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Full-Life Cycle Intent-Driven Network Verification:
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Abstract—With the human friendly declarative intent policy
expression, intent-driven network can make network manage-
ment and configuration autonomous without human intervention.
However, the availability and dependability of these refined poli-
cies from the expressed intents should be well ensured by full-life
cycle verification. Moreover, intent-driven network verification is
still in its initial stage, and there is a lack of full-life cycle end-to-
end verification framework. As a result, in this article, we present
and review existing verification techniques, and classify them
according to objective, purpose, and feedback. Furthermore,
we describe intent verification as a technology that provides
assurance during the intent form conversion process and propose
a novel full-life cycle verification framework that expands on the
concept of traditional network verification. Finally, we verify the
feasibility and validity of the presented verification framework
in the case of an access control policy for different network
functions with multi conflict intents.

Index Terms—Intent-driven network, network policy, network
verification, network management.

I. INTRODUCTION

Software-defined networking (SDN) is distinguished by
programmability, flexibility, and decoupling of control and
data planes. However, due to the growing network scale
and business diversity, network management becomes more
complex and challenging. Millions of forwarding rules dictate
how vital devices behave in the network. Incorrect policies
or configurations can result in network vulnerabilities that
lead network outages, routing oscillations, and forwarding
black holes, further impairing network availability and depend-
ability [1]. Most network operators use low-level interfaces
to program the network, which is practically inefficient and
error-prone. It has been proven that the functionality of pro-
grammable networks cannot be implemented unless a high-
level abstraction policy is provided to the users [2]. Intent-
driven network (IDN) promises to fill this gap by providing
a simple, yet expressive high-level abstraction policy over the
network controller. This abstraction policy hides unnecessary
details of the underlying infrastructure from users and allows
them to customize network configuration using human read-
able intents.

IDN is a novel network paradigm that has gained signif-
icant interest from industry and academia. An intent is an
abstraction declaration of what applications require from the
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network. It is composed of a set of primitive “verb”, each
describing a specific but high-level operation [3]. High-level
abstraction policies decrease the need for specialized exper-
tise. However, network devices cannot directly comprehend
and enforce them. There are certain differences between the
semantics contained in the intent and the parameters of the
physical network. For example, an intent “to establish a high-
speed link from node A to node B” is with unclear semantics.
Because there exist “distortion” and mismatch between service
provider-defined and user-defined high-speed network. IDN
must thus be able to translate intents into more detailed lower-
level rules, and this process is known as intent translation.
Each translation adds some “distortion" due to lower-level
constraints and hence the intent must be checked at each
step to ensure that it stays accurate throughout the continuous
translation. Intent is diverse and random, which can lead to
uncontrollable network issues like intent conflicts among ap-
plications. As a result, intent verification is required. However,
there is a lack of evaluation of intent execution effect and the
verification of the intent’s feasibility and validity is separately
implemented.

IDN eliminates the inefficiencies of conventional network
management and decreases the risk of misconfiguration by
automatically converting abstraction intents to detailed net-
work configurations. IDN contains multiple key functions:
Intent Representation, Intent Verification, Policy Mapping, and
Situational Awareness. On the one hand, verification does exist
in traditional networks, it is a point-to-point verification and
focuses on checking compliance with network policies and
properties such as paths among network nodes. On the other
hand, intent verification has to be structured with a full-life
cycle that automatically achieves the goal of an intent and
policy correctness. In particular, an intent can be characterized
as natural language or graphic language, and there exist
different kinds of verification from intents to policies [4].

The verification process incorporates formal methods, math-
ematical reasoning, computer languages, and networks. The
verification approaches fall into two types. The first is con-
ventional network verification techniques, which are often
based on solvers and customized network tools. The other
is a breakdown of conflicts based on policy consistency.
However, there is no standardized definition of verification
procedures and a full-life cycle view of verification. As a
result, this article first provides a brief survey and classification
of verification techniques. We present a framework for full-life
cycle intent-driven network verification and develop a use case
that employs the policy graph abstraction to resolve disputes
and then configures policy in a simulation network. This article
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TABLE I: A brief survey of validity, feasibility, and joint verification techniques.

