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Abstract 

Wireless sensor networks (WSNs) have become pervasive and are used in many applications and services. 

Usually the deployments of WSNs are task oriented and domain specific; thereby precluding re-use when 

other applications and services are contemplated. This inevitably leads to the proliferation of redundant 

WSN deployments. Virtualization is a technology that can aid in tackling this issue, as it enables the sharing 

of resources/infrastructure by multiple independent entities. In this paper we critically review the state of 

the art and propose a novel architecture for WSN virtualization. The proposed architecture has four layers 

(physical layer, virtual sensor layer, virtual sensor access layer and overlay layer) and relies on the 

constrained application protocol (CoAP).  We illustrate its potential by using it in a scenario where a single 

WSN is shared by multiple applications; one of which is a fire monitoring application. We present the proof-

of-concept prototype we have built along with the performance measurements, and discuss future research 

directions. 
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Introduction 

In the last few years, Wireless Sensor Networks (WSNs) have become ubiquitous and are being used in a 

broad array of application domains, including healthcare, agriculture, surveillance and security. These 

WSNs are composed of small-scale nodes that have the ability to sense, compute and communicate [1]. 

While early sensor nodes were resource-constrained with limited capabilities, recent advances in sensor 

hardware technology have made it possible to produce sensor nodes that have more processing power, 

memory and prolonged battery life.  

Virtualization is a key technique for the realization of the Future Internet, and it is indeed quite pertinent to 

explore it in the context of WSNs. Virtualization makes it possible to present physical computing resources 

by abstracting them into logical units, enabling their efficient usage by multiple independent users, 

including multiple concurrent applications [2]. Furthermore it even allows for the deployment of 

applications that were not even envisioned during an infrastructure’s initial deployment.  

To date, the realizations of WSNs have been domain-specific and task-oriented. Applications are bundled 

with a WSN at the time of deployment, and it is next to impossible to use the same WSN for another 

applications. This leads to redundant deployments and the underutilization of these resources. There are 

two approaches to allow multiple applications to access deployed WSN resources. One is to allow multiple 

applications to share the data gathered from a WSN. In this approach, a sink/gateway node collects all the 

data from the WSN and shares it among multiple users. For example, in [3], WSNs are merged into the 
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cloud by sending observed sensor data through a host manager that lies outside the WSN.  The host manager 

simply collects the sensor data, profiles/aggregates it and then allows multiple applications to use it for their 

own purposes.  

The second approach is to use the capabilities of the individual sensor nodes to execute multiple application 

tasks concurrently, and allow applications to group these sensor nodes together according to their 

requirements. The key difference between the two approaches is that the former approach allows the sharing 

of WSN data among multiple users, while the latter allows sharing of WSN nodes by multiple applications. 

This paper is focused on the second approach because it makes it possible to design more innovative 

applications over the deployed WSNs, even applications that were not envisioned a priori. This will greatly 

improve the efficiency of the deployed WSNs and will also encourage new business models. 

This paper introduces the WSN virtualization concept, critically reviews the state-of-the-art in WSN 

virtualization and proposes a new early architecture which focuses on fixed WSNs. We illustrate the 

potential of the architecture by instantiating it for a fire monitoring scenario [4] in which multiple 

applications share the same WSN. We have built a prototype to demonstrate its feasibility and to measure 

its performance. We also identify further research directions.  

The next section presents a critical overview of the state-of-the-art. The proposed architecture is presented 

in the third section. The fourth section discusses the implementation alternatives with the proof-of-concept 

prototype and the recorded performance measurements. The research directions are discussed in the fifth 

section. We conclude in the last section by discussing the lessons learned. 

2. A Critical Overview of the State-of-the-Art 

There are two categories of WSN virtualization: node level and network level. Figure 1 shows a high-level 

view of WSN virtualization. WSN node-level virtualization allows multiple applications to run their tasks 

concurrently on a single WSN node [5] (Fig. 1-a). This execution can be sequential (e.g. round-robin) or it 

can be simultaneous, with context switching between application tasks.  

In WSN network-level virtualization, a subset of sensor nodes belonging to a deployed WSN form a Virtual 

Sensor Network (VSN)  to execute given  application tasks at a given time [6], while the other sensor nodes 

remain available for other application tasks. WSN network-level virtualization can be achieved in two ways. 

