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Abstract—Mobile communication standards were developed for 

enhancing transmission and network performance by using more 

radio resources and improving spectrum and energy efficiency. 

How to effectively address diverse user requirements and 

guarantee everyone's Quality of Experience (QoE) remains an 

open problem. The Sixth Generation (6G) mobile systems will 

solve this problem by utilizing heterogenous network resources 

and pervasive intelligence to support everyone-centric customized 

services anywhere and anytime. In this article, we first coin the 

concept of Service Requirement Zone (SRZ) on the user side to 

characterize and visualize the integrated service requirements and 

preferences of specific tasks of individual users. On the system 

side, we further introduce the concept of User Satisfaction Ratio 

(USR) to evaluate the system’s overall service ability of satisfying 

a variety of tasks with different SRZs. Then, we propose a network 

Artificial Intelligence (AI) architecture with integrated network 

resources and pervasive AI capabilities for supporting customized 

services with guaranteed QoEs. Finally, extensive simulations 

show that the proposed network AI architecture can consistently 

offer a higher USR performance than the cloud AI and edge AI 

architectures with respect to different task scheduling algorithms, 

random service requirements, and dynamic network conditions. 
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I. INTRODUCTION 

Recently, the global development and application of Internet 

of Things (IoTs) have accelerated the digitalization of the 

physical world and human society. To exploit the commercial 

values of massive IoT data, we use Artificial Intelligence (AI) 

algorithms to integrate user requirements, domain knowledge, 

operation procedures, and business models in different 

application scenarios. To improve user satisfaction in public 

services, data from user devices and public facilities can be 

utilized by self-learning algorithms to meet each user’s personal 

requirements and preferences [1]. For manufacturing 

applications, data from industrial automated control devices in 

assembly lines can be analyzed by AI algorithms to improve 

efficiency, productive force, and safety, and to reduce cost, 

energy consumption, and carbon emissions. Eventually, a 

digital world will emerge, where all kinds of distributed IoT 

devices/things will contribute to and benefit from an intelligent, 

adaptive, and collaborative network architecture [2].  



 

The Sixth Generation (6G) mobile communication systems 

will be different from the Fifth Generation (5G) systems in 

three important aspects. First, in terms of goals, 5G aims at 

radical improvements of network Key Performance Indicators 

(KPIs), such as peak data rate, spectrum efficiency, energy 

efficiency, service coverage, device density, and air-interface 

delay, by at least ten times comparing to the Fourth Generation 

(4G) systems. 5G continues to provide predefined “standard” 

services, such as enhanced Mobile BroadBand (eMBB), Ultra 

Reliable Low Latency Communications (URLLC), and 

massive Machine Type Communications (mMTC), for 

different groups of users, just like 4G did for urban, sub-urban, 

and rural users. This traditional “user-centric” service model 

could only provide good average performance for a group of 

typical users in similar locations or application scenarios. 

However, the goal of 6G is to provide “everyone-centric 

customized” services according to the integrated, dynamic, and 

multi-dimensional service requirements of different user tasks 

[3]. In order to guarantee everyone’s Quality of Experience 

(QoE) in customized services, adaptive End-to-End (E2E) 

system formulation and service provisioning algorithms are 

needed for different application scenarios and network 

conditions [16]. Building upon the digital world, advanced IoT 

and AI technologies will accelerate the evolution towards this 

ambitious goal of 6G, thus achieving the finest service 

granularity at the task level for guaranteeing every user’s 

personalized QoE. 

 

Second, in terms of approaches, 5G has improved a set of 

network KPIs by committing more resources, such as frequency 

spectrum, transmission power, antenna arrays, denser cells, 

cloud computing, and complex algorithms. This “technology-

driven” approach cannot suit new and evolving applications, as 

KPIs are hard to satisfy without understanding dynamic user 

requirements and traffic flows. As delay-sensitive broadband 

applications such as autonomous driving and interactive Virtual 

Reality/Augmented Reality (VR/AR) games grow explosively, 

5G is unable to deliver massive data on time over a limited 

network bandwidth and, consequently, cloud computing cannot 

guarantee satisfactory QoEs. In contrast, 6G will adopt a 

sustainable “service-oriented” approach, which integrates and 

exploits ubiquitous system resources of Sensing, Storage, 

Communication, Computing, Control, and AI (S2C3A) from 

cloud, to network, and to edge for supporting different types of 

AI methods and customized services with multi-dimensional 

personal requirements [4-10]. This capability will continue all 

the way to user devices/things and can agilely address sudden 

changes due to the unexpected reasons such as user behaviors, 

application scenarios, and network conditions. Heterogenous 

network resources and pervasive AI algorithms will be shared 

and orchestrated to customize E2E service provisioning, 

optimize network operation, and achieve customer well-being 

at different locations and time scales [11] [12].  