Type Solutions Theory and
Methodology Verifi Object Characteristic Network

Feasibility
Verification

PGA, Janus [5] Policy Graph
Abstraction Network Function Provide an intuitive graph abstraction to express

and compose policies. IDN

LUMI [4] Nile [6] and Merlin
[7] Natural Language Continuous feedback to improve the accuracy of

information extraction but fixed Priority Policy. IDN

Evian [8] Resource Description
Framework Natural Language Intentional presentation platform with natural

language interaction. IDN

Validity
Verification

ATPG [9] Probes and Header
Space Analysis Path Point out the dynamic verification, and generates

fewer test packages. SDN

SERVE [9] Probes Rules Verification of data plane, less use of probes. SDN

Pingmesh [9] Ping Path Single Packet . DCN

VeriDP [1] Packet Tag Path Forwarding behavior verification, but need to
modify the switch hardware and software . IP

VeriFlow [10] Mathematical
modeling EC Rules Real-time network verification. SDN

Joint
Verification

Monocle [11] Agent Configuration Express the logic of the switch forwarding table
as a boolean satisfiability problem. IP

Mineseweeper
[12]

BatFish and SMT
Formulate Configuration

Encode all possible packet behavior within the
network using first-order logic, but solve all

constraints as a whole.
IP

Epinoia [13] Graph Abstraction Network Function Extends the intent specification in PGA and
supports incremental checks. IP

makes the following contributions:
• Due to the lack of clear definition and classification of

IDN verification, we define the IDN verification as a
full-life cycle verification from a language translation
standpoint, and present a brief survey and a classification
of the current verification technology.

• As there is no unified design of the IDN verification
framework, we therefore present an intent-driven network
full-life cycle verification framework, which is with both
intents and network status in the policy graph abstraction.

• To evaluate the full-life cycle verification framework, we
implement a full-life cycle to black the virtual network
function orchestration and the packet arrival rate verifi-
cation.

The remainder of the paper is organized as follows. We first
overview the concept and classification of intent verification
in Section II and Section III. Then, we propose the full-
life cycle intent-driven network verification framework and
conduct simulations and evaluations to verify the effectiveness
of the proposed framework in Section IV, followed by future
research and concluding remarks in Section V and VI.

II. AN OVERVIEW OF INTENT-DRIVEN NETWORK
VERIFICATION

IDN aims to provide a more natural and intuitive network
administration technique than conventional network manage-
ment paradigms. An example of a general configuration and
an example intent is presented as follows:

Configuration :

If_(match(srcip = ZoneB, dstport = 80, dstip = ZoneA))

Intent :

The traffic from ZoneB to ZoneA is allowed.

The Configuration contains specific information about
what the switch must do (i.e., match the destination IP address
and port, and then forward the packet). Meanwhile, the Intent
only describes a desire (i.e., traffic from Zoom B to Zoom A
is allowed). Since the intent only describes the abstract desire
and lacks many configuration information, it is necessary to
complete the details and verify the correctness of the process.

We first classify, discuss, and compare the existing network
verification techniques. In general, IDN expands the scope
of verification, because only high-level abstraction policies
have consistent verification problem. Therefore, feasibility
verification often occurs in IDN. The verification techniques
in conventional networks, such as IP and SDN, focus on
the effectiveness of the feedback from underlying devices.
Next, we elaborate some details of the related works. The
characteristics of each schemes related to intent verification
are shown in Table I. We review the state-of-the-art in fea-
sibility verification, validity verification and joint verification.
Feasibility indicates whether the policy can run in the network,
validity is an attribute that determines whether a policy meets
certain requirements, and joint verification combines the above
two attributes.

A. Feasibility Verification

Feasibility verification ensures that the policies are exe-
cutable in the network, conflict-free between policies (in-
ternal), and conflict-free between policies and underlying
constraints (external).

1) Verification with graph : The northbound interface (NBI)
of the IDN allows users express their intentions, and avoids
conflicts between intents [3]. The NBI enables intent conflict
resolution before it is issued to the SDN controller. The intent
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conflict handling capability is more challenging when a vast
number of policies are issued. For instance, the policy graph
abstraction (PGA) provides a simple and intuitive graphical
interface that is similar to how network managers typically
visualize their policies on a whiteboard. Through the graph
editor and graph composer, the output is a conflict-free policy
graph. On the basis of PGA, Janus system expands the
graph combination to dynamic policy, maximizing the number
of configured policies and minimizing the number of path
changes caused by either intrinsic dynamics in policies or due
to policy churn [5].

