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Over-the-Air Computation for Distributed Systems:
Something Old and Something New

Zheng Chen, Erik G. Larsson, Carlo Fischione, Mikael Johansson, and Yura Malitsky

Abstract—Facing the upcoming era of Internet-of-Things and
connected intelligence, efficient information processing, compu-
tation, and communication design becomes a key challenge in
large-scale intelligent systems. Recently, Over-the-Air (OtA) com-
putation has been proposed for data aggregation and distributed
computation of functions over a large set of network nodes.
Theoretical foundations for this concept exist for a long time, but
it was mainly investigated within the context of wireless sensor
networks. There are still many open questions when applying
OtA computation in different types of distributed systems where
modern wireless communication technology is applied. In this
article, we provide a comprehensive overview of the OtA com-
putation principle and its applications in distributed learning,
control, and inference systems, for both server-coordinated and
fully decentralized architectures. Particularly, we highlight the
importance of the statistical heterogeneity of data and wireless
channels, the temporal evolution of model updates, and the
choice of performance metrics, for the communication design
in OtA federated learning (FL) systems. Several key challenges
in privacy, security, and robustness aspects of OtA FL are also
identified for further investigation.

I. INTRODUCTION

Wireless communications networks, designed with commu-
nication among humans in mind during the last fifty years,
are now becoming overwhelmed with data traffic that stems
from emerging artificial intelligence (AI) and machine learning
(ML) applications. One distinction of the data traffic required
by AI/ML applications is that it is subject to entirely different
performance requirements than traditional human-perceived
data (e.g., text messages, voice calls or multimedia content).
More explicitly, the traffic generated by AI/ML applications
often contains computation results, which may be useful even
if they are only received approximately correctly. Traditional
quality-of-service performance metrics in communications
such as error probability and rate may not be relevant for
AI/ML applications. Rather, entirely different criteria will mat-
ter more, such as convergence speed of learning models, and
statistical inference performance on average, in expectation
over an ensemble of random data. This shift will require a
re-design of the networks, spanning from the physical layer
to the application layer. It also will require going beyond
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classical Shannon information theory, which has underpinned
all generations of networks so far.

Within the AI/ML field, several classes of distributed al-
gorithms have been developed with which autonomous agents
(clients), that could be mobile users or sensors, collaboratively
solve large-scale inference and learning tasks. The progress on
collaborative and distributed intelligent systems has motivated
the concept of wireless edge intelligence, which means that
the computation tasks that were traditionally performed in
centralized cloud servers are moved towards the wireless
network edge. Implementing distributed algorithms in wireless
networks often requires iterative exchange and aggregation
of information among the agents over resource-constrained
communication links. One main challenge is the resource
allocation among the agents, where the orthogonal division
of frequency/time resources can be inefficient when the num-
ber of agents is very large. If we consider that the goal
of communication for machine-perceived data differs from
human-perceived data, joint computation and communication
design without error-free bits has the potential to achieve better
performance than classical digital transmission designs.

Over-the-Air (OtA) computation, also referred to as Air-
Comp, has emerged recently as a promising solution for com-
puting functions of data from distributed nodes over wireless
links by exploiting direct signal superposition in the analog
domain [1]. In this article, we provide an overview of the
basics, applications and research questions of OtA aggregation
in distributed systems. As compared to existing overviews in
the literature, we summarize previously overlooked or under-
explored aspects of OtA FL, such as statistical heterogeneity
and temporal evolution of model updates, choices of per-
formance metrics, and the communication design for fully
decentralized systems.

The organization of this article is summarized as follows. In
Sec. II, we briefly explain the concept of OtA aggregation for
distributed computation of nomographic functions. In Sec. III,
we present applications of OtA computation in distributed
learning, control and inference systems. Then, we focus on
the communication and signal processing aspects of OtA FL
in Sec. IV, and highlight the challenges in privacy and security
aspects in Sec. V. At last, in Sec. VI, we conclude the article
and summarize important research directions.

II. OVER-THE-AIR (OTA) AGGREGATION AS A
COMPUTATIONAL TOOL

With OtA computation, by virtue of the superposition prin-
ciple of the wave equation that governs the wireless multiple-
access channel, information sent by the agents naturally adds
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up “in the air”. Suppose 𝑓 : R𝑁 → R is a nomographic
function [2], such that

𝑓 (𝑥1, . . . , 𝑥𝑁 ) = 𝜙

(
𝑁∑︁
𝑖=1

𝜓(𝑥𝑖)
)

(1)

for some scalar functions 𝜙 and 𝜓. Then every agent 𝑖

can perform 𝜓(·) prior to transmission, the medium (wave
superposition) performs the actual aggregation (

∑
𝑖), and the

receiver performs 𝜙(·). Any nomographic function can be
computed this way through the OtA mechanism. Commonly
used nomographic functions include arithmetic mean, geomet-
ric mean, and Eucliean norm.