 

Third, in terms of impacts, 5G is playing the key role in the 

digital transformation, while 6G is envisioned to lead the 

intelligent transformation of services, applications, businesses, 

and societies for the future. This vision will be realized not only 

by improving network KPIs in different application scenarios, 

but more importantly, by utilizing heterogenous network 

resources and ubiquitous AI algorithms from the cloud to the 

edge. 6G will create novel cross-domain innovation ecosystems 

by enabling effective integration, analysis, and collaboration of 

disparate data from different business domains, industrial 

sectors, application scenarios, geographic locations, and digital 

societies. During the process of intelligent transformation, these 

ecosystems will jointly consider diverse requirements from 

multiple perspectives, develop holistic solutions with various 

objectives, and produce huge amounts of benefits for social 

progress and economic growth. Novel digital infrastructures, 

application cases, collaboration paradigms, and business 

models will be invented and deployed as the cornerstones for 

establishing our intelligent society [13] [14].  

 

This article proposes a network AI architecture to facilitate 

the developments and applications of pervasive AI methods and 

intelligent customized services in future 6G mobile networks. 

Our main contributions are summarized as follows. 

 

(i) To visualize the complex and dynamic requirements 

from each user task, we coin the concept of Service 

Requirement Zone (SRZ) that characterizes its multi-

dimensional service requirements by using a set of E2E 

performance bounds, which jointly determine the user’s 

overall QoE. 

(ii) To measure a 6G system’s service ability of guaranteeing 

everyone’s QoE, we introduce the concept of User 

Satisfaction Ratio (USR) that calculates the percentage of 

satisfied tasks among all served tasks over a period of 

time by comparing their individual SRZs one-by-one 

against achieved performance results. 

(iii) To pursue high QoE and USR in 6G systems, we propose 

the network AI architecture with multi-tier, multi-

function Nodes (mNodes) as its basic elements that 

integrate local system resources of S2C3A to provide a 

native AI service platform for serving diverse tasks with 

customized SRZs. 

(iv) To evaluate the performance of the proposed network AI 

architecture, we conduct extensive computer simulations, 

and the results show that it can achieve the highest USR 

under dynamic service requirements and network 

conditions, in comparison with the existing cloud AI and 

edge AI architectures. 

The rest of this article is organized as follows. Section II 

introduces the concept of SRZ for every task from each user. 

Next, Section III defines the performance metric of USR for 

evaluating the overall service ability of a system. The network 

AI architecture is then proposed and discussed in Section IV. 

Section V shows and analyzes the extensive simulation results 

for three AI architectures under dynamic service requirements 

and network conditions. Several key research challenges are 

then identified and elaborated as the future work in Section VI. 

Finally, Section VII concludes this article. 



 

 
Fig. 1 Service Requirement Zone. 

 

II. SERVICE REQUIREMENT ZONE 

Radar charts with multiple KPIs have been widely used to 

indicate the technology advancements and capability 

enhancements from an aggregated system’s perspective [4] 

[14]. Unlike this traditional approach, we apply radar charts to 

visualize the SRZ of every task for characterizing the user’s 

integrated, multi-dimensional service requirements and 

preferences. Some network KPIs are not directly relevant to a 

user’s own service experience, e.g., device density, peak data 

rate, and network capacity. However, many service KPIs are 

critical for his/her QoE because they jointly determine the 

personalized SRZ.  

As an example, Fig. 1 shows eight service KPIs that define 

the eight-dimensional SRZ on an octagonal radar chart, i.e., the 

brown zone. Note that, for a particular task, the user 

requirements on storage, data rate, security, reliability, and 

knowledge are actually the performance lower bounds, while 

the requirements on cost, delay, and energy consumption are 

the upper bounds. Since the system can certainly achieve much 

better performance than these KPI bounds of a single user task, 

the radar chart is colored in from the origin (i.e., the minimal 

values for the three upper bounds) to the dashed lines outside 

the chart, which represent the maximal system performance 

values for the five lower bounds. The dimension and shape of 

each SRZ could be determined by different types of users and 

application requirements, such as by professional users in 

premium services and by application developers for general 

users in standard services. In general, a larger SRZ with wider 

area indicates lower service requirements, and vice versa.  