2) Verification with natural language: In addition to
graphs, an intent can be expressed in natural language. There-
fore, several works have focused on natural language pro-
cessing (NLP). In the LUMI scheme, information extraction
by named entity recognition allows collecting feedback from
operators and incorporating it into the information extraction
process, which is continuously learned or trained to improve
the accuracy of information tagging [4]. The LUMI scheme
analyzes the conflicts arising from Nile after confirming a suc-
cessful extraction of entities [6]. Nile is a scheme for learning
network behavior expressed by the operator while providing
a user-friendly interface to assist in the verification process
of intent concretization. The translation process consists of
three phases: entity extraction, intent translation, and intent
deployment. For identifying the intent, the Evian client uses
NLP and machine learning to build an intelligent bot that can
have similar human conversations with users [8]. The bot will
use multiple conversations with users in English to gather all
requirements about their network use cases.

B. Validity Verification
The advantage of validity verification is to ensure the policy

is able to achieve the requirements for the network, including
the efficient translation of policy to profile (offline) and the
effective execution of policy to forwarding behavior (online).

1) Verification using probe: The southbound intent ver-
ification is achieved by capturing the configuration of the
network data plane or by collecting real traffic as feedback.
The control plane adjusts and modifies the policy formulation
based on the feedback to achieve consistency before and after
policy devolution. For complex network debugging problems,
dynamic policy verification methods are gradually replacing
static verification. ATPG is an automated and systematic ap-
proach to network testing and debugging as a transparent agent
deployed in the middle of the control plane and data plane
[9]. At the same time, ATPG reads the switch configuration
and generates device-independent models, sends test packets
at regular intervals to detect faults, and designs fault location
mechanisms. The type of verification is validity verification,
and the verification taxonomy refers to R = R′ static verifi-
cation and R′ = F dynamic verification. SERVE is an SDN
rule verification framework that can automatically identify data
plane network problems [9]. By modeling the network device
as a stateful multi-root tree of pipeline processing, the number
of probes used is reduced.

In data center networks (DCN), TCP packets sent and
received by edge servers can continuously detect network

conditions and performance issues, such as end-to-end delay.
Moreover, anomalies in key performance data in the network
can directly react and determine whether there are network
problems. In the Pingmesh scenario, the above approach also
provides data support for the definition and tracking of service
level agreements [9].

2) Verification using models: Network model is an effective
method to evaluate network policies by modeling the network
state in the data plane; such as firewalls, load balancing, and
other network functions, and then considering whether the
network violates network policies based on the constructed
model.

VeriDP is a proxy deployed between the control plane and
the data plane [1]. VeriDP abstracts all rule configurations
on the control plane into a path table. It tags data packets
and checks the tag information of the data packets to see if
the forwarding is correct. The practical deployment verifies
that the VeriDP server is on the control plane and the data
collection pipeline is on the data plane. However, the switches
require hardware and software modifications and are not easily
applied directly to the existing network.

Existing tools require fine-grained time scales for checking
profiles and data plane states. Static analysis of the network
data plane is performed offline, leading to problems such
as not detecting or blocking errors when they arise during
network operation. The VeriFlow layer is designed between
SDN controllers and forwarding devices to obtain a snapshot
of the network as it evolves [10]. Furthermore, by dynamically
checking the validity of network invariants as each rule is
inserted, modified, or deleted. To ensure a real-time response,
VeriFlow introduces incremental algorithms to search for pos-
sible errors. The key technologies are mathematical modeling,
fast rule checking, and analysis. VeriFlow is deployed with a
proxy between the control plane and the data plane without
feedback from real traffic on the data plane. This type of
verification is called validity verification.

C. Joint Verification

The purpose of feasibility verification and validity verifi-
cation are complementary; feasibility verification ensures that
the policies are executable, while validity verification ensures
that the policy can satisfy the network’s requirements; the
combination of the two can produce better results.