Different VSNs can be created over the same underlying WSN infrastructure (Fig. 1-b), or sensor nodes 

can form a single VSN over multiple WSNs in different administrative domains (Fig. 1-c). The latter 

situation is possible whenever the sensor nodes can support the concurrent execution of application tasks. 

It is the case these days because many popular sensor operating systems (e.g. Contiki) that run on resource 

constrained devices, enable node level virtualization through the concurrent execution of applications tasks 

on a same sensor node. 

Figure 1: WSN Virtualization Categories 
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2.1. Motivating Example and Requirements  

In this section we first present a motivating example and then draw requirements from it. 

2.1.1. Motivating Example 

A real-world deployment of a WSN is presented in [7], in which a WSN is used to monitor the impact of 

constructing a road tunnel under an ancient tower in Italy, as it was feared that the tower could lose its 

ability to stand on its own and that it might collapse during the construction. Now consider that there are 

three users interested in the fate of the tower. The first is the construction company, as it needs make sure 

that the tower does not lose its ability to stand on its own, otherwise it will have to pay a heavy fine. The 

second user is the conservation board which routinely monitors all the ancient sites around the city, and the 

third user is the local municipality which will have to plan emergency remedial/rescue actions in case the 

tower falls during the construction.  

It is quite possible that the conservation board has already deployed its own WSN to monitor the health of 

ancient sites including this tower. In this case the construction company and the local municipality can reuse 

the existing sensor nodes during the construction period. In the absence of WSN virtualization, there are 

only two possible solutions. One is to rely on the information provided by the conservation board 

application. However this information may not be at the required granularity level. Worse, some of the 

information that is needed might simply not be available because the requirements of the construction 

company and of the local municipality were not considered when the conservation board application was 

designed and implemented. The second solution is that each user deploys redundant WSN nodes. 

2.1.2. Requirements 

The first requirement is the support of node-level virtualization to allow the execution of multiple 

application tasks on the same sensor node. The second requirement is the ability of sensor nodes to 

dynamically form groups to execute isolated and transparent application tasks concurrently (i.e. support for 

WSN network-level virtualization). The third requirement is the support of application priority. In some 

critical application scenarios such as fire monitoring, it is important that other tasks have less priority than 

the one reporting the fire event.  

The fourth requirement is that the proposed solution should be applicable to a wide range of applications 

and should not be tailored for a particular scenario or domain, which is the usual case with most solutions. 

The fifth requirement is that the proposed solution should be platform-independent and should not depend 

on specific operating systems or customized/tailored interfaces. The sixth and final requirement is that the 

solution should address heterogeneity, i.e., cope with sensor nodes that have different capabilities (e.g. 

processing power, memory). 

2.2.  The State-of-the-Art and its Shortcomings 

We divide the related work into three classes: node-level, network-level and hybrid virtualization solutions. 

The hybrid solutions combine both node- and network-level virtualization.  

2.2.1. Node-level Virtualization 

In order to achieve node-level virtualization, mechanisms must be in place to allow deployed WSN nodes 

to execute new application tasks as well as update existing ones. One solution is to reprogram WSN nodes 

individually, but that is neither feasible nor efficient. Wireless reprogramming, on the other hand, allows 

large number of WSN nodes to be updated with new application tasks with minimum effort. It is now the 
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main mechanism used for node-level virtualization. Two examples of node-level virtualization based on 

wireless reprogramming are discussed below. Their main drawback is platform dependency.  

Maté [5] is a pioneering work that provides sequential execution of application tasks on resource-limited, 

early generation sensor nodes. It is a tiny virtual machine consisting of a stack-based binary code interpreter 

and works on top of TinyOS. Application tasks are divided into code capsule(s) of up to 24 instructions and 

are executed one by one. A viral code distribution scheme is used to propagate code and to reprogram the 

sensor nodes. As there is tight coupling between the application code and TinyOS, installing a new code 

requires the replacement of the whole OS. There is no support for application priority, and only a limited 

set of applications is supported. Furthermore, the approach is not platform-independent since it only works 

on TinyOS, but it does address heterogeneity. 

