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Digital Twin for Networking:
A Data-driven Performance Modeling Perspective

Linbo Hui, Mowei Wang, Liang Zhang, Lu Lu, and Yong Cui

Abstract—Emerging technologies and applications make the
network unprecedentedly complex and heterogeneous, leading
physical network practices to be costly and risky. The digital
twin network (DTN) can ease these burdens by virtually en-
abling users to understand how performance changes accordingly
with modifications. For this “What-if” performance evaluation,
conventional simulation and analytical approaches are inefficient,
inaccurate, and inflexible, and we argue that data-driven methods
are most promising. In this article, we identify three requirements
(fidelity, efficiency, and flexibility) for performance evaluation.
Then we present a comparison of selected data-driven methods
and investigate their potential trends in data, models, and
applications. Although extensive applications have been enabled,
there are still significant conflicts between models’ capacities to
handle diversified inputs and limited data collected from the pro-
duction network. We further illustrate the opportunities for data
collection, model construction, and application prospects. This
survey aims to provide a reference for performance evaluation
while also facilitating future DTN research.

Index Terms—Network Performance Evaluation, Digital Twin
Network, Data-driven Performance Modeling

I. INTRODUCTION

THE endless pursuit for high-throughput and low-latency
urges emerging technologies (e.g., 5G, cloud comput-

ing, edge computing) to be employed. Meanwhile, high-
performance network services, in turn, have spawned a batch
of new applications (e.g., live streaming, virtual reality, cloud
gaming). These technologies and applications make the net-
work unprecedentedly complex and heterogeneous, leading to
costly and risky practices on the physical network. In this
context, a digital twin network (DTN) [1] can significantly
ease the practitioners’ burdens. DTN is a virtual representation
of the physical communication network that continuously
updates with the latter’s performance, maintenance, and health
status data. Unlike typical digital twin technologies that repli-
cate physical objects, DTN is primarily concerned with the
abstraction of network states and behaviors. DTN aims to build
digital twins for universal communication networks and is not
restricted to specific applications or contexts.

Network operators often desire to develop optimization
techniques to improve network performance, which mainly
involves configuration tunning and new-policy exploration.
New configurations and policies must be fully verified before
being deployed in physical networks. DTN can be used as a
safe and cost-efficient environment for performance evalua-
tion. Operators may explore and verify their new techniques
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in DTN, avoiding complicated and risky operations on phys-
ical networks. The optimization and other scenarios (§II.A)
demand performance evaluation for “What-if” scenarios [2],
which means the DTN can tell what the network performance
is if there are alterations in influencing factors (e.g., traffic
volumes, device configurations, routing schemes, topologies).

Network performance evaluation has attracted researchers’
interest for decades. Experiments (e.g., A/B testing) and mea-
surements are two techniques for performance evaluation with
physical production networks, which are both high-risk, high-
overhead, and high-complexity for “What-if” scenarios. In
virtual environments, simulation and modeling are two funda-
mental approaches for “What-if” performance evaluation. Net-
work simulators (e.g., NS-2, NS-3, OMNet++) process virtual
packets under pre-defined mechanisms (e.g., congestion con-
trol algorithms, queueing policies) and generate performance
metrics (e.g., throughput, delay, loss rate), which allow the
collection of arbitrary information without impacting system
behavior. Such packet-level simulators are delicately designed
and tightly coupled, leading to inefficient execution. The 3-
4 orders of magnitude slower than real-time [3] determine
that current simulators are unacceptable for DTN. Modeling
is much different from simulation, which directly establishes
the relationships between influencing factors and performance
metrics. Conventional analytical modeling methods (e.g., net-
work calculus, queuing theory) adopt Poisson Process to sim-
plify the packet arrival and departure process, which can not
describe the incast [4] and leading to inaccurate estimation.
Simulators are heavy, while analytics are formalistic, and both
are inflexible towards rapid and continuous network evolution.