Monocle addresses the inconsistency issue in policy as a
result of complex network configuration and data plane [11].
The key technique of monocle is mathematical modeling,
where the switch forwarding table logic is constructed by
representing it as a boolean satisfiability problem, and probe
packets check the practical switch behavior. Monocle is de-
ployed as a transparent proxy between the control plane and
data plane, again without real traffic feedback and in the form
of the packets. Monocle is positioned as a layer between
the OpenFlow controller and the switch. This design allows
Monocle to intercept all rule modifications issued to the switch
and maintain the expected flow table contents in each switch.
After determining the expected state of a switch, Monocle
can calculate the packet headers for rules to be enforced
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Fig. 1: Different expression forms of intents are given from both the network and language perspectives, and the typical
technical examples for translation are given between different intent forms. The colored arrows describe the three

classifications of verification techniques.

on that switch. Its validation types include feasibility and
validity verification. To ensure that the network configuration
and status derived from network automation match the ad-
ministrator’s specified intent, Epinoia has designed a network
intent checker for stateful networks [13]. Epinoia expands the
PGA-based on a unified network function model and gradually
checks for intent violations within the network to reduce the
impacts and costs of network changes. Minesweeper is a tool
that verifies whether a network meets a variety of expected
properties, including reachability or isolation between nodes,
waypoints, black holes, bounded path length, load balancing,
functional equivalence between two routers, and fault tolerance
[12]. Minesweeper converts the network configuration file into
a logical formula that captures the stable states to which
network forwarding will converge, and these states are the
result of interactions between routing protocols such as open
shortest path first (OSPF), border gateway protocol (BGP), and
static routing. Then minesweeper combines the constraints that
describe the expected properties. If the combination formula
is satisfiable, the network has a stable state. Otherwise, there
is no steady state that violates the properties.

The joint verification approach of feasibility and validity
will be more comprehensive in terms of verification effec-
tiveness than verification techniques that verify a certain
property separately. It can be concluded that IDN lacks a clear
verification definition and classification. Therefore, the joint
use of multiple verification techniques is required to guarantee
the full-life cycle performance of network configurations. As
a result, we define a full-life cycle verification definition to
present full-life cycle of intent and the translation of intent
language.

III. DEFINITION AND CLASSIFICATION OF
INTENT-DRIVEN NETWORK VERIFICATION

Although the standard organization has a preliminary def-
inition and verification classification, it is still insufficient to
cover the entire IDN [3]. We define and classify verification
based on the objective, purpose, and feedback, as well as
characterize in different perspectives.

A. Definition of Intent-Driven Network Verification

IDN is a revolutionary network paradigm in which intent
is viewed as a collection of high-level abstraction policies.
High-level abstraction policies reduce the need for specialized
knowledge. However, they cannot be directly understood and
enforced by network devices. Thus, IDN must be capable of
translating intents into more precise lower-level policies, a
process referred as intent translation. As illustrated in Fig.
1, the form of intent is continually changing and translating.
Each translation introduces some “distortion" due to lower-
level limitations, therefore the intent should be verified at
each stage to verify that it remains correct throughout the
continuous translation. In IDN, the intent flow is expressed
as follows:
• User Intent I in Natural Language: Natural language

is the media via which users convey their intents about
network functionalities and performance. The users who
are unfamiliar with network can also communicate their
intents in natural language.

• Network Intent I ′ in Domain-Specific Language: The
domain-specific language is used to standardize the un-
standardized natural language and hence improving the
clarity of the network intents. Typically, the domain-
specific language is constructed of tuples with specified
names, such as {domain, attribute, object, action, and
result}.

• Logical Rule R in Northbound Programming Lan-
guage: Northbound language refines intents by encapsu-
lating them in practical network functions or algorithms.
Because these network functions and algorithms act on
the controller’s logical view of the network and have not
yet been constructed on the switch, they are referred to
as logical rules.

• Physical Rule R′ in Southbound Programming Lan-
guage: Southbound languages like OpenFlow, sFLow,
NetFlow, and simple network management protocol
(SNMP) can be used for translating logical rules into
physical rules that can be applied to network devices.

• Forwarding Behavior F in Flow Rule: Eventually, the
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intent will be translated into the network’s forwarding
behavior, which is determined by the flow table rules.
The network device processes and forwards data packets
based on the rules.