MANTIS [8] is a thread-based embedded operating system. Programs are created as user-level threads with 

dedicated memory space and static data attached to them at compile time. Long-running threads can be pre-

empted by short-running threads. The work on wireless reprogramming is ongoing, according to the 

authors. The techniques being used are the wireless re-flashing of the OS and the re-programming of single 

threads. Unlike Mate, MANTIS does provide application priority. However, it is not platform-independent.  

2.2.2. Network-level Virtualization 

In [6], sensor nodes form clusters to support applications that monitor dynamic phenomena. The sensor 

nodes within each cluster executes application(s) tasks, meaning a sensor node can be part of multiple 

clusters. With each cluster dedicated to an application, a WSN can be utilized by multiple applications 

concurrently, hence realizing network-level virtualization. Two illustrative applications are presented as 

motivation. Unfortunately the work is poor in terms of technical details (e.g. how individual nodes execute 

application tasks). Furthermore, there is no discussion of how application priority, heterogeneity and 

platform independence are tackled.  This work has been extended in reference [9] in order to facilitate the 

creation, operation and maintenance of dynamic clusters to achieve network-level virtualization. Once an 

event is detected, sensor nodes are grouped as a dynamic cluster tree by exchanging VSN formation 

messages. However, in terms of our requirements none of the drawbacks of reference [6] are addressed. 

The authors in [10] introduce the problem of mission assignment in WSNs. The work can be related to 

network-level virtualization because the WSN is able to support multiple missions at the same time. Each 

mission uses a dedicated subset of sensor nodes which are not shared with other missions. A mission 

assignment problem is modelled as a weighted bipartite graph to optimally assign the sensor nodes to 

missions. Achieving a mission produces a profit, so the goal is to maximize profit by efficiently achieving 

as much missions as possible. Both centralized and distributed solutions are presented, using proofs and 

algorithms including an energy aware solution. This solution does not consider any specific application 

domain. Heterogeneity is addressed along with platform independence.  However, application task priority 

is not provided since each sensor node executes only one application task at a time.  

2.2.3. Hybrid Solutions 

The authors in [11] discuss the SenShare platform, which supports both WSN-node and network-level 

virtualization. They consider TinyOS applications with an embedded hardware abstraction layer (HAL). 

The underlying sensor node resources are then accessed using a run-time layer on top of TinyOS. Since 

TinyOS supports multiple tasks at the same time, node-level virtualization is thus achieved. For network-

level virtualization, an overlay network using Collection Tree Protocol (CTP) is created to group sensor 

nodes executing the same application. The physically scattered sensor nodes executing the same application 

can be grouped into a single overlay network. SenShare is the first solution targeting comprehensive WSN 

virtualization. It supports node- and network-level virtualization, application priority and heterogeneity, 
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and it is independent of any application domain. However, it is not platform-independent, as only TinyOS 

applications are supported. 

Melete [12] is an extension of Maté and supports both node- and network-level virtualization. Concurrent 

execution of application tasks is achieved by making the following enhancements to Maté: dedicated 

storage and execution space for applications to allow concurrency, and a code dissemination protocol to 

allow selective and reactive (re)programming of sensor nodes. For network-level virtualization it uses a 

dynamic grouping technique of sensor nodes. A sensor node can be part of more than one logical group at 

the same time. The supported network topology is a connected graph. Melete does not support application 

priority, and is not platform-independent. It only supports a limited set of applications, but it does tackle 

heterogeneity. 

3. Proposed Architecture 

In this section, we first present the architectural principles. We then present our multi-layer architecture 

based on overlays, followed by a discussion of the interfaces and the overlay creation procedure.  

3.1 Architectural Principles  

The first architectural principle is that new applications/services are deployed as new overlays on top of the 

physical WSN. Overlays have several advantages: they are distributed, lack central control and allow 

resource sharing [13]. The second principle is that any given physical sensor node can execute (locally) a 

task for a given application deployed in the overlay. Any given sensor node may execute several such 

application tasks at any given time.  

The third principle is that not all WSN nodes perform the overlay-related operations, as they may not have 

enough capabilities to support the overlay middleware. When that is the case, they will delegate the 

operations to more powerful sensors and even to other nodes. This principle in effect makes it possible to 

address the heterogeneity requirement and enables network level virtualization for current generation 

resource constrained sensor nodes.  

The fourth principle is that within the architecture there are separate data and control paths. The sensor data 

(e.g. temperature values) is transmitted from sensor nodes to the overlay application using the data path. 