Referring to Fig. 1, User-A on the left-hand side is playing an 

interactive VR/AR game with a group of virtual friends in the 

Metaverse. The SRZ of this task requests a low E2E service 

delay, a standard energy consumption, instant storage and 

caching of a large amount of user data, a high transmission data 

rate, normal security and privacy protection, an ultra-reliable 

and stable experience during the service process, rich domain-

specific knowledge and capability for 3D graphic rendering, as 

well as a reasonable cost. On the right-hand side, User-B is 

using a mobile banking service for money transfer. The 

corresponding SRZ consists of a medium service delay, a low 

energy consumption, small data storage and caching, a normal 

transmission data rate, strong security and privacy protection, a 

standard service reliability, no additional domain-specific 

knowledge, and a low cost. To satisfy diverse SRZs, adaptive 

E2E service provisioning algorithms are crucial in supporting 

integrated, multi-dimensional service requirements from 

different tasks.  

In order to guarantee each user’s QoE, future 6G systems 

should integrate and orchestrate heterogenous network 

resources across multiple domains for providing everyone-

centric customized services anywhere and anytime, thus 

shifting network slicing technology to the finest granularity at 

the task level. Such task-specific SRZs might look like a huge 

burden for the corresponding users. However, in practice, each 

type of tasks has the similar SRZ, i.e., the de facto service model 

for a group of users. The typical SRZs for interactive VR/AR 

online games and mobile banking services are given in Fig. 1. 

Despite dynamic user behaviors and service environments, 

these SRZs are quite stable because most users usually do not 

compromise their service requirements and QoEs, unless 

service continuity and high quality cannot be satisfied at the 

same time. In this case, some users may accept an expanded 

SRZ with lower requirements and degraded quality for 

maintaining service continuity, say in a high-speed train. 6G 

systems with pervasive intelligence should be able to efficiently 

identify, allocate, and manage heterogenous network resources 

for a variety of tasks in different user environments, application 

scenarios, and network conditions. 

 

III. USER SATISFACTION RATIO 

The dynamic SRZs of various tasks are used as the QoE targets 

for customized service provisioning and performance optimization 

in 6G. Referring to the SRZs in Fig. 1, if the achieved system



 

 

(a) Deployments of Cloud, Edge, and Network AI 

Architectures.  

(b) System Model. 

Fig.2 Three AI Architectures and the System Model

performance results in multiple dimensions are all located 

within the brown zone, the corresponding user will feel 

satisfied. Then, the counters for served tasks 𝑁𝑇  and satisfied 

tasks 𝑁𝑆 are both increased by one. Otherwise, this service has 

failed and only 𝑁𝑇 is increased by one. For a given period of 

time, the USR is calculated as the ratio between the number of 

satisfied tasks 𝑁𝑆 and the total number of served tasks 𝑁𝑇, i.e.,  

𝑈𝑆𝑅 =
𝑁𝑆

𝑁𝑇

. (1) 

Individually, every user could have these two counters and 

calculate the USR to indicate his/her personal QoE with the 

network operator or service provider. Collectively, the USR can 

be applied to evaluate a 6G system’s overall service ability in 

satisfying individual SRZs of a variety of tasks, not regarding 

any specific user locations, application scenarios, network 

conditions, or operation environments. In the rest of this article, 

the USR is used as an effective, fair, and general performance 

metric of the whole system.  

 

Consider different systems with a similar amount of network 

resources. The higher the USR is, the more intelligent a system 

is in utilizing limited network resources for efficiently serving 

diverse tasks with individual SRZs. 5G today is mainly focused 

on improving separate and objective KPIs at the supply side, 

such as signal strength, service coverage, device density, and 

spectrum and energy efficiency. However, 6G seeks to satisfy 

every user’s personal and subjective requirements denoted by 

SRZs at the demand side. Heterogenous 6G network resources 

in multiple domains should be effectively integrated and 

exploited to jointly enhance everyone’s QoE and the system’s 

USR.  

 

The calculation of USR is based on the binary, hard decision 

according to every task’s SRZ, i.e., whether or not the system 

can satisfy the task-specific KPIs simultaneously. Besides this 

binary classification method, the definitions of SRZ and USR 

can be extended to multiple scales from the user side and the 

system side, respectively. First, we can assign different 

coefficients to prioritize the KPIs that are more important to 

particular tasks or users. Hence, the weighed SRZ is obtained 

by considering different degrees of importance for selected 

KPIs. Second, we can introduce a multi-step, soft-decision 

method to produce an acceptable performance zone on top of a 

task’s SRZ by loosening its requirements on some KPIs. For 

example, everyone likes watching high-definition videos at 

home, but most of us would accept low-quality (low data rate) 

videos in a high-speed train. Hence, the stepped USR is derived 

by considering different levels of satisfaction on selected KPIs.  