The goal of IDN is to ensure that “user intent" is translated
into “packet forwarding behavior." The user intent mentioned
above can be user intent, network intent, logical rule, phys-
ical rule, and forwarding behavior. The “rules" represent
the “intents" semantics. The intent translation process begins
by adopting natural language and then converting high-level
natural language into various levels of rules. As a result, the
verification ensures that the semantics carried by the intent are
preserved as much as possible during the translation process.
The content to be verified at each stage differs. After the intent
is converted into rules, the primary goal of the verification
is to determine whether the policy implementation meets the
expectations of the intent. Thus, full-life cycle verification
ensures that the original semantics can be maintained between
intents in any form, and the full-life cycle refers to the time
between the generation of the intent and the end of the intent.
Therefore, Full-Life Cycle Intent Verification can be defined
as:

F = R′ = R = I ′ = I.

Due to the limitation of verification technology, in practical
networks, the current researches on verification don’t distin-
guish all the conversions. Researchers tend to focus on one or
several parts of the formula. NLP technology can be used to
standardize natural language. PGA and Janus platforms resolve
internal conflicts of intents through policy graph abstraction
[5]. The traditional SDN programming languages, such as
Pyretic, Frenetic, and Merlin can be installed in the controller
after being compiled [7]. FlowVisor and OpenVirtex can check
the correctness of the policy before and after the rule is issued,
respectively [14]. Researchers have achieved varying degrees
of verification depending on their own technologies. They
made a distinction between the control plane and the data
plane. However, they lack the complete classify of verification
process. As a result, we rearrange the classification of verifi-
cation techniques according to the definition of verification.

B. Classification of Intent-Driven Network Verification

We summarize and classify the existing verification tech-
nologies according to the location in F = R′ = R = I ′ = I .
As shown in Fig. 1, we categorize verification technologies by
where it occurs, whether there is feedback, and what purpose
is.
• The verification techniques can be classified as “In-

ternal" and “External" depending on the location of a
verification object. Internal verification verifies multiple
Xs(X = I,R) in a layer, which is simpler to resolve
at higher levels. External verification verifies the cor-
rectness of translation between layers, which relies more
on underlying device feedback. The dedicated network
model is insufficient to cover the full-life cycle intent

verification. Since an intent may be expressed at several
levels of abstraction, e.g., natural language, programming
language, and graph, there may be overlap between the
representations of I ′ and I . The outcome of high-level
abstraction translation needs to be checked only when
the representation of I ′ is at a very high degree of
abstraction, like in a domain-specific language. Therefore,
the top layer verification R = I ′ should focus on internal
consistency or conflict resolution to avoid a more severe
impact on the network.

• The verification techniques can be further classified into
“Static" and “Dynamic" verification, or “Offline" and
“Online" verification, based on the feedback from the data
plan during the verification process. Offline verification
verifies the device profile of the data plane, focusing on
R = R′. Online verification verifies the network status
of the data plane by real-time collection, focusing on
R = F and whether the forwarding behavior in the
network meets the policy requirements. The distinction is
primarily in whether the data plane’s real-time network
state is collected.

• According to the verification purpose, “Feasibility" and
“Validity" are more general and comprehensive than the
other two classifications. Feasibility verification ensures
that policies are conflict-free with each other and the de-
vice constraints; Validity verification ensures the validity
of configurations and forwarding behaviors. In addition,
the conflict of high-level intents and policies needs to
be considered; for example, the intents may come from
different application requests. The objects targeted by the
intent are shared resources, i.e., bandwidth, which will
cause a conflict in the policy after intent translation. The
conflict should be checked and dissipated before intents
are finally executed.

Verification should focus on the full-life cycle of intent,
including the entire verification process. A sound verification
scheme should have a full-life cycle with feedback. Way III
in Fig. 1 is a more generic and inclusive classification scheme
used to classify verification techniques.

IV. A FULL-LIFE CYCLE INTENT-DRIVEN NETWORK
VERIFICATION FRAMEWORK AND IMPLEMENTATION

The intent verification is related to the stability and reliabil-
ity of the whole network. Current verification techniques form
independent modules for different aspects. As a result, we
integrate these various aspects of verification techniques in this
article. We propose a framework for intent verification in IDN,
which contains the full-life cycle of F = R′ = R = I ′ = I ,
and includes an application layer, an intent enable controller,
an infrastructure layer, and two interface, as shown in Fig. 2.