The control data (e.g. changing application priority and overlay management) is sent over the control path. 

This separation of paths makes it easy to work on new protocols for each path independently. 

The last principle is the use of emerging standards, aimed at resource-constrained devices, to tackle the 

platform independence challenge. These standards include protocols such as the Constrained Application 

Protocol (CoAP) [14], DNS-Service Discovery (DNS-SD) [15] and standards such as Sensor Model 

Language (SensorML) [16], Observations & Measurements (O&M) [17] and Sensor Markup Language 

(SenML) [18]. This principle of course implies the need for converters/mappers for devices which do not 

support the standards.  

CoAP is an application layer transfer protocol, like HTTP, designed to work with resource-constrained 

devices. It has less overhead, memory and processing requirements than HTTP. DNS-SD offers service 

discovery in resource-constrained networks and allows for the seamless integration of such architectures to 

the existing IP networks. SensorML provides standard models and XML-based encoding to describe sensor 

measurements and processes. It is able to provide interoperability, automatic discovery, utilization and 

sensor sharing. O&M is a standard which defines encoding schemas for the observations made by sensors. 

SenML provides a data model for sensor measurements and simple metadata about sensors in JSON, XML 

and EXI formats.  
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3.2 Overall Architecture 

Figure 2 shows our proposed multi-layer architecture, and Table I provides the list of components used. 

There are four layers (physical, virtual sensor, virtual sensor access and overlay), two paths (data and 

control), five interfaces (data (Di), proprietary Di (PDi), control (Ci), proprietary Ci (PCi) and gateway 

(Gi)) and a registration server.  

TABLE I.  COMPONENTS OF THE ARCHITECTURE 

Abbreviation  Component Remarks 

– Type A Sensor Legacy/resource constrained sensor  

– Type B Sensor New generation smart IP sensor node  

GTO Node Gates-to-Overlay 

Node 

Gateway/sink node capable of joining application 

overlays on behalf of Type A sensors 

– Sensor Agent Functional entity providing a unified interface to 

provide platform independence 

– Registration 

Server 

Sensor repository 

Di Data Interface Interface to send sensor data to application overlay 

PDi Proprietary Data 

Interface 

Proprietary interface to send virtual sensor data to 

sensor agent 

Ci Control Interface Interface to send/receive control data from end-user 

application 

PCi Proprietary 

Control Interface 

Proprietary interface to send/receive control data from 

virtual sensor to sensor agent 

Gi Gates-to-Overlay 

Interface 

Interface to send/receive the control data between Type 

A sensors and Type B sensors/GTO nodes  

 

At the physical layer we have independent WSNs that consist of two types of sensor nodes, i.e., resource 

constrained (type A) and capable (type B) sensors. Each WSN also has specialized nodes, called GTO 

nodes. Their role is to help type A sensors join the application overlays and provide heterogeneity. 

Gateways, sink nodes or a type B sensors can act as GTO nodes when required. For example, in the 

motivating example in section 2.1.1, if the existing sensors are of type A, then either the existing gateway 

node or Type B sensors, deployed by the construction company, can help those sensors to become part of 

the construction company overlay. This might increase the complexity of the type B sensor nodes but it 

does allow flexibility. 

The virtual sensor layer consists of the logical representation of each sensor executing multiple application 

tasks concurrently. Each logical representation is called a virtual sensor in our architecture, which is an 

abstraction of an application task run by a sensor.  
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Figure 2: Multi-layer WSN Virtualization Architecture 

The virtual sensor access layer consists of sensor agents which ensure platform independence. This is 

achieved by providing standardized interfaces (Di and Ci) to interact with the end-user applications, and 

are mapped onto platform-specific (proprietary) interfaces (PDi and PCi) for the underlying physical sensor 

nodes. Sensor agents can be implemented either in capable (type B) sensors or in GTO nodes. 

The overlay layer consists of independent application-specific overlays (two are shown in the figure 2, but 

there could be many more). Each application overlay is created by the end user application and consists of 

virtual sensors that run the overlay application tasks. An overlay protocol is used for message exchange 

inside an overlay. A Registration Server, which contains the details of the deployed sensor nodes, is used 

by end-user applications to find sensor nodes. 