 

IV. THREE AI ARCHITECTURES AND THE SYSTEM MODEL 

1. The Cloud AI and Edge AI Architectures 

In the era of 5G, the cloud AI architecture has been widely 

adopted to provide centralized computing services, such as 

big data analysis and AI training and inference. The 

conventional “cloud-pipe-terminal” structure decouples the 

data sensing functions at user terminals, the communication 

functions in mobile networks (a.k.a. the pipe), and the 

computing functions or the AI-enabled analytical services on 

the cloud [12]. This is simply a combination of the existing 

infrastructures of Data Technology (DT), Communication 

Technology (CT), and Information Technology (IT). It is 

very challenging to coordinate these separate functions in 

multiple facilities for effectively providing an agile, smooth, 

and stable service with guaranteed QoE.  



 

In order to solve the problem of low speed, long delay, poor 

privacy, and high carbon emissions in centralized AI 

applications on the cloud, the edge AI architecture extends 

the computing capability from the cloud to the locations 

physically closer to end users. Although the costs for 

deploying edge clouds (also called cloudlets) widely in the 

neighborhood are very high, this “cloud-edge-terminal” 

structure is getting popular in various application scenarios 

with high added values. This is because it is much more 

effective in supporting computing-intensive, delay-

constrained, security-assured, and privacy-sensitive 

applications, such as interactive VR/AR games, autonomous 

driving, and intelligent manufacturing.  

As shown in Fig. 2 (a), central, local, and edge clouds are 

connected by high-speed, expensive bearer networks, which 

are just the traffic pipes with huge bandwidth. They are 

considered as affiliated computing resources for enhancing 

the AI service capabilities in different application scenarios 

and network locations. Strictly speaking, local and edge 

clouds are deployed as affiliated Over-The-Top (OTT) 

services to support computing-intensive applications. They 

are usually co-located with the existing network elements, 

but not embedded in mobile networks. Thus, cross-domain 

resource coordination and service orchestration between 

these local/edge clouds and end users require round-trip data 

transmissions through the mobile network. The actual 

service procedure is very complicated, time-consuming, and 

expensive, and may generate a series of management and 

technical problems such as redundant deployment costs, 

circuitous data paths, and frequent desynchronized 

cooperation. It is very difficult for the cloud AI and edge AI 

architectures to guarantee E2E QoE for sophisticated cross-

domain services in dynamic application scenarios and 

mobile environments. 

2. The Network AI Architecture with Multi-tier mNodes 

To address those challenging problems, two-level digital 

twins and edge-cloud cybertwins are proposed in the cyber 

space [8] and the service network [9], respectively. In this 

article, we propose the network AI architecture with multi-

tier mNodes to integrate and coordinate cross-domain S2C3A 

resources for processing local/regional user data, executing 

distributed AI algorithms, and providing customized services 

for everyone as closely as possible. This architecture shifts 

the classic design paradigm that assumes mobile networks 

only as the pipe for data transmissions. Based on the 

hierarchy of mNodes, heterogeneous network resources and 

separate functions are effectively integrated to support cross-

domain, wide-area, and delay-sensitive applications, e.g., 

autonomous driving. Compared with the edge AI, the 

proposed network AI architecture can achieve a better 

balance between E2E service performance, management 

overhead, and deployment and maintenance costs. 

 

As the key 6G network element, an mNode will not only 

coordinate local resources as a Service Provider does for E2E 

service auction [16], but also integrate the basic S2C3A 

resources and multiple functions to support QoE-guaranteed, 

everyone-centric customized services. Different from 

traditional rigid hardware deployments with dedicated duties 

and separate functions in either Radio Access Network 

(RAN) or Core Network (CN), the mNodes will adopt 

advanced Network Function Virtualization (NFV) 

technologies and play different roles as needed inside 6G 

mobile networks, such as the e/g Node Base-station (xNB), 

the P/S-Gateway (xGW), the Access and Mobility 

Management Function (AMF), and edge/fog service nodes. 

Besides general-purpose computing units, it is envisaged that 

more and more AI processors will be widely integrated and 

shared by the mNodes to provide the 6G native AI service 

platform. Based on this, most tasks with smaller SRZs, i.e., 

stringent KPIs on data rate, delay, security, privacy, and 

energy consumption, will be automatically assigned to the 

nearby mNodes, thus satisfying everyone’s QoE with 

personal service requirements in dynamic user environments, 

application scenarios, and network conditions. 