With the renaissance of machine learning in recent years,
data-driven techniques, especially neural networks (NNs),
seem promising for DTN’s performance evaluation. Data-
driven methods usually pre-define a series of possible mapping
functions and utilize abundant data to determine a set of
parameters (i.e., training) that accurately map the influencing
factors to performance metrics. The mapping function is able
to describe various relationships, which provides flexibility
for modeling complex network mechanisms. Trained data-
driven models are lightweight and can efficiently generate
outputs with only one-time forward computation. Researchers
have developed specialized structures for specific tasks (e.g.,
convolutional neural networks for computer vision, recurrent
neural networks for natural language processing) and applied
techniques (e.g., regularizations, dropout) to solve the over-
fitting and generalization problems, making trained models
reliable. With these advantages, data-driven methods can help
to mitigate the inefficiency, inflexibility, and inaccuracy issues.
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In this article, we identify three requirements (fidelity,
efficiency, and flexibility) for network performance evaluation
by investigating four typical network scenarios. Then we make
a comprehensive comparison of selected data-driven perfor-
mance models on data, models, and applications. The data
utilized are diversified and mainly collected from simulation
environments. The models develop from the classical-method
stage, vanilla-NN stage to the customized-NN stage and
strive to meet three requirements. Though enabled extensive
applications, models’ practical usages are still rare, which
indicates the significant conflicts between models’ powerful
expression abilities and the shortage of practical data from
the production environment. Based on the above, we further
describe opportunities and challenges for performance evalua-
tion from data collection, model construction, and application
prospects. DTN is undergoing rapid development, and per-
formance evaluation is essential for DTN’s construction. This
article surveys network performance evaluation from a data-
driven perspective. We hope that this survey will not only serve
as a favorable reference for performance evaluation but also
facilitate future research towards DTN.

II. REQUIREMENTS FOR PERFORMANCE MODELS

A. Scenarios and Requirements

Researchers have proposed a general DTN architecture [1]
including three layers, as Figure 1 shows. It needs to periodi-
cally collect the static data (e.g., topology, configurations) and
continuously collect the runtime data (e.g., link utilization,
traffic volume) and populate them into DTN. DTN then
reconstructs the internal relations of collected data to represent
the physical network state, which enables the “What-if” ability.
DTN will benefit network practices by providing a real-time
and zero-risk performance evaluation environment. We inves-
tigate four typical network scenarios of planning, operation,
optimization, and upgrade to identify specific requirements for
performance models.

• In the planning scenario, designers need to ensure the
planning network’s overall performance meets the re-
quirements of the given topology, configurations, and
demand traffic. The model must generate performance
results under different topologies, configurations, and
traffic loads, which requires the model to be accurate on
various inputs combinations.

• When in operation, engineers hope to know about the
real-time performance changes and quickly respond to
potential anomalies. These anomalies must be quickly lo-
cated or detected once they appear. Real-time monitoring
and anomaly detection require the model to efficiently
depict the physical network performance.

• Network optimization usually involves configurations
tuning and new-policy exploration. Configurations and
policies must be fully verified before being deployed in
practice. The model is an ideal zero-risk environment to
explore schemes and evaluate their performances under
various scenarios before deployment.

• Network upgrade often includes topology changes and
link expansions. Operators may wonder how to change

“What-if” on
performance evaluation

Access network Backbone network Datacenter network

simulators

data process

Time

Tr
af
fic

runtime data

static data

modeling
Time

D
at
a

analytical data-driven

pr
ob
le
m
s solutions

Planning Operation Optimization Upgrade

data collection

Digital Twin Network

reflect the physical
network state

Fig. 1: The Digital Twin Network Architecture.

the topology and where to expand the bandwidth under a
limited resource budget. The model needs to evaluate the
performance under changed topologies and link capacities
and tell where the bottlenecks are to maximize the
upgrade effectiveness.

From the above respects, there are three requirements (i.e.,
fidelity, efficiency, and flexibility) that a performance model
must strive to achieve. Fidelity is the basic requirement that
ensures accuracy for all scenarios. Efficiency is essential for
operation and optimization because of real-time and frequent
performance evaluation. Flexibility mainly means the model
can evaluate performance with network changes, facilitating
network planning, optimization, and upgrade. We further elab-
orate on three requirements as follows.

B. Requirements Elaboration

1) Fidelity: The fidelity shows how accurate the metrics
from performance models are with the physical network. We
divide the fidelity into three levels (i.e., long-term, short-
term, one-to-one) from the temporal perspective. Long-term
represents statistic results over a period of time, while short-
term describes the detailed changes in time slots, and one-to-
one precisely depicts every packet of the physical network.
Long-term steady evaluation requires the model to reason-
ably abstract the complex mechanisms, such as RouteNet [5]
can represent arbitrary routing schemes. It further requires
describing network conditions and temporal dependencies to
represent the short-term process, such as xNet [6] learning the
state transition function between time steps. One-to-one means
we must accurately model diverse mechanisms’ influence
on each packet. MimicNet [3] keeps end-hosts function and
models network clusters’ effects on packets, which takes the
first step towards one-to-one modeling.