The application layer requests a service, which could be
presented as nature language User Intent Table I or graph.
User’s intent expressed by the graph is already a standard-
ized language I ′, there is no need for I = I ′ verification.
However, possible conflicts among different intents still exist.
The formalized intents by intent translation module are sent
to the controller through NBI 1©. Additionally, the intent
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Fig. 2: Full-life cycle intent-driven network verification framework. The verification module is deployed in the control layer,
which is connected with the application layer and switches through northbound and southbound interfaces.

verification module collects the intents through NBI and
forms the Network Intent Table I ′ composed of historical
intents. When the controller receives an intent and imple-
ments a policy, which is generated according to both the
intents and the network status. Status Monitor 3© collects
the network state. Policies should be combined with the
feedback given by the intent verification module. If the policy
fails to pass the verification module, the policy will be re-
mapped 6©. The conflict-free policies 4© are sent down to
the switches through the southbound interface (SBI) 2© and
forms Logic Rule Table R. After the policy is issued, the
practical flow behavior of the network traffic 5© is collected
and reported to the intent verification module in real-time and
form the Behavior Table F 7©. Then, according to the full-
life cycle verification definition:
• The feasibility verification of I and I ′ guarantee the

correctness of the intent translation; the verification of
R and I ′ guarantees that the issued policy complies with
its underlying network constraints, and the verification of
R guarantees that the policy is conflict-free.

• The validity verification of R′ and F , R and F guarantee
the practical network traffic forwarding behavior con-
forms to the specified policy and guarantees the validity
of the intent. In the verification process, if the verification
fails, the policies are corrected and reissued through
policy feedback.

The intent verification framework proposed in this article
realizes the full-life cycle verification of intents, which can be
used as a basic framework in developing IDN.

A. Use Case on Full-Life Cycle Intent-Driven Network Veri-
fication

Network function virtualization (NFV) has become an im-
portant tool to satisfy the needs of heterogeneous services. A
series of virtual network functions connected by virtual links
can be used to complete the user’s end-to-end service request.
Therefore, we describe implementation details for realizing

the proposed framework of full-life cycle intent verification
outlined in the NFV simulation scenario. We represent the
intent in a graph and issue the configuration into Mininet
by ONOS as shown in Fig. 3 [3]. We adopt a policy graph
abstraction to verify policies and convert conflict-free policies
to Pyretic [15]. Neo4j (a graph database) stores physical net-
work information so that the intent conflict resolution module
can query it. The conflict resolution algorithm is implemented
in Python 2.7.0 as a single-threaded program. The network
node groups in policy graph abstraction are separated based
on various characteristics. All network nodes in our use case
are classified based on their geographic location and function,
such as Zone A and Zone B representing two buildings, A1
and B1 meaning two academies in the buildings, and world
wide web (Web) and domain name system (DNS) describing
different services. Finally, the policy mapper in the network
controller sends the verified policy to the network. This use
case can be extended to multiple network scenarios and can
be integrated into other systems. It is also a beneficial research
basis for implementing intent verification in future studies.

We create 100 to 500 intent application requests and
the intent verification module collects the intent into
Intent Table I . Then we realize the intent feasibility verifica-
tion through graph combination. The policy graph abstraction
after verification can be expressed as shown in Fig. 3 (a).
Endpoints represent a group of users or network services.
The text represents the port number and other attributes,
such as bandwidth or network functions: load balancer (LB),
intrusion detection systems (IDS), world wide web(Web),
and distributed denial of service (DDoS). Since the intent
application requests come from different endpoint groups, they
may have conflicts. At this time, the primary purpose of
verification is to ensure conflict-free merging between multiple
intents. The policy graph abstraction is translated into domain
language as shown in Fig. 3 (b), which is conflict-free and
executable, indicating the original address, port number, and
network function between them. The service function chain
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(b) Conflict-free policy in graph.

If_(match(srcip=ZoneB, dstport=80, dstip=ZoneA))

if_(match(srcip=DNS, dstport = 53, dstip = A1)), FW > > IDS

if_(match(srcip=A1, dstport=22 23 53, dstip=B1)), FW>>DDoS

if_(match(srcip=A1, dstport=80, dstip=Web)), FW>>LB

if_(match(srcip=DNS, dstport=53, dstip=B1), FW>>IDS

if_(match(srcip=B1, dstport=80, dstip=Web)), FW>>LB

(c) Conflict-free policy in Pyretic.