In Fig. 2 (a), the proposed network AI architecture consists 

of three key units and constructs a comprehensive, 

distributed, and scalable AI as a Service (AIaaS) platform in 

6G. First, the network infrastructure is composed of 

dispersive mNodes in multi-tier mobile networks. Second, 

each Network AI Logic and Control (NALC) unit is task-

oriented and manages the multi-tier mNodes in a specific 

local/regional area through effective signaling schemes. In 

6G mobile networks, a NALC coordinates the integrated 

S2C3A resources and functions for serving every task in 

realtime and near-realtime applications, i.e., E2E delay 

ranges from milliseconds to tens of milliseconds. The 

customized service procedure and personal QoE of every 

task are constantly monitored and optimized by a 

corresponding NALC. Third, a Network AI Management 

and Orchestration (NAMO) unit manages the AIaaS 

platform with multiple NALCs to support wide-area 

applications by cross-domain resource coordination, service 

orchestration, and E2E QoE guaranteeing protocols. In 6G 

systems, NALC and NAMO should work close together to 

effectively balance the service requirements on short E2E 

delay and wide service coverage in different application 

scenarios. For the cases that other IT vendors are willing to 

contribute additional cloud and edge computing resources, 

NAMO will coordinate multi-vendor resources to support 

complex applications across different AI architectures. 

Therefore, the proposed network AI architecture can either 

serve various tasks independently, or complement with the 

cloud AI and edge AI architectures to satisfy sophisticated 

user requirements with challenging SRZ targets. 

3. System Model 

To study a typical 6G system with dispersive computing 

resources and pervasive intelligence, Fig. 2 (b) shows a 

general system model for different AI architectures. Let us 

consider a series of tasks, each having a customized SRZ, 

arriving at the system with rate λ tasks per second. These 

tasks are generated randomly either by end users enjoying 

mobile internet services or by various devices and things 

embedded in industrial IoT applications. As discussed, 

simply deploying more computing resources as the affiliated 

AI capabilities in access networks and bearer networks, 

while keeping different service functions separated (as in 

previous generations of mobile networks), would generate  



 

Table 1.  Simulation Parameters. 

 Parameter   Value 

User Task: 

Demand Side 

Task Density/Arrival Rate  [1000, 3000] (tasks per second) 

Delay Bound 𝐷0 E[𝐷0]=1600 (seconds), Var(𝐷0)=50 

Energy Bound 𝐸0 E[𝐸0]=1.85(kW·h), Var(𝐸0)=0.05 

Task Size Z 
E[Z]∈[4.8 × 108, 7.2 × 108](bytes) 

Var(Z)=1 × 106 

Computing Requirement U 
E[U]∈[0.4 × 102, 1.0 × 102] (teraFLOPS) 

Var(U)=1.0 

6G System: 

Supply Side 

                      Cloud AI Edge AI Network AI 

Computing Overhead 0 
28800 

(teraFLOPS) 

36400 

(teraFLOPS) 

Effective Computing Power 
140000 

(teraFLOPS) 

111200 

(teraFLOPS) 

103600 

(teraFLOPS) 

Cloud 

Computing 

Power 𝐶𝑐 

140000 

(teraFLOPS) 

100000 

(teraFLOPS) 

70000 

(teraFLOPS) 

Data Rate 𝑅𝑐 2500 (Mbps) 

3𝑟𝑑-tier mNode 

Number 𝑁3 0 0 10 

Computing 

Power 𝐶3 
- - 

1120 

(teraFLOPS) 

Data rate 𝑅3 E[𝑅3] ∈[1600, 2500] (Mbps), Var(𝑅3)=100 

2 𝑛𝑑-tier mNode 

Number 𝑁2 0 0 100 

Computing 

Power 𝐶2 
- - 

112 

(teraFLOPS) 

Data Rate 𝑅2 E[𝑅2] ∈[400, 625] (Mbps), Var(𝑅2)=25 

1 𝑠𝑡-tier mNode 

Number 𝑁1 0 1000 1000 

Computing 

Power 𝐶1 
- 

11.2(

teraFLOPS) 

11.2 

(teraFLOPS) 

Data Rate 𝑅1 E[𝑅1] ∈[56, 87.5] (Mbps), Var(𝑅1)=7 

Algorithms: 

Supply Side 

Fair Equal Scheduling (FES) 100% 50% : 50% 25:25:25:25 % 

The Closer The Better (TCTB) 100% 80% : 20% 80: 10: 5: 5 % 

significant management and technical problems. Therefore, 

without loss of generality, we consider a three-tier network AI 

architecture with three types of mNodes, which are represented 

by blue rectangular boxes. The number of mNodes, the 

computing power (FLOPS: floating-point operations per 

second), and the network data rate (bytes per second) in the ith-

tier are denoted by 𝑁𝑖, 𝐶𝑖, and 𝑅𝑖, respectively. Above them sits 

a cloud, which has the highest data rate 𝑅𝑐 and the strongest 

computing power 𝐶𝑐 . This system model can be easily 

simplified to represent the cloud AI and edge AI architectures 

by setting 𝑁𝑖 = 0 for i ≥ 1 and i ≥ 2, respectively.  