2) Efficiency: Efficiency stands for two parts. One is that
performance models can be faster than the real-time physical
network. The other is that models should be easy to deploy and
consume rational resources. Faster than the physical enables
users to forecast performance and react in advance to tackle
potential anomalies. Unlike simulators, it needs to simplify
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complex mechanisms and discard unnecessary details (e.g.,
packet payload, switching process) to speed up the evaluation.
There is often a trade-off between the modeling granularity
(e.g., packet-level [3], flow-level [6], [7], path-level [5], [8])
and speed, which are determined by the target problem set-
tings. The model needs to consider the trade-off and serve as
a cost-effective backend to evaluate performance metrics.

3) Flexibility: The network is evolving rapidly. When
topology, configurations, or mechanisms change, the model
must accurately generate performance metrics as well. We
hope that the model can be iteratively upgraded towards
new mechanisms, which means the model must be flexible.
There usually remain unchanged parts in a changing system,
inspiring us to leverage layered or modular philosophies with
the flexibility problem. Layers and modules are decoupled but
orchestrated to function in one model, where we can separately
construct every module. New mechanisms will not affect the
whole model but only related modules, which can be either
upgraded or replaced. Flexibility will accelerate the process of
building an accurate performance model.

III. SELECTED PERFORMANCE MODELS

A. Advances Overview

Network researchers have shown great interest in data-
driven performance modeling in the past ten years. We select
some representatives and make a comprehensive comparison
of problem scopes, data, models, applications in Table I.
They are divided into three groups by applied layers. Ex-
isting approaches are developed under different performance
evaluation tasks where metrics include delay, throughput, loss
rate, flow completion time (FCT), etc. Some works focus
on performance inference or estimation, and others focus on
performance prediction. There are no significant differences
between the two focuses, as they just mean the evaluation of
current or future performance.

Data, model, and application are three main aspects of a
data-driven approach. Data is essential to train the model,
which is distinct from conventional analytical or simulation
approaches. To some extent, the available data in quantity
and quality limits how accurate a data-driven model will
perform. Meanwhile, models should be reasonably designed,
and a well-designed model can efficiently extract variables’
relations to construct itself. Researchers have also developed
specific techniques on model architecture and loss function to
obtain more accurate results. Most models are not only applied
for targeted tasks but also leveraged for other scenarios,
demonstrating the broad prospects of performance models.

From an overview, we summarise potential trends in data,
models, and applications. The data utilized are diversified but
mainly acquired from the simulation environment, indicating
the major conflict between models’ ability to handle complex
inputs and the shortage of data collected from the production
network. Diversified data can yield better fidelity and practical
applications. Further, the leveraged techniques are advancing
with machine learning development, resulting in more delicate
models. With the stronger abstraction and powerful expres-
siveness, models’ fidelity and flexibility are improved. At last,
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Fig. 2: Qualitative comparison on data diversification, model
complexity and application scenarios of selected data-driven
performance models

these models have enabled extensive application scenarios
for different layers, mainly including network, transport, and
application layers. The lower the layer, the more detailed
modeling abstractions are required. With the advancement of
modeling techniques, there is roughly a tendency from higher
to lower layer scenarios. Researchers also realized the great
potential of performance models and utilized them to solve
problems that seemed to be challenging in the past, such as
modeling the routing schemes [5]. Here we give a qualitative
comparison of data diversification, model complexity, and
application scenarios of selected models as Figure 2 shows.

B. Data Source, Inputs and Outputs

1) Data source: Data source mainly involves simulation,
testbeds, and production, where the measurement difficulty
sharply increases. We notice that most of the selected works
[3], [5]–[7], [11]–[15] are collecting data from the simulation
environment. They often leverage packet-level or flow-level
simulators, which are costless and relatively easy to deploy.
Though various data are convenient to collect in such a
restrained environment, the data fidelity may deviate from
production. Also, large-scale simulations with packet-level
simulators may need a long time to complete.

Some works [8], [10] build testbeds to obtain data. Despite
the high cost, testbeds are closer to the real environment
and have fast speed. Researchers can collect abundant clean
data from controlled testbeds. However, both simulators and
testbeds have problems with the traffic model. The flow
patterns and distributions are hard to describe because of
complex and diverse traffic behaviors. Without reliable traffic
models, the credibility of collected data will reduce.

