters on the latency and the security perfor-

mance of the FL network. Figure 3(a) shows the impact of

the number of MDs N and the security threshold ǫ on FL

latency. As can be observed, given the security threshold ǫ, the

FL latency increases as the number of devices N increases.

The reason is that the same fixed bandwidth is allocated to

more devices. This decreases the transmission rate of each

device, thereby increasing FL latency. It can also be observed

from Figure 3(a) that, as the security threshold ǫ increases, FL

latency decreases. The reason is that as ǫ increases, the security

requirement (1 − ǫ) decreases. The low-security requirement

allows the devices to transmit the models with higher transmit

power. This leads to increases in SINR at the BS, thereby

decreasing FL latency. Recall that when (1 − ǫ) decreases,

Willie can detect the transmissions of the devices more easily.

As such, there is a trade-off between security performance and

FL training efficiency.

Now, we discuss the impacts of the security threshold ǫ and

the server’s budget χ, FL latency and security performance. As

shown in Figure 3(b), as ǫ increases, the covert probability of

the FL network decreases. This is obvious since as ǫ increases

(i.e., (1 − ǫ) decreases), a lower covert probability is enough

to satisfy the CC constraint. Figure 3(b) further shows that

the covert probability remains almost constant over different

budget settings by the FL server. The reason is that the covert

probability depends on the ratio of the jamming power to

the transmit power of the devices. As the budget varies, the

jamming power bought from the jammer and the transmit

power committed by the devices change together to satisfy the

security requirement. Therefore, the covert probability remains

unchanged over diverse budget values.

Nevertheless, varying the budget of the server leads to

changes in FL latency. As shown in Figure 3(b), as we decrease

the server’s budget from χ = $30 to χ = $10, FL latency

increases. The reason is that the server with a low budget can

only buy a low amount of power from the jammer. The lower

jamming power requires the devices to reduce their transmit

power in order to satisfy the security requirement (1− ǫ) (i.e.,

to prevent Willie from detecting the transmissions from the

MDs). This leads to decreases in SINR at the BS, thereby

increasing FL latency. Under a higher budget setting (i.e., $30),

FL latency does not change significantly. The reason is that the

server already finds an optimal jamming power that minimizes

the FL latency while guaranteeing the security requirement,

and it does not need to buy more power from the jammer.

For this, the devices are not allowed to increase the transmit

power due to the fixed security requirement. Thus, FL latency

remains stable even when the budget is high.
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IV. CONCLUSIONS AND FUTURE DIRECTIONS

In this article, we present a vision towards the holistic and

cost-effective protection of FLNs from attacks through a covert

communication-based approach. We start by discussing exist-

ing security issues for distributed collaborative training of FL

networks. We then review key existing covert communication

techniques, and present a case study in which jammer-based

CC is used to prevent an attacker from detecting the local

model transmissions by the devices involved in an FL setting.

The use of the AN signals leads to the increase of the FL la-

tency. Thus, we have investigated the FL latency minimization

problem subject to the CC constraint. The numerical results

provide an overview of the impact of important parameters

such as the number of devices, security requirement, and

budget of the server on FL latency and security performance.

To the best of our knowledge, this is the first exploration on the

potential of leveraging CC to enhance the security of FLNs.

For this emerging field of research, many interesting and

challenging problems remain open:

• Impact of multiple attackers: In this work, we assume

that there is a single attacker in the FL network. In fact,

there may be multiple attackers, and the server needs

to prevent all of them from detecting the transmissions

of the devices. This is challenging since the attackers

may have different detection capabilities. One solution is

to design the server to focus on defending against the

attacker with the best detection capability.

• Dynamic pricing of jamming power: In this work, the

jamming power price is fixed. In fact, the jammer can

be self-interested and can dynamically set the price in

different FL iterations to maximize its benefit. The server

needs to account for time-varying prices to adapt the

jamming power to avoid exceeding its budget.

• Use of intelligent reflection surface (IRS): To reduce the

high cost for the jamming power, IRS can be deployed

to enhance CC in the FL network. An IRS consists

of reconfigurable reflecting elements that can reshape

the phases, amplitudes, and reflecting the angles of the

environmental signals. For this, the phase shifts of the

IRS can be configured to maximize the SINR at the BS,

subject to the CC requirement.
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