3.3 Interfaces  

The data path uses the data interface (Di) supported by all of the sensor agents to send the data received 

from the virtual sensors executing the end user’s application task to the application overlays. The control 

path uses the control interface (Ci) supported by all sensor agents to send/receive control data. Examples 

of control data include sending requests to change application priority and sampling frequency. The 

interfaces, PDi and PCi are proprietary interfaces and are used by the sensor agent to communicate with 

WSNs. Figure 3 shows high level examples of when sensor data is sent over PDi and Di interfaces (3a) 

(when fire is detected) and when a  request to change application task priority is sent over Ci and PCi 

interfaces (3b). In this case it is the priority of the task running on sensor 02. The Gates-to-overlay interface 

(Gi) is provided by all the sensors as well as the GTO nodes. Any communication from type B or GTO 

nodes with type A sensors is done using this interface.  

3.4 Overlay Creation Procedure  

This section describes the overlay creation procedure. The creation of the overlay is a three step procedure, 

initiated by the end user application. The first step is the dynamic resource discovery and overlay pre-
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configuration, allowing the discovery of the sensors and GTO nodes on the fly according to the 

requirements of the end user application.  The second step is the activation of the overlay. The selected 

sensor (type B) and GTO nodes receive an overlay join request (or advertisement) over the Ci interface. 

After joining the overlay, the type B sensors and the GTO nodes (for type A sensors) may receive the 

application task, with its desired priority level. The final step is the execution of the end user application, 

which begins when each sensor starts executing the end user application task. Depending on the application 

requirements, sensors may exchange messages among themselves in the overlay before sending any data to 

the end user application over the Di interface.  

 

Figure 3: Example of communication over data and control interfaces 

Virtual Sensor of 

Sensor01 [Type A]

GTO Node 

[Sensor Agent]

End-user 

Application

Fire Detected

PDi Interface

Di Interface

Content-Type = application/json 

{"e":[

        { "v": 20.1 }],

  "bn": "Sensor01",

  "bt": 1376020076,

  "bu": "Cel"

}

201 Created

RadiogramConnection.send 

(sensor01, 1376020076, 

20.1, Cel)

Virtual Sensor 

of Sensor02 
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[Sensor Agent]

return(true)

End-user 

Application
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200 OK

getinstance(tasks02Thread);

setPriority(DEFAULT+1)

Content-Type = application/json 

{"e":[

        { "n": "task02"}, 

        {"sv": "increase task priority"}],

  "bn": "Sensor02"

}

RadiogramConnection.send 
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a) Sending sensor data over PDi and Di interfaces

b) Changing application task priority over PCi and Ci interfaces
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4 Implementation Alternatives, Proof of concept Prototype and Measurements  

4.1 Implementation Alternatives 

Our proposed architecture consists of the data plane, the control plane and several interfaces that belong to 

them. The Di interface, belonging to the data plane, carries the actual data. The Ci and Gi interfaces carry 

control messages and are part of the control plane.  

There are several options for implementing a data plane interface. Both HTTP and CoAP can be used as 

application layer protocols, but we chose CoAP as it will allow type A nodes to support the same protocol 

for Di and Gi interfaces. We use SenML specifications to encode the sensor data in standard JSON format. 

The combination of SensorML and O&M is another option, but we selected SenML since it is less complex. 

For the control plane, one candidate protocol is JXTA [19], an open source peer-to-peer protocol 

specification that allows the creation of independent, robust and efficient overlay networks. ScatterPastry 

[20] is another option. For our work we opted to use JXTA since its implementations are readily available. 

4.2 Prototype 

We implemented a simple brush fire scenario discussed in [4] as a prototype. In this scenario, the city 

administration is interested in the early detection of brush fire eruption and in its evolution, using a WSN 

and a Fire Contour Algorithm (FCA). Some houses in the area already have their own sensors to detect fire. 

To accelerate the deployment of its application and to avoid redundancy, the city administration has opted 

to deploy sensors in areas under its jurisdiction (i.e. streets and parks) and to incorporate the sensor nodes 

already deployed in private homes. The home owners get incentives like tax rebates for allowing the use of 

their sensors by city administration. The home gateways acts as GTO nodes. All of the privately-owned 

sensors execute two application tasks – one for the home owner and one for the city administration. Figure 

4a shows the mapping of the scenario onto our architecture. 