Directly measuring data from production networks is won-
derful, where simulation time and traffic model are not prob-
lems anymore. WISE [2] used tcpdump data from Google’s
global web-search content delivery network (CDN), and Sun et
al. [9] used a proprietary dataset of HTTP throughput measure-
ment from the operational platform of iQIYI. Real data can
bring higher credibility and enables the performance models
to be deployed for practical usage. However, collecting plenty
of consistent and clean data from the production environment
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TABLE I: Comparison of Selected Data-driven Performance Models on Data, Models and Applications

Groups Authors
Year@Pubs

Problem
Scopes

Data
(Source, Inputs and Outputs)

Models
(name, techniques, etc.) Applications

A
pp

lic
at

io
n

L
ay

er Tariq, et al.
2008@

SIGCOMM [2]

estimate service
response time

S: Google’s global web-search CDN
I: tcpdump data with many features (e.g.,
timestamp, region, RTT, response time)
O: service response time distribution

WISE uses Causal Baysian Network
to learn the causal structure and
applies statistical intervention to
predict the response time

evaluate the response
time under “What-If”
scenarios

Sun, et al.
2016@

SIGCOMM [9]

predict
throughput

S:iQIYI’s operational CDN platform
I: clientIP, ISP, AS, city and server
O: throughput

CS2P learns the parameters of Hidden
Markov Model (HMM) via expectation-
maximization (EM) algorithm

predict throughput
for video bitrate
adaptation

Tr
an

po
rt

L
ay

er

Mirza, et al.
2010@ToN [10]

predict TCP
throughput

S: laboratory WAN testbed
I: transfer size and path properties (e.g.,
queuing delays, loss, available bandwidth)
O: TCP throughput

Support Vector Regression (SVR)
with Radial Basis as kernel function,
loss funciton is ε-insensitive loss with
L2 regularization

predict end-to-end
TCP throughput of
wide area paths

Nunes, et al.
2014@JWCN [11]

estimate RTT of
TCP connection

S: QualNet simulation
I: three hyperparameters, measured RTT
O: next RTT

online fixed-share experts learning
with weights updated every trail,
loss is a piecewise function

implemented inLinux
kernel to estimate
TCP RTT

Geyer, 2019@
Performance

Evaluation [12]

evaluate the
performance of
a topology

S: from simulation
I: graph with nodes of flows and queues
O: throughput of TCP flows, end-to-end
latencies of UDP flows

DeepComNet uses Graph Neural
Network (GNN) with Gated Recurrent
Units, loss function is MSE

predict average TCP
flows bandwidths and
UDP flows end-to-
end latencies

Suzuki, et al.
2020@ICOIN [13]

infer end-to-
end delay

S: Fluid-based Simulator
I: some delays of node-pairs and node
features (e.g., indicator and degree)
O: delays of other node-pairs

semi-supervised GCN learning with
rectified linear unit andlogarithmic
softmax classifier, loss function is
negative log likelihood

infer delays of other
node pairs from
measured delays at
some nodes.

Zhang, et al.
2021@

SIGCOMM [3]

model DCN
clusters’ effects
on packets.

S: OMNet++ simulation
I: scalable features (e.g., number of racks
per cluster, packet size, priority bits)
O: packet latency in the cluster

MimicNet’s internal model uses
LSTM model, loss fucntion is
Weighted-BCE with Huber, two
losses are weighted

scalable, faster, and
tunable performance
estimation for DCN

Wang, et al.
2022@

INFOCOM [6]

model network
performance

S: NS-3 simulation
I: traffic, buffer size, ECN, topology, queue
policy, routing scheme, etc.
O: path-/flow-level delay/throughput, FCT

xNet uses three NGN blocks to build
the state transition model, L2 loss
function is used

online QoS monitoring,
“What-if” simulation,
offline planning

N
et

w
or

k
L

ay
er

Xiao, et al,
2018@NetAI [8]

infer path delay
and loss distri-
bution

S: testbeds of DCN and WAN
I: ports’ load matrix in every four seconds
O: path delay and loss distribution in
every minute

Deep-Q uses a variational auto-
encoder (VAE) enhanced by the
long short term memory (LSTM),
loss function is Cinfer-loss

infer QoS metrics of
given traffic matrix

Mestres, et al.
2018@

BigDAMA [14]

model end-to-
end delay

S: OMNet++ simulation
I: traffic matrix of various scenarios
O: end-to-end delay matrix

neural networks model with different
parameters, loss function is MSE
with L2 regularization

model end-to-end
delay as function of
traffic matrix

Wang, et al.
2018@

SIGMETRICS [15]

evaluate the
performance of
DCN topology

S:customized flow-level simulator
I: demand traffic matrix and topology
configuration
O: performance metrics score

xWeaver’s scoring module uses two
convolutional neural networkwith a
fully-connected neural network, loss
function is not mentioned

evaluate and infer
the propertopology
of given traffic

Rusek, et al.
2020@JSAC [5]

model the path
delay, jitter or
loss

S: OMNet++ simulation
I: topology, routing schemes, link capacities,
and path steady traffic
O: path mean delay, jitter and loss