OtA aggregation makes a clean break with the notion that
modern data transmission should be digital. Its principal ben-
efit is that rather than giving the agents orthogonal resources
(as in traditional digital communications), they send their data
simultaneously, saving a factor of 𝑁 in spectrum resources.

Though the core idea of OtA aggregation seems straightfor-
ward, in practice the picture is more complicated. First, inter-
ference and noise (say 𝑛) will enter at the receiver, resulting
in received post-processed signal as 𝜙

(∑𝑁
𝑖=1 𝜓(𝑥𝑖) + 𝑛

)
. If the

inversion carried out by 𝜙 is ill-conditioned, then the presence
of 𝑛 may be detrimental. Second, the basic OtA abstraction
assumes that agents send their updates synchronously with
perfect phase alignment. But in practice, some phase mis-
matches are unavoidable due to imperfectly known propaga-
tion delays and hardware impairments. The effect of imperfect
synchronization needs to be accounted for in the reconstruction
of aggregated model updates, and such aggregation errors
are structurally different from other sources of “noise” in
traditional ML systems. While in theory the synchronization
issue can be resolved using calibration protocols, these are
difficult to implement in emerging Internet-of-Things devices
that must be low-cost and highly energy-efficient, and may
operate at > 30 GHz carrier frequencies where phase drift is
a major issue.

III. APPLICATIONS OF OTA COMPUTATION IN
DISTRIBUTED SYSTEMS

Theoretically, OtA computation can be useful in any dis-
tributed system that requires combining and aggregating data
from multiple sources at one common receiver without the
need of receiving each independent stream correctly. In this
section, we provide some application examples and highlight
the relation between the accuracy of data aggregation and the
underlying tasks/applications performed by the system.

A. Distributed ML with Collaborative Training

Currently, most research activities on the application of OtA
computation focus on distributed ML with multiple agents
collaborating in training a common ML model, as shown in
Fig. 1. The most outstanding example is server-coordinated
FL with a master-worker architecture, where the computation
objective at the server is to obtain the weighted sum of the
model update vectors from the agents after each round of local
training. Collaborative ML can also be implemented in fully

decentralized systems, where information exchange and fusion
take place between locally connected agents without commu-
nication with a central server. This part will be elaborated with
more details in Sec. IV-E.1

In server-coordinated FL systems, to effectively compute
the weighted average of the model updates at the server, each
agent pre-processes its data to compensate for the amplitude
degradation and phase rotation in the wireless channel, subject
to some power constraints. At the server side, the received
superimposed signal is post-processed to obtain an estimate
of the function to be computed. This procedure is illustrated
in Fig. 2.

B. Distributed Control Systems

Distributed control systems rely on multiple geographically
distributed sensors and actuators to control a larger system,
such as a factory or an infrastructure network. Increasingly
often, the control loops are closed over wireless communi-
cation links. OtA computation could potentially improve the
efficiency of such systems. For example, [3] considers a simple
scenario where a single control loop with a single actuator
uses measurements from multiple sensors. OtA aggregation
is applied such that all sensors simultaneously send scaled
signals containing the measured plant state to the actuator.
The actuator receives the superimposed control signals in the
presence of channel noise. The scaling factors at the sensor
and the actuator sides can be designed in a way to minimize
the distortion of the received control signal, which eliminates
the need of a control unit. Thus the sensor-to-actuator feedback
occurs without a separate unit. The study in [3] is arguably
just the initial application of OtA to distributed control, and
thus several questions remain to be answered in this setting,
such as the relation between system stability and the distortion
of aggregated signal, and the impact of output feedback and
transmit power limitations on the system performance.

C. Distributed Estimation and Inference

One example in this application is to estimate some random
field with distributed sensors when the dimension of the
observation at each sensor is much smaller than the dimension
of the field [4]. This can be done by applying distributed
linear estimation with consensus + innovations algorithms
for the information exchange and fusion among cooperative
sensors following an iterative process. In every iteration, the
exchanged information contains the current estimate of the
random field, where OtA can be applied for data aggregation.
The impact of communication constraints and costs on the
reconstruction of the random field is an interesting direction
to explore.