We make the following assumptions. First we assume that the city administration has already discovered 

and sent its application task to each of these sensors. The second assumption is that all of the sensors in the 

prototype are type A sensors which need a GTO node for overlay-related tasks. Third, as it was not possible 

to generate a fire in a lab environment, the city administration application task periodically measured the 

temperature value in a sensor and sent it to the GTO node. We used six Java SunSpots sensors, each 

executing three application tasks concurrently. The application tasks and the FCA were coded in Java 2 

Platform Micro Edition (J2ME). J2ME is a robust, flexible Java platform that enables the development of 

applications for mobile and embedded devices. The city administration’s overlay network was implemented 

using a Java based implementation of the JXTA protocol, JXSE 2.6.  

A RESTful web service is used by the city administration node to receive fire alerts. Each GTO node, upon 

receiving fire notification from its sensor, sends an HTTP POST message to a URI 

(http://…/FireContourService/events/fire/) to create a fire event. The content type of the HTTP POST 

message is set to application/senml+json and the event data received from Java SunSpot is mapped to JSON 

format according to SenML specifications. Once the event is created, the city administration node sends a 

fire notification message to the peers in the overlay.  

The overlay is created by the city admin node, acting as rendezvous peer, by advertising its peer group (fire 

contour service) using JXTA pipe advertisements before the fire event. The GTO nodes join the fire contour 

service as edge peers by replying to the received pipe advertisement. The city admin node sends the fire 

notification message using the JXTA multicast socket, which provides efficient message exchange between 
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members of the same peer group. After the execution of the fire contour algorithm, the reply message is 

sent directly to the city admin node instead of being multicast.  

The prototype uses a simple probabilistic fire contour algorithm, considering that a distant house will send 

fire notifications less frequently than a nearby house because the fire is far from it. The city administrations’ 

application is created using JavaFX, and receives the fire alert messages as well as the peers’ replies and 

displays the output on the area map. JavaFX is a set of Java libraries that allow developers to rapidly design, 

create and deploy client applications that operate across diverse platforms. 

The prototype setup is illustrated in Fig. 4b. The city administration application and its fire contour web 

service ran on a laptop with an Intel Core i5 CPU clocked at 2.67 GHz, and a 4GB RAM with 32bit 

Windows 7 Enterprise. The other two laptops acted as GTO nodes for Java SunSpots and ran three JXTA 

peers each. Their configurations were an Intel Core i7 CPU clocked at 2.70 GHz with 8GB RAM, 64-bit 

Windows 7 Professional and an Intel Core i5 CPU clocked at 2.60 GHz, and a 4GB RAM with Windows 7 

Enterprise.  All three laptops used JVM version 1.7.0_21 and were connected to a private LAN. 

 

Figure 4: Instantiation of the architecture and Prototype setup 

 

 

 

USB USB

House A House B

GTO 

Node

Home 
Task

City Admin 
Task 1

City Admin 

Overlay

Sensor 

Agent
Sensor 

Agent

PDi

PDi

Di

Di

Di

Ci
Ci

Ci

City Admin 

Application

GTO Node 

A

GTO Node

B

Sensor Agent Sensor Agent

RESTful City Admin 

Web Service

HTTP POST message

In JSON format

City Admin Overlay 

(JXTA Peer Group)

JXTA 

Peer A

JXTA 

Peer B

JXTA 

Peer C

JXTA 

Peer D

JXTA 

Peer E

JXTA 

Peer F

Sensor B

Sensor C

Sensor F
Sensor A

Sensor D

Sensor E

City 

Admin 

JXTA 

Peer

City Admin 
Control Task

City Admin 
Task 1

City Admin 

Node

City Admin Area 

Map Display

a) Instantiation of the architecture  b) Prototype Setup  

Gi

Home 
Task

City Admin 
Task 1

GTO 

Node

Gi



This paper has been accepted in IEEE NETWORK Magazine and will appear in May/June 2015 Issue. 

The content is final but has NOT been proof-read. Final content may change. 

This is an author copy uploaded on personal website. Respective copyrights are with IEEE 

4.3 Performance Measurements 

Performance Metrics – The performance of the prototype was assessed in terms of the following delays: 

HTTP POST Delay (HPD), Overlay Creation Delay (OCD) and Fire Notification Delay (FND). 