RouteNet uses Message Passing
Neural Network (MPNN) framework,
loss is negative log likelihood

QoS-aware routing
optimization, budget-
constrained network
upgrade

Li, et al.
2020@CN [7]

model FCT
in DCN

S: DiffservNetwork simulator
I: flow size and start time, ToS, protocol,
bandwidth, etc.
O: FCT

GNN model (three Graph Networks
blocks as encoder, core, decoder),
loss function is MSE

flow routing and
scheduling, topology
management for
trafficoptimization

is still costly. Specialized equipment and techniques are often
needed to take measurements. Even so, some metrics (e.g.,
queue length [4]) can not be directly measured. High-precision
time synchronization on devices also hinders accurate mea-
surements of time-related metrics.

2) Inputs: Inputs are various for different tasks. Some
works [2], [5], [7], [9], [10] take multiple discrete or con-
tinuous variables as inputs. WISE [2] inspected a tcpdump
dataset and found that a series of variables (e.g., timestamp,
number of sent packets, client region, round-trip time (RTT),
response time) are responsible for service response time. Mirza
et al. [10] proposed that incorporating path properties (e.g.,
queuing delays, loss, available bandwidth) as inputs could
improve history-based TCP throughput prediction. CS2P [9]
picked a given set of features from all possible features (e.g.,
client IP, ISP, AS, city, server) combinations to aggregate
session clusters. RouteNet [5] utilized path steady traffic under
various topologies, routing schemes, and link capacities to
infer the path delay and loss rate. Li et al. [7] took flow size,
start time, type of service (ToS), protocol, and link bandwidth

to model flow completion time (FCT). Though it introduces
a heavier burden, diversified inputs will yield more accurate
outputs and stronger generalization ability.

There are also works [8], [11]–[15] taking fewer features
as inputs. Such works often focus on given scenarios and
tackle specific tasks. Nunes et al. [11] and Suzuki et al. [13]
only used measured metrics (RTT/delays to some nodes)
to estimate homogeneous metrics (next RTT/delays to other
nodes). xWeaver [15], Deep-Q [8], and Mestres et al. [14]
preferred to use traffic matrixes to model end-to-end perfor-
mance matrixes, where topology and other configurations were
specified. DeepComNet [12] employed lower-level features
(graph representation of topology and flows) to evaluate the av-
erage performance of network topology. Fewer input features
can reduce the measurement costs and enable fast execution,
improving efficiency under specific settings.

3) Outputs: Outputs are performance metrics (e.g., RTT,
delay, throughput, loss rate, FCT) with fewer dimensions than
inputs. The majority of the works [5], [7], [9], [10], [12]–[15]
aim to evaluate long-term average performance under steady-
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state. Mirza et al. [10] and CS2P [9] both predicted throughput
in a period. xWeaver [15] and DeepComNet [12] both esti-
mated the given topology’s steady performance. Mestres et
al. [14] and RouteNet [5] both evaluated path mean delay,
which reflected the overall path performance under steady
traffic. Suzuki et al. [13] inferred end-to-end delays of node
pairs under persistent TCP flows. Li et al. [7] modeld FCT
in DCN. Above long-term performance evaluation facilitated
decision-making for target tasks.

Unlike the average metrics above, generating metrics dis-
tributions enables users to evaluate the performance from
a probabilistic point. WISE [2] estimated service response
time distribution under “What-if” scenarios and could provide
the percentage guarantee for service level agreement (SLA)
requirements. Deep-Q [8] verified that some quality of service
(QoS) metrics are not a scalar but a random variable. It inferred
path delay and loss distributions over time intervals. Deep-Q
also provided performance changes over time, which enabled
dynamic performance evaluation from a temporal dimension.
Nunes et al. [11] estimated the next RTT with past measured
RTT. xNet [6] enabled temporal prediction on QoS inference
and FCT. MimicNet [3] modeled latency on each packet.
The temporal metrics reflect performance changes over time,
enabling more valuable applications (e.g., QoS monitoring,
anomalies detection, exploring policies).

C. Model Selection and Customization

From an overview of model construction, we divide recent
advances into three stages: classical-method stage, vanilla-NN
stage, and customized-NN stage.