There are numerous potential OtA applications that fall
within the general framework of federated analytics. The most
important characteristics of these applications are: 1) the com-
munication goal is to compute functions of distributed data; 2)
the computation result only needs to be approximately correct.

1In some existing literature, these two architectures are referred to as
“centralized FL” and “decentralized FL”, respectively.
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Fig. 1: System architectures of server-coordinated and fully decentralized collaborative ML systems.
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Fig. 2: Illustration of OtA computation over a multiple access
fading channel. 𝜽 𝑖 is the model update vector from user 𝑖, 𝑔𝑖 is
the channel gain between the 𝑖-th user and the server, 𝑛 is the
additive noise. 𝜓 and 𝜙 refer to the pre-processing function at
the sender (user) side and the post-processing function at the
receiver (server) side, respectively.

In other words, not all distributed systems can potentially
benefit from OtA computation for data aggregation. Currently,
most articles on the application of OtA computation focus on
server-coordinated FL. Therefore, in the following sections,
we focus on communication design and signal processing in
OtA FL. Rather than summarizing existing work on this topic,
the purpose of this article is to point out what is missing in
the current literature and which aspects of OtA FL should be
further investigated.

IV. COMMUNICATION AND SIGNAL PROCESSING
PERSPECTIVE OF OTA FL

Even though the main advantage of OtA computation for
wireless data aggregation is the efficient usage of communi-
cation resources, there are still many factors that can affect the
computation and communication efficiency in OtA systems. In

the existing literature on OtA FL, the following aspects have
been either ignored or under-explored:

• the impact of non-IID data on the statistical heterogeneity
of the local model updates;

• the disparity between the channel conditions of different
agents and its impact on the statistics of the reconstruction
error;

• the temporal evolution/correlation of the model updates
(or gradient vectors) along the communication rounds;

• other performance metrics than the mean-square error
(MSE) of the aggregated model updates.

One example is that many existing works assume that the
model updates from different agents follow the same distri-
bution with unit variance. This inherently suggests that all the
agents in the system are statistically identical. As illustrated
in Fig. 3, this assumption is generally not true with non-
IID training data across different agents.2 Another observation
from Fig. 3 is that the gradient norms evolve over time. Only a
few existing papers have considered the temporal structure of
model updates and its impact on the data compression design
[5], [6]. The joint consideration of these aspects mentioned
above brings new challenges and questions in OtA FL that
differ from a classical statistical estimation setting.

A. Computation, Communication and Convergence

An important aspect of FL over wireless links is the inter-
play between computation and communication costs and the
impact of radio resource management on the convergence per-
formance. The design space of resource allocation in wireless
FL is vast, but the fundamental question is: under given con-
straints on frequency/time/power, how can we allocate these
resources to different agents in every communication round

2Note that the obtained gradient norms depend on many parameters in the
simulation setting, such as data distribution, learning rate, and batch size. In
Fig. 3 with non-IID data, Agent 2 has less fluctuation in the gradient norm
evolution than Agent 1, which implies that the optimal model parameters
obtained with local data at Agent 2 might be closer to the global optimal
model. However, this simulation result does not necessarily mean that Agent
1 always have worse training performance than Agent 2.
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Fig. 3: Evolution of the gradient norm by training a convo-
lutional neural network for a classification problem. MNIST
dataset is used and the data samples are evenly distributed over
100 agents divided into two groups. With IID data, all agents
have training samples containing all digits. With non-IID data,
one group (which Agent 1 belongs to) has only samples with
digits 0 − 4, and the other group (which Agent 2 belongs to)
has only 5 − 9.

such that the FL algorithm converges as fast and as accurately
as possible? Computational complexity is another factor that
can affect the convergence performance and energy consump-
tion. Consequently, resource limitations pose constraints on the
number of agents that can participate in each communication
round and the power allocation between computation (local
training) and communication (sending model updates).

In the digital domain, work on communication-efficient ML
has centered around compression techniques such as quanti-
zation and sparsification of gradient vectors. For FL over rate-
limited wireless networks, scheduling and resource (frequency,
time, power) allocation can be optimized to improve the sys-
tem convergence performance under the limitation of commu-

nication resources. In the OtA domain, since all users share the
same frequency/time resources, the communication efficiency
is mostly affected by the data compression and scheduling
design. Particularly, sparsification plays an important role in
reducing the dimension of the transmitted data, thus reducing
the consumed radio resources. For this to work, the locations
of the sparsified elements need to the sent as side information
to the receiver through some reliable channels. Furthermore,
we can explore linear compression techniques inspired by
compressed sensing method to recover the aggregated model
parameter vector at the server side.