HPD is the time difference between when the GTO node sends an HTTP POST request and when it receives 

the corresponding success code (201 created). HPD is calculated for each sensor. OCD is the time it takes 

to set up the city administration overlay from a non-existent state to a ready state, when it advertises its fire 

contour service and is ready to accept join requests. We measured this delay inside the Java code to ensure 

that the OCD does not include the JVM start-up delay. FND is measured as the time it takes for the city 

admin node to multicast fire notification messages to JXTA peers and to receive their replies after they 

execute fire contour algorithm. For each experiment we restarted the JVM and cleared the previous JXTA 

configuration cache. All delays are measured in milliseconds and calculated at the sender side. 

 

Figure 5: Results 

Performance Results – The HPD measurements are shown in Fig. 5(a) (for clarity, only 15 measurements 

are shown). The dark blue horizontal line shows the average delay for the 50 measurements, 18.96ms. It is 

observed that the delay for first POST message is much larger than that for the subsequent messages. This 

long delay is due to the three-way handshake of TCP connection that takes place during the first POST 

message, whereas for subsequent requests a persistent HTTP connection (a.k.a. HTTP keep-alive) reduces 

delay considerably. Figure 5(b) shows the OCD of a city admin JXTA peer with an average value of 1983ms 

from 50 iterations indicated by the horizontal blue line. The delay includes the JXTA core start-up, the 

creation of a fire contour service, related pipe advertisement, a JXTA multicast socket and the thread for 

a) HTTP POST message delay b) Overlay creation delay

c) Fire notification message delay
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accepting join requests from other JXTA peers. For each iteration a new JXTA cache was generated instead 

of using the old one. Figure 5(c) shows the average FND of five sensors that executed a fire contour 

algorithm in response to the notification message sent by a city admin JXTA peer. In this case sensor E 

reported the fire. The average FND of five sensors is 19.58ms. 

In order to determine the overhead of WSN virtualization, we consider the scenario where sensors do not 

support node-level virtualization and only execute city admin tasks. There is also no network-level 

virtualization and no overlay network for message exchange. In this case, the fire counter algorithm will be 

executed by the GTO nodes after getting an HTTP POST message from the city admin node. For a simple 

comparison, if we consider that the FND without WSN virtualization is similar to HPD, i.e., 18.96ms, and 

FND with WSN virtualization is 19.58ms, then with WSN virtualization we have approximately 3.27% 

overhead. This overhead is due to the processing of XML-based JXTA messages.  Our implementation 

demonstrates that WSN virtualization is indeed feasible and does not incur much overhead. Node-level 

virtualization is achieved with Java SunSpots with very little effort. Network-level virtualization is achieved 

using JXTA, and once JXTA is operational, the delays are minimal. OCD is inevitable, but in the long-run, 

using JXTA is beneficial as it provides a robust, highly scalable and efficient solution. 

Overall the results show the typical delays experienced in a private LAN setting. The same JXTA pipe 

advertisement of the fire contour service was used to send and receive the fire notification messages over 

JXTA multicast socket, which greatly improved the overall performance. 

5 Research Directions  

WSN virtualization is a very rich research area and our proposed preliminary architecture has raised several 

interesting issues. This section provides a non-exhaustive sample.  A first issue is a dynamic publication 

and discovery framework for sensor and GTO nodes. In this work, we assumed a static publication process 

where the sensor and GTO owners publish their nodes to a central repository. To automate the process of 

WSN virtualization, an on-the-fly publication and discovery mechanism would be required. A CoAP-based 

framework could be used as starting point. For a centralized solution, a CoAP Resource Directory (RD) 

mechanism can be used, while a CoAP resource discovery mechanism would be more appropriate for a 

distributed solution. Similarly, a DNS-SD mechanism can be used in combination with CoAP to provide 

new, powerful solutions.  

The choice of data formats for various interfaces is another issue. The current OGC – O&M and SensorML 

specifications use the XML format, which is inefficient in resource-constrained environments. SenML 

addresses this issue by using JSON and EXI formats, and it works with both HTTP and CoAP, but it also 

has some open issues. For example, we can use it to specify simple metadata about measurements but there 

is no mechanism to provide such data for describing the sensors, their capabilities