1) classical-method stage: In this stage, classical methods
(e.g., Causal Bayesian Network (CBN), Support Vector Re-
gression (SVR)) are adopted for performance modeling tasks.
Though with fixed and straightforward forms, such methods
have shown good performance for specific tasks. WISE [2]
identified relevant features from vast variables and leveraged
CBN to construct the causal structure of these features. Then it
applied statistical interventions to changed features to estimate
response time under “What-if” scenarios. Mirza et al. [10]
leveraged SVR with Radial Basis kernel function to predict
TCP throughput. The loss function is ε-insensitive loss with
L2 regularization. SVR has a solid theoretical foundation
and is favored in practice for its excellent empirical perfor-
mance. Nunes et al. [11] used lightweight Experts Framework
to perform online learning, which showed high speed with
reasonable accuracy. They developed a dedicated piecewise
loss function to describe the error between prediction and
measurement. CS2P [9] employed Hidden Markov Model
(HMM) to capture the state-transition behaviors for similar
clusters to predict throughout for video bitrate adaptation.

In this stage, classical data-driven techniques often have
fixed forms and few empirical hyperparameters, where loss
functions are easy to determine. Based on this, there is not
much space to design particular architectures for specific tasks.
Researchers need to abstract the problems and pay attention
to feature engineering. These models are very efficient and
have high fidelity when properly applied, while they may not

be flexible for network evolution. With fixed forms, it is chal-
lenging for them to model complicated network mechanisms,
leading to very limited applications.

2) vanilla-NN stage: With the development of computing
technology and abundant available data, NNs bring data-driven
techniques into a new era. NNs are adopted for network
performance modeling as well, and this enables the vanilla-NN
stage. xWeaver [15] and DeepComNet [12] both leveraged NN
techniques to evaluate the performance of a given topology.
xWeaver can explore optimal topology for given traffic, where
a scoring module was used for evaluation. The scoring module
used two Convolutional Neural Networks (CNNs) to extract
information from traffic and topology configuration separately,
with a fully-connected NN to output the performance score.
DeepComNet represented flows and queues as graph nodes.
When a flow traverses a queue, an edge is connected with
the flow node and the queue node. It then leveraged Gated
Graph Neural Network (GGNN) to evaluate topology. Mestres
et al. [14] wondered whether NN could accurately model the
delay as a function of the input traffic. They evaluated NN with
different hyperparameters (i.e., number of hidden layers, num-
ber of neurons per layer, the activation function, the learning
rate, and the regularization parameter) and gave an affirmative
answer. Suzuki et al. [13] performed semi-supervised learning
with Graph Convolutional Networks (GCN) to infer end-to-
end delay. They modeled the problem as a classification ques-
tion and used a logarithmic softmax classifier. RouteNet [5]
utilized Message Passing Neural Network (MPNN) to model
the relationships between links and paths, outputting the path
mean delay, jitter, and loss. Li et al. [7] abstracted flows as
graph nodes and links as graph edges. They input features of
flows and links to the model, built with three Graph Network
(GN) blocks, to output FCT.

The above works addressed problems with suitable NN
techniques, where model structures and loss functions keep
conventional. Emerging NN methods are directly adopted
for specific tasks. Their inputs are usually structured (e.g.,
graph structure) and can not be directly processed by classical
techniques. These inputs have multiple dimensions, enabling
better flexibility for long-term performance modeling.

3) customized-NN stage: Researchers have realized that
detailed performance modeling (e.g., short-time and one-to-
one) is more valuable and practical. Deep-Q [8] first modeled
path delay and loss distribution at time slots. They combined
a variational auto-encoder (VAE) with the long short-term
memory (LSTM). LSTM was used to extract information
from sequences of traffic matrix, and VAE could generate
metric distributions. A specially-designed Cinfer-loss module
could measure the error of predicted QoS distributions, which
enabled efficient and accurate training. MimicNet [3] provided
over two orders of magnitude speedup compared to regular
simulation for DCN of thousands of servers. It used a data-
driven model to replace the complex and slow clusters in
DCN while keeping the scalability, flexibility, and accuracy.
For accurately modeling effects (drop, latency, ECN, etc.) on
packets, they developed a loss function with Weighted-Binary
Cross-Entropy (BCE) and Huber loss. xNet [6] provides a gen-
eral approach to model the network characteristics of concern
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with graph representations and configurable GNN blocks. It
learns the state transition between time steps and rolls it out to
obtain the entire fine-grained prediction trajectory. xNet used
three Networking Graph Networks (NGNs) to build the state
transition model and applied loss for state transitions.

These works modeled the network at a dynamic view and
provided higher fidelity, where inputs and outputs changed
over time. They designed delicate NN models and adopted
domain knowledge for accurate modeling.