Fig. 3: The feasibility verification result: conflict-free policy
in Pyretic and graph.

planning issue is reduced to a route planning problem, with
each network device representing a service function, and we
select the path calculation policy from Policy Table R to
implement the service function.

From the curves in Fig. 4 (a), when there are 100-500
intents, the verification time is between 300 and 1160 ms, and
the average verification time is about 2-3 ms. The cumulative
distribution function (CDF) of verification time is relatively
concentrated, with a 90% of the verification time less than 281
ms, 485 ms, 675 ms, 885 ms, and 1070 ms, respectively, which
means a relatively stable effect. For the validity verification
of the intent verification engine, we take the intents entered
in Fig. 3 as an example, and compare the packet arrival rate
with different approach. According to the simulation results in
Fig. 4 (b), the worst packet arrival rate result, i.e., 10.7% and
21.3%, are from the approaches 1 and 2 that work by directly
issuing the packets without processing, by randomly selecting
one of the two conflicting intents to execution. NIC approach,
i.e., based on network intent composition (NIC), yields the
packet arrival rate of 36.7%. The packet arrival rate of our
verification engine is 42.6% (approach 4). According to the
results in Fig. 4, it can be seen that our verification engine
can better realize the conflict detection and decomposition of
multi-user input intents.
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(a) The CDF of verification time for 100-500 intents.
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(b) Packet arrival rate with proposed verification engine
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Fig. 4: The validity verification results: the verification time
performance and packet arrival rate. Random approaches 1

and 2 are directly executed without processing and randomly
selecting the conflicting intents to execute. NIC approach is
based on network intent composition and proposed approach

is our verification engine.

V. CHALLENGE AND FUTURE WORK

Various aspects of intent verification technology have been
investigated. For example, the research has focused on formal
verification, which includes formal modeling, fuzzy mathe-
matics, and other techniques. The other research considers
network device hardware and software, including controller
verification servers, database development, and traffic collec-
tion techniques. However, the current technology needs to be
improved in order to achieve the full-life cycle system and
ensure its autonomy.
• The simplicity of network collection tools. Continuous

dynamic verification is required to combine network state.
Existing network diagnostic tools are inefficient because
they can assess only the forwarding behavior of a single
data packet at a time. The data is obtained directly
from the underlying equipment (low-level) rather than
through the use of a predefined data model. Network
administrators lack a global perspective on the impact
of individual device modifications on the network.

• The lack of collaboration between the network models.
Whether adopting a formal verification or a verification
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method based on multiple solvers, the network should be
modeled, which results in limited scalability and makes it
difficult to adapt to a stateful network. Validity verifica-
tion includes mathematical model and traffic acquisition
techniques, which require to characterize both control
plane policies and data plane network states. Moreover,
designing fast validation algorithms can ensure real-
time validation where the mathematical model should be
consistent with the feasibility validation, i.e., extend the
control plane policy model to data plane modeling. There
should also be modules and pipeline designs in place for
the SDN controller and switches so that they can obtain
and analyze data between the control plane and the data
plane, as well as feedback each other.

• The safety of intent. Intents represent user preferences
for networks and applications, such as demand for ser-
vices, content, and network traffic. Disclosing intents
may lead to leakage of user privacy. The modification of
intent can affect the network more than command-line.
Current verification techniques are based on the belief
whether the user’s intent is correct. In addition to the
existing security mechanisms, the data level should be
untampered with and be able to verify malicious intents.
It should not only check grammar rules but semantics.
For example, the intents that don’t conform to network
operation rules should be considered incorrect. Therefore,
we should also include the security of the intent in the
scope of verification. It is worth noting that current IDN
also faces these challenges.

Therefore, more network verification tools and mathemati-
cal models should be the main focus in the future work, and
verification techniques should be paid more attention on intent
security, such as preventing intent from tampering.

VI. CONCLUSIONS

This article began by clearly defining and classifying intent-
driven network verification from different perspectives, which
was presented based on the location of verification, the avail-
ability of feedback, and the purpose of verification. Then we
presented a brief survey of the existing verification technology.
After that, we presented a full-life cycle verification framework
with feedback and verified the access control policy of the
network function. Our verification engine can better ensure
multi-user intents conflict-free and executable. Finally, we
summarized the future work and challenges of intent verifi-
cation in terms of verification tools, verification models, and
intent safety.
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