 

For an arbitrary task T, the corresponding service 

provisioning procedure is determined by the specific task 

scheduling algorithm. Upon the arrival of task T, its SRZ is first 

checked by a nearby 1st-tier mNode at the edge, which analyzes 

the possibility of satisfying that SRZ with the network resources 

available in the vicinity. If local resources are sufficient, task T 

will be immediately served by this mNode. If not, a more 

powerful 2nd-tier mNode will be initiated to lead the effort of 

identifying feasible network resources in a bigger neighborhood. 

If regional resources are still not sufficient, an even stronger 3rd-

tier mNode will be called upon to perform multi-domain 

resource coordination over a much wider area. In some cases, 

task T is so complex that a large amount of network resources 

will be used to collect and process not only local and regional 

data, but also global data. If task T can be split into multiple 

subtasks [15], the same number of mNodes in the horizontal or 

vertical directions can share their resources and capabilities to 

collectively serve task T. Otherwise, task T cannot be split and 

has to be uploaded to the cloud through the multi-tier network, 

thus increasing the end-to-end transmission delay, energy 

consumption, and total cost. Traditional cloud AI architecture 

relies on remote super-powerful computing resources, while 

recent edge AI architecture takes advantage of local light-

weight computing resources. As the next stage, the network AI 

architecture incorporates both cloud and edge AI resources to 

allocate multi-tier, pervasive intelligence in 6G systems. 



 

Fig. 3 Service Results of Representative Tasks with Different SRZs.

 

V. SYSTEM PARAMETERS AND SIMULATION RESULTS 

Different from the DeFog benchmarks built on representative 

applications (https://github.com/qub-blesson/DeFog), the 

simulation study of different AI architectures in this article is 

based on real world experiences and best practices in typical CT 

and IT networks. Table 1 lists all the parameters and their 

assumed values about tasks, three AI architectures, and two task 

scheduling algorithms for extensive computer simulations. On 

the demand side, different users continuously generate λ tasks 

per second. Assume a non-splittable task T have a size of 𝑍 

bytes and a computing requirement of 𝑈  teraFLOPS. To 

demonstrate the key results within limited space, only delay and 

energy consumption are chosen as the illustrative service KPIs 

for constructing a two-dimensional SRZ for every task. If task 

T is served by an mNode in the hth tier, the E2E service delay 

DT consists of (i) the h-hop transmission delay which is 

determined by task size and random data rate at each hop, and 

(ii) the computation delay at the serving mNode, which is 

affected by task computing requirement, shared computing 

power at the mNode, dynamic queueing delay due to multiple 

competing tasks, and limited I/O speed for data storage. These 

negative effects at the mNode prolong the computation delay of 

every task. After considering their combined impact, the 

effective computing power 𝐶ℎ  seen by the tasks is 

proportionally reduced. Therefore, the overall service delay DT 

can be expressed as 

𝐷𝑇 = ∑
𝑍

𝑅𝑖

ℎ

𝑖=1

+
𝑈

𝐶ℎ

, (2) 

Similarly, the total energy consumption 𝐸𝑇  consists of the h-

hop transmission energy consumption and computation energy 

consumptions of the task, i.e.,  

𝐸𝑇 = ∑ 𝛼𝑖

𝑍

𝑅𝑖

ℎ

𝑖=1

+ 𝐶ℎ
2𝑈, (3) 

where 𝛼𝑖 denotes the average transmission power over the ith 

hop, which is set to be 0.1 Watts for typical network elements. 

The coefficient  represents the effective switched capacitance, 

which is related to the chip architecture at the serving mNode. 

According to the previous study [17], it is an extremely small 

constant and can be set as   = 1 × 10−27. The condition for 

user satisfaction is therefore 𝐷𝑇   𝐷0  and 𝐸𝑇  𝐸0 , where 𝐷0 

and 𝐸0  are the upper bounds of service delay and energy 

consumption, as specified by the SRZ of task T. Without loss of 

generality, the values of Z, U, 𝐷0 , and 𝐸0  are randomly 

generated according to different Gaussian distributions.  

 

For a sequence of tasks, Fig. 3 shows their customized SRZs 

as rectangular zones bounded by the actual values of 𝐷0 and 𝐸0, 

represented by two dashed lines. The service results of the delay 

and energy consumption performance are denoted by three 

markers for different AI architectures. Taking Task 1 as an 

example, both the network AI and edge AI architectures can 

achieve satisfied QoEs since their markers are located inside the 

SRZ. On the contrary, the cloud AI architecture fails to provide 

acceptable delay performance. 