D. Applications Scenarios

In the beginning, there were not many applications for data-
driven models. Many works [2], [9]–[11], [14], [15] focused
on single-metric modeling. These works were designed for
specific tasks and were only used in the targeted scenarios.
WISE [2] evaluated the service response time under the
“What-if” scenarios. Nunes et al. [11] used online learning
to estimate the RTT of a TCP connection. It could be imple-
mented in the Linux kernel to improve the accuracy of RTT
estimation. Mirza et al. [10] and CS2P [9] both predicted
throughput under specific background for file transfer and
video bitrate adaptation separately. Mestres et al. [14] verified
that NN could accurately model end-to-end delay as a function
of the traffic matrix. They did not explore the use cases for
applications. xWeaver [15] was dedicated to evaluating the
performance of topology. It could be used to infer the proper
topology for given traffic. Above all, we have seen very limited
applications for these works. There may be multiple reasons
behind in aspects of data collection and modeling techniques.
Fewer inputs, single outputs, and specialized model is only
valid for specific tasks. Researchers did not consider applying
these models for more scenarios.

With the advances of various NN techniques, models are
becoming more powerful. Extensive applications have been
proposed for related works [3], [5]–[8], [12], [13]. Deep-
Q [8] hoped to infer performance metrics directly from traffic
statistics in real-time. It could also be used for performance
optimization. DeepComNet [12] was designed to evaluate the
performance of topology. Engineers could leverage DeepCom-
Net to predict TCP bandwidth or UDP end-to-end latency for
network planning. RouteNet [5] set an excellent example in
applying the model for multiple use cases. They modeled path
mean delay, jitter, and loss, which are used for QoS-aware
routing and budget-constrained network upgrades. Li et al. [7]
also showed multiple applications for traffic optimization of
flow routing and scheduling, topology management. Mim-
icNet [3] enhanced the packet-level simulator and provided
scalable, faster, and tunable performance evaluation for DCN.
xNet [6] proposed a modeling framework and demonstrated
three use cases of online QoS monitoring, simulation of
“What-if” scenarios, and network planning. It is evident that
data-driven models have more extensive applications than ever
before. Generalized data-driven methods have reduced the
difficulties of traditional problems with accurate, flexible, and
efficient modeling techniques.

IV. CHALLENGES AND OPPORTUNITIES

Data-driven performance evaluation is rapidly advancing,
and multiple applications will benefit from it. Despite the
bright prospects, there are still many obstacles to conquer,
with opportunities lying behind. We conclude challenges and
opportunities with respect to data collection, model construc-
tion, and application prospects as follows.

A. Data Collection

Available data for training strongly affects the accuracy
and generalization of learning models. Data from production
networks often with higher value but the amount and types
are limited. Real data for training will introduce a practical
model for deployment, such as WISE [2]. At the same time,
diverse data need to be collected under various configurations,
which is unrealistic in the production network. Simulation
environments may be a good alternative to solve the problem
of accuracy and diversification. However, such simulations
are often time-consuming. In addition, there is often a gap
between simulated data and real data, hindering trained models
from applying to production. Data-driven techniques have been
widely developed in broad fields, where general datasets and
benchmarks contribute a lot, while there are still no widely
recognized datasets and benchmarks for networking.

Experiments, measurements and data-driven methods are
all promising for these problems. Engineers may need to uti-
lize specialized techniques (e.g., high-precision time synchro-
nization, in-network telemetry) and equipment (e.g., sketch-
related) to accurately measure valuable data in production [4].
Meanwhile, various data-driven techniques are helping to
mitigate the problem too. Network domain knowledge can
be imposed on a few measured data for augmentation. Other
learning techniques with fewer data are also proposed, such
as few-shot learning and self-supervised learning. Transfer
learning may help to transform the simulation-data trained
model into a practical model with little real data. Data-driven
networking is evolving rapidly, and we are confident that
standard datasets and benchmarks will be formulated and
bring significant promotion to this exciting field.

B. Model Construction

Data-driven models need to reflect the complex mechanisms
of the network. There are both global and local, spatial
and temporal relations of network entities, and they tangle
together. Congestion control algorithms, queueing policies,
routing schemes, etc., all have essential impacts on network
performance. Congestion control algorithms function at flow-
level but global, where both end-hosts and in-network informa-
tion are utilized. Queuing policies schedule packets in the local
switching node, influencing the end-hosts behaviors. Routing
schemes manage flows at the path level, which has significant
effects on traffic distribution. In addition, these mechanisms
are time-sensitive (i.e., current state changes will impact future
states). How to accurately model the global and local, spatial
and temporal mechanisms are still challenging. We also notice
that data-driven models often consume many resources on data
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collection, training, tuning, etc. It is not trivial to ultimately
construct such a model from the blank.