In the digital domain, the impact of scheduling lies in the
fact that with more devices participating in model uploading,
less frequency/time resources are allocated to each user, which
results in higher compression loss that may deteriorate the
accuracy of the aggregated model. With OtA aggregation,
scheduling is also important because all the agents apply a
common scaling factor in the pre-processing step such that the
transmitted signals satisfy the power constraints at all agents.
This scaling factor affects the variance of the effective noise
after post-processing at the receiver side. From the perspective
of minimizing the reconstruction error, it might be beneficial to
drop several bottleneck users with large gradient norms and
bad channel conditions. From the perspective of improving
convergence by reducing the variance of the aggregated model,
it is crucial to include as many users as possible in the model
aggregation. The interplay between computation, communica-
tion and convergence is a critical design question of OtA FL.

B. Temporal Statistics and Adaptive Learning

For distributed ML over wireless networks, the temporal
evolution of the generated model updates (gradient vectors)
and the communication link conditions is another fresh aspect
that makes the OtA problem more interesting.

For gradient vectors in FL, there is some evidence of a
predictable structure [6], in that the amplitude of the different
gradient elements changes slowly over time. This inherently
suggests that the impact of communication resources on the
system performance is not equal over time. Additionally, some
recent work on FL has shown that the convergence in later
iterations is more sensitive to large compression loss than the
earlier ones. This observation has motivated the consideration
of adapting communication resources along the iterations such
that the aggregated model is received with higher accuracy dur-
ing the later iterations. This fact was exploited in [7] to derive
an adaptive gradient compression mechanism that maximizes
the optimization progress (reduction in expected loss function
value) per communication resource (e.g., channel or power)
used in every iteration. Similar ideas can be explored for
OtA FL, where energy allocation and scheduling decisions can
be adapted along the iterations to achieve faster convergence
under a total energy budget for the entire training process.
In this case, the channel statistics and data statistics must be
jointly accounted for when making transmission decisions. The
development of adaptive scheduling and resource allocation
policies for iterative learning algorithms with OtA computation
is a challenging open problem.
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C. OtA Computation with Multiple-Antenna Technology

Most published research on OtA FL considers the case with
single-antenna agents and servers. Given the enormous success
of multiple-antenna technology in cellular communications,
especially massive MIMO, it is conceivable that the use of
multiple antennas would greatly benefit also OtA FL setups.
A crucial aspect of OtA FL is that the agents need to know, on
a per-antenna basis, the physical channel response in order to
pre-compensate for the channel phase-rotation and amplitude
attenuation, before transmission. This is required such that the
signals from all agents can be added up constructively, in-
phase at the server. But with multiple antennas at the server,
there will be no universal phase-rotation per agent antenna that
works for all server antennas.

Two basic cases can be distinguished. Either the agents can
obtain knowledge of the per-antenna channel responses (in-
cluding their phase), or they cannot. If these channel responses
are available, then the agents can optimize their transmission,
which includes selecting beam patterns (in case of multiple
agent antennas) and phase-rotations, such that the weighted
sum of the transmitted gradient updates can be inferred from
the signals collectively received at the server antennas. In
contrast, if the channel responses are unknown, then the agents
cannot meaningfully pre-compensate, or even beamform, their
transmissions to the server and one has to either resort to
“blind” OtA aggregation techniques [8], or to spatial multi-
plexing of the gradients using a conventional multiple-antenna
decoding algorithm such as zero-forcing. The latter option
allows for individual sparsification and compression of the
gradients, and it was shown in [9] that this approach is superior
as long as the number of antennas across all agents is smaller
than at the server and the channel coherence allows for the
transmission of individual uplink reference signals (which are
required to separate the spatially multiplexed streams).

The design of optimal transmission schemes for multi-
antenna agents and servers remains an open research problem,
whose solution entails an accurate modeling of the effects
of channel coherence, channel estimation errors, gradient
compression, and calibration – which eventually determines to
what extent the channel response phases can be obtained by
the agents. It also requires the use of appropriate performance
metrics, that go beyond the metrics conventionally used in the
design of multiple-antenna communication systems.