 

On the supply side, the cloud AI, edge AI, and network AI 

architectures are evaluated with the same total computing 

power of 140K teraFLOPS. For a fair comparison, they are 

composed of a cloud and a three-tier network for serving tasks 

with different SRZs. For the cloud AI architecture, all tasks are 

transmitted over the network and served in the cloud. There is 

no additional computing overhead for task scheduling and 

resource management outside the cloud, so the effective 

computing power is 𝐶 = 𝐶𝑐 = 140K teraFLOPS.  

 

The edge AI architecture allocates a small amount of 

computing power among 1000 1st-tier mNodes at the edge and 

the rest of computing power in the cloud. Assuming a 20% 

computing overhead for task scheduling and resource 

management at the edge, the resulting effective computing 

power is equal to 𝐶 = 𝑁1 × 𝐶1 + 𝐶𝑐 = 111.2K teraFLOPS. In 

Table 1, two task scheduling algorithms are considered in 

performance evaluation. The Fair Equal Scheduling (FES) 

algorithm assigns all the tasks in a random manner, with half 

going to the edge and half to the cloud for services. The-Closer-

The-Better (TCTB) algorithm follows the Pareto principle, or 

the 80/20 rule, so that 80% and 20% of all the tasks go to the 

edge and the cloud, respectively. The use of FES and TCTB 

algorithms will demonstrate the fundamental differences 

among the three AI architectures and provide standard 

benchmarks for developing more sophisticated algorithms for 

complex application scenarios and dynamic network conditions. 

 

The network AI architecture is comprised of more mNodes with 

different capabilities in three network tiers, thus the additional 

computing overhead due to system and algorithm complexities 

is higher and assumed to be 36.4K teraFLOPS. The total 

effective computing power is then derived as 𝐶 = 𝑁1 × 𝐶1 +
𝑁2 × 𝐶2 + 𝑁3 × 𝐶3 + 𝐶𝑐 = 103.6K  teraFLOPS . Usually, an 

upper-tier mNode covers a larger geographical or logical area 

in the network and therefore is more capable of serving more 

tasks. Specifically, as network tier increases, we assume that the

https://github.com/qub-blesson/DeFog


 

(a) Impact of Task Density when Task Computing 

Requirement U~N (70,1). 

(b) Impact of Task Computing Requirement when Task 

Density λ=1000. 

Fig. 4 USR versus Task Density and Computing Requirement. 

 

  

(a) Impact of Task Size when Network Data Rate R1~N (70, 

7). 

(b) Impact of Network Data Rate when Task Size Z~N 

(6 × 108, 106). 

Fig. 5 USR versus Task Size and Network Data Rate.

number of mNodes decreases exponentially while the 

computing power of each mNode increases exponentially. 

The FES algorithm randomly assigns each task to a network 

tier or the cloud, thus a portion of 25% tasks is served in each 

network tier and the cloud. The TCTB algorithm gives much 

higher priorities to lower network tiers, so the proportions of 

task assignments to the 1st-tier, 2nd-tier, 3rd-tier, and cloud are 

reasonably set as 80%, 10%, 5%, and 5%, respectively.  

 

As defined, the overall USR can be calculated by 

comparing the number of satisfied tasks against the total 

number of served tasks. When the Gaussian distributions of 

task size and network data rates are fixed, i.e., Z~N 

(6 × 108 , 106 ), R1~N (70, 7), R2~N (500, 25), and R3~N 

(2000, 100), Fig. 4 illustrates the USR performance of the 

three AI architectures under dynamic task densities and 

computing requirements. In Fig. 4 (a), the task density has a 

linear impact on the decline of the USR curves under 

different AI architectures. For TCTB, when λ is equal to 

1500, 2000, and 2500 tasks per second, respectively, the 

network AI architecture can achieve 3.8%, 5.3%, and 7.4% 

higher USR than the edge AI architecture, while 315.0%, 

393.8%, and 461.5% higher USR than the cloud AI 

architecture, respectively.  

 

In Fig. 4 (b), the USR curve of the cloud AI architecture 

has two knee points at about U=48 teraFLOPS and U=66 

teraFLOPS. The transition region between them has a steep 



 

slope, which implies that the energy consumptions for 

executing all the tasks in the cloud increase very rapidly 

when the average computing requirement increases. Under 

both TCTB and FES algorithms, the green and blue curves 

of the edge AI and network AI architectures are much less 

sensitive to this change, which is due to the efficient services 

by mNodes in the neighborhood. The turning points for 

TCTB and FES curves are around U=68 teraFLOPS and 

U=71 teraFLOPS respectively, where the gradients climb 

roughly from 0 to 0.36. 