We advocate using the modular or layered conception,
and analytical-NN combined cogitation to ease the complex
modeling problem. The tangled mechanisms can be decoupled
using modular or layered parts that may be built and updated
independently. Analytical methods can also be introduced
to enable higher accuracy and efficiency, which are often
derived from domain knowledge. Current data-driven models
are developed separately, while a foundation model might
be quite beneficial. Pre-trained foundation models can serve
as a backend and we only need to fine-tune it for specific
tasks. The foundation model for performance evaluation is
similar to Transformer for natural language processing, which
can provide universal and basic modeling ability. The chal-
lenges for constructing foundation models are the complicated
model constructions and the universal abstraction of network
mechanisms. A potential method is to describe the network as
packets sequences, where various mechanisms can be viewed
as impactions on the interval time between packets. We are
yearning for all kinds of foundation models to appear in the
near future.

C. Applications Prospects

Data-driven methods have advantages over conventional
methods in efficiency, fidelity, and flexibility, which conducts
great potential for the optimization of network configuration.
Search-based optimization policies will be promoted with
faster evaluation speed. What’s more, temporal NN models
can efficiently make sequential evaluations, thus enabling
model-based control optimizations. With the model faithfully
evaluating networks’ performance, the DTN can provide a
high-fidelity dynamic environment. Reinforcement learning
(RL) techniques are often employed for network decision-
making. The RL agent needs to perceive states from the
environment and make specific actions to maximize rewards.
The virtual dynamic DTN environment is an ideal playground
for RL algorithms to safely explore new policies. There are
also emerging technologies (e.g., Artificial Intelligence for
IT Operations (AIOps), Self-driving Networks) to alleviate
engineers from heavy manual operation works, where DTN
can serve as an exploration and verification environment.

V. CONCLUSION

Though many challenges ahead, we will ultimately achieve
the DTN technology with continuous research, and we are
currently taking the first step. The DTN’s essential feature
is the “What-if” ability, and the performance modeling plays
a critical role. Conventional simulation and analytical ap-
proaches are inefficient, inaccurate, and inflexible, and we
argue that data-driven methods are the most promising to
build the performance model. Researchers have proposed a few
methods of data-driven performance evaluation, while system-
atic summaries are still missing. This article surveys selected
data-driven performance models from data, models, and ap-
plications perspectives. The data utilized are mainly collected
from simulation environments, and the models develop from

the classical-method stage, vanilla-NN stage to customized-
NN stage. Though enabled extensive applications, models’
practical usages are still rare, which indicates the significant
conflicts between models’ powerful expression abilities and
the shortage of practical data from the production environment.
We believe that standard datasets and benchmarks will be
formulated, and foundation models will appear to promote this
exciting field. We anticipate that this survey will not only serve
as a favorable reference for performance evaluation but also
facilitate future research towards DTN.

ACKNOWLEDGMENT

This work is supported by NSFC (NO.62132009 and
NO.61872211) and Tsinghua University-China Mobile Com-
munications Group Co., Ltd Joint Institute.

REFERENCES

[1] C. Zhou, H. Yang, X. Duan, D. Lopez, A. Pastor, Q. Wu,
M. Boucadair, and C. Jacquenet, “Digital Twin Network: Concepts and
Reference Architecture,” Internet Engineering Task Force, Internet-Draft
draft-zhou-nmrg-digitaltwin-network-concepts-07, Mar. 2022, work in
Progress. [Online]. Available: https://datatracker.ietf.org/doc/html/draf
t-zhou-nmrg-digitaltwin-network-concepts-07

[2] M. Tariq, A. Zeitoun, V. Valancius, N. Feamster, and M. Ammar,
“Answering what-if deployment and configuration questions with wise,”
in Proceedings of the ACM SIGCOMM 2008 conference on Data
communication, 2008, pp. 99–110.

[3] Q. Zhang, K. K. Ng, C. Kazer, S. Yan, J. Sedoc, and V. Liu, “Mimicnet:
fast performance estimates for data center networks with machine learn-
ing,” in Proceedings of the 2021 ACM SIGCOMM 2021 Conference,
2021, pp. 287–304.

[4] Y. Geng, S. Liu, Z. Yin, A. Naik, B. Prabhakar, M. Rosenblum, and
A. Vahdat, “{SIMON}: A simple and scalable method for sensing,
inference and measurement in data center networks,” in 16th {USENIX}
Symposium on Networked Systems Design and Implementation ({NSDI}
19), 2019, pp. 549–564.
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