D. Other Metrics than the MSE of Aggregated Data

Many existing research on OtA FL uses the MSE of the ag-
gregated model updates as the performance metric to optimize
the communication (scheduling and power control) design.
From this perspective, the formulation of the optimization
problem becomes independent of the ML setting. There is no
clear evidence that minimizing the MSE (without optimal re-
scaling) is equivalent to optimizing the learning performance.
From the learning perspective, the direction of the aggregated
gradient vector matters more than the magnitude. The impact
of OtA aggregation error on the system performance cannot
be simply measured by the squared norm of the difference
between transmitted and received signal vectors.

Additionally, it is shown in [10] that the channel noise does
not have a significant impact on the convergence performance
if the channel noise does not dominate the noise in stochastic
gradient vectors caused by random data sampling. Based on
this remark, we expect that the effect of OtA estimation error
on the learning performance will depend on the level of noise
in the computation of stochastic gradients. Another concern
with using the MSE as the optimization objective is the impact
of scheduling. As briefly explained in Sec. IV-A, minimizing
the MSE of aggregated data will motivate us to drop many
bottleneck agents, which in turn increases the bias of the
aggregated model, especially under the non-IID training data
setting. In Table I, we show an example of the accuracy-
MSE tradeoff in OtA FL. This result suggests that the “plain”
MSE (without proper re-scaling) of the aggregated signals
from the set of scheduled users does not fully reflect how
close the aggregated gradient vector is to the true gradient. An
efficient scheduling design needs to balance the bias caused by
scheduling users with heterogeneous data and the estimation
error of OtA aggregation under the power constraints.

The same consideration can be extended to many other
applications of OtA in distributed systems, such as the ones
mentioned in Section III. Finding meaningful performance
metrics for OtA computation in different distributed systems
remains an important open question.

E. OtA Computation for Fully Decentralized Systems

With fully decentralized ML, the system only relies on
local computations and information exchange between lo-
cally connected nodes to solve a decentralized optimization
problem. Although several conceptual algorithms have been
proposed for such systems, such as distributed sub-gradient
method and distributed CoCoA, using OtA to perform such
computations has rarely been investigated. The convergence
speed of such algorithms is affected by the connectivity of
the network nodes over time [11], which in turn is affected
by how the scheduling of OtA nodes is performed in every
communication round. This raises new challenges in terms
of joint computation-communication methods, stability, and
optimality of the algorithms.

The first challenge is the communication scheduling prob-
lem. Here, as opposed to the usual “many-to-one” topology,
fully decentralized learning requires “many-to-many” com-
munication over unreliable wireless links with limited range,
where each node needs to send and aggregate information
at the same time. Thus, the communication protocol for
information broadcasting, reception and fusion will play a
major role in the performance (optimality and convergence)
and scalability of ML algorithms. Should the protocol be
synchronous where model updating occurs after all agents
receive information from their neighbors, or asynchronous as
in gossip algorithms? There are many open questions when
considering the broadcast nature and superposition of signals
in OtA channels. Randomized communication protocols that
combine features of distributed medium access, spatial reuse
of communication resources and compressed communication
could be particularly attractive to develop.
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Scheduled users 50 40 30 20 10
Test accuracy 92% 71.65% 56.86% 42.45% 27.37%

MSE 7.75𝑒 − 14 3.70𝑒 − 15 7.54𝑒 − 17 7.60𝑒 − 18 1.81𝑒 − 18

TABLE I: Test accuracy (after 100 communication rounds) vs. MSE of aggregated model updates for different numbers of
scheduled users. The total number of users is 50. The entire training dataset (MNIST) is equally divided among the users
but each user only contains data samples with at most 2 digits (non-IID data setting). The scheduling decision is made by
minimizing the MSE of the aggregated model updates from the set of scheduled users.

Another challenge is the “precoding problem”. Normally,
an agent adapts the phase and amplitude of its message
before transmission so that the OtA channel returns the desired
computation at a specific receiver. But in a fully decentralized
system, the OtA channel must simultaneously return many
desired computation results at different nodes despite the fact
that we can control only one precoder at each user. How to
select one precoder that can return several OtA computations
at the same time? One possible solution is to combine the
degrees of freedom in space (joint precoding and decoding at
different nodes) and in time (coding over multiple slots) [12].
Other designs can be developed by following the methods
of distributed estimation theory. In such an estimation set-
up, the nodes of a wireless network cooperate to perform a
distributed estimation process, where each node broadcasts its
local estimate to the neighbors, which in their turn, use such
received estimate to update their local estimates. The main
challenge in this case is that the channel quality and dynamics
in OtA channels can threaten the stability and convergence of
the ML algorithms if they would merely follow the distributed
estimation algorithms.