 

In Fig. 5 (a), for fixed task density λ=1000 and task 

computing requirement U~N(70,1), when task size increases, 

the USR curve of the cloud AI architecture degrades 

dramatically because long-distance transmissions of bigger 

tasks become more time-consuming and energy-intensive, 

thus adversely impacting the USR. On the contrary, the USR 

curves of the edge AI and network AI architectures are much 

less sensitive to task size changes, thanks to the computing 

resources deployed at the edge and in the network. Compared 

with FES, TCTB is more effective in satisfying different 

SRZs simultaneously by transmitting most tasks to local and 

regional mNodes. The turning points of TCTB curves are 

around Z=6 ×108 bytes where the gradients are doubled from 

0.17 to 0.38. 

 

Fig. 5 (b) demonstrates the influence of network data rates 

on the USR performance. Specifically, we assume that R1, R2 

and R3 are Gaussian random variables with different mean 

values, but at a fixed ratio of E[R1]:E[R2]:E[R3]=7:50:200. So, 

only E[R1] is shown as the X-axis in the figure. Very 

interestingly, these curves are like the mirror flips of those in 

Fig. 5 (a), because higher network data rates and smaller task 

sizes both imply lower transmission delays. Therefore, 

increasing network data rates and reducing task size have 

almost equivalent impact on the USR performance. When 

network data rate is high, e.g., E[R1] > 85 Mbps, the USR 

curve of the cloud AI architecture gets very close to the 

curves of the edge AI and network AI architectures, just like 

the case when the average task size E[Z] < 4.95×108 bytes in 

Fig. 5 (a). 

VI. RESEARCH CHALLENGES 

We believe the following research challenges and technical 

problems require further discussions and investigations. 

 

(1) Statistical Models of Diverse SRZs: integrated service 

requirements of different types of realistic tasks should 

be studied in complex application scenarios and 

dynamic network conditions. New KPIs on pervasive 

intelligence, QoE, and social benefits will be 

investigated. Priorities should be given to mission-

critical tasks and elderly users.  

(2) Service Capacity of 6G Systems: practical 

mechanisms should be developed to map customized 

SRZs onto heterogenous system resources and AI 

capabilities across multiple tiers and domains. 

Theoretical analysis of system service capacity is 

crucial for improving service efficiency, resource 

utilization, and everyone-centric QoE.  

(3) Cross-domain Service Provisioning: the design of 

mNodes, NALC, and NAMO should be promoted to 

support a series of effective interfaces, protocols, and 

algorithms for cross-domain resource allocation, E2E 

service provisioning, customized task scheduling, 

multi-node collaborations, mobility management, user 

behavior monitoring, and QoE performance 

optimization. 

(4) E2E Security and Privacy Protection: considering 

randomly distributed users with a variety of access 

devices, a zero-trust architecture should be developed 

together with the network AI architecture. Context-

aware security and privacy protection methods should 

support everyone-centric customized services under 

different user locations, mobile terminals, wireless 

environments, application scenarios, and network 

conditions. 

(5) Implementation of Native AI Capability: to enable 

the native AI capability in the network AI architecture, 

a joint design methodology should be studied to support 

effective development and evaluation of collective AI 

methods using distributed, heterogenous network 

resources. Such localized but federated AI algorithms 

could greatly reduce the training time and the size of 

action space. Some implementation issues from 

physical layer to application layers should be studied 

for real-world applications, such as user requirement 

and mobility models, wireless channel characteristics, 

task arrival statistics, network traffic dynamics, system 

and algorithm complexities, training data splitting, 

distributed AI collaborations, AI service coverage and 

handoff, and stable QoE performance. 

VII. CONCLUSIONS 

Unlike existing 4G/5G systems that offer standard mobile 

services for different application scenarios, 6G systems 

should be able to tailor customized services to meet 

everyone’s personal requirements. From a user’s perspective, 

we first coined the concept of SRZ to characterize each task’s 

integrated performance requirements. Next, from a system’s 

perspective, we introduced the concept of USR to evaluate 

the system’s overall service ability of satisfying individual 

SRZs of different tasks. Then, the cloud, edge, and network 

AI architectures were studied and compared under dynamic 

task densities, task sizes, computing requirements, network 

data rates, and two task scheduling algorithms. By deploying 

multi-tier mNodes, the proposed network AI architecture 

with integrated S2C3A resources can effectively support 

customized services for a variety of user tasks with different 

SRZs, thus achieving the highest USR under random service 

requirements and dynamic network conditions. In contrast, 

the centralized cloud AI architecture has difficulties in 

meeting stringent delay and energy consumption bounds, 

thus not suitable for delay-sensitive broadband applications 

such as interactive VR/AR games, autonomous driving, and 

intelligent manufacturing. 
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