V. PRIVACY, SECURITY AND ROBUSTNESS OF OTA FL

In general, distributed learning systems can be vulnerable
to different types of attacks, depending on which level of
information is shared among the agents in the system [13].
In this article, we focus on OtA FL with transmissions of
shared training model parameters over wireless links. The
specific features of aggregating model updates through OtA
computation generate new perspectives of potential threats and
possible defense methods that are unique in OtA systems.

A. Privacy and Security

One of the main advantages of FL is to protect data privacy
by only sharing model parameter updates instead of the raw
training data with the central server. However, FL can still be
vulnerable to privacy and security attacks, such as membership
inference attack and model poisoning attack. As compared to
FL with digital transmission of model updates, one distinct
feature of OtA FL is that channel noise can be exploited as a
natural random perturbation function for improving differential
privacy [14]. Also, the server only receives the aggregated
signals from the agents without being able to decode each of
the data stream, which makes it difficult to infer information
about the local data samples at each agent.

Nonetheless, existing methods for improving differential
privacy are mostly built on the idea of gradient obfuscation
(e.g., adding random perturbations to the gradient vectors),

which leads to an accuracy-privacy tradeoff since the added
perturbations in the aggregated gradient can compromise the
learning performance. One possibility is to apply spatially
correlated perturbations across different agents such that the
aggregated perturbations add up to zero at the server side [15].
In this direction, many other ideas can be developed, such as
adaptive privacy budget allocation and long-term optimization
of privacy-accuracy tradeoffs.

B. Robustness and Reliability

Distributed SGD algorithms are generally vulnerable to
Byzantine attacks, where the goal of attack is to prevent the
system from converging. Conventional gradient aggregation
techniques that are Byzantine fault-tolerant, typically rely on
distance-based clustering and truncation schemes to eliminate
the influence of outliers that may be Byzantine attackers.
With OtA aggregation, in contrast to with digital transmission
schemes, the different data streams are inseparable. Because
of the inherent anonymity of OtA, it is in principle easy for
an adversary to send malicious messages (e.g, false gradients)
and harm the computations. Any random perturbation signal
can affect directly the aggregated model update, and the server
will not have the ability to distinguish whether the received
model update has been “poisoned”. Such attacks are known
as model poisoning. However, the defense strategies proposed
in the literature such as Krum, geometric median, and Bulyan
require exact knowledge about each individual gradient, which
is not directly possible for OtA.

In addition to model poisoning, it is well-known that care-
fully designed adversarial examples can degrade the trained
model. These are inputs that are virtually indistinguishable
from the original input to a human, but on which the trained
model shows drastically different results. To circumvent that,
the prevailing approach is adversarial training, which is often
formulated as a minimax optimization problem, where the
adversarial examples and the model weights are alternatively
updated. Such learning typically requires many more epochs,
and hence, more communication rounds. Because of the latter,
the advantages of applying OtA computation instead of digital
communication design are obvious. However, the robustness
of adversarial training with OtA computation remains to be
investigated.

In general, very little research has been performed on robust
model update aggregation in OtA FL. How to achieve robust
and reliable computation will be a main challenge and open
question for OtA-assisted distributed systems.
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VI. CONCLUSIONS

As we enter the 6G era, future wireless systems need to
support efficient information processing and data aggregation
in large-scale distributed intelligent systems. OtA computation
shows a clear advantage in resource efficiency as compared to
traditional digital communication with separated source and
channel coding schemes. Though the concept of distributed
computation of functions over multiple access channels is not
new, there are still many new challenges and open questions
that are worth investigating. In this article, we provided an
overview of the theory and applications of OtA computation,
and highlighted the importance of the following aspects:

• The statistical heterogeneity of users (both in data distri-
bution and channel condition) and temporal evolution of
model updates will have a strong impact on communica-
tion efficiency. This is often overlooked in the existing
literature on OtA FL.

• Finding appropriate performance metrics for different
types of distributed systems with OtA computation is
crucial for optimizing the resource efficiency.

• Many open questions remain in the communication and
computation design for OtA in fully decentralized sys-
tems with local information exchange.

• OtA FL is vulnerable to model poisoning attacks since
any perturbation signal can directly affect the aggregated
model update. The robustness and reliability of OtA
systems will be a great challenge for its application in
real-world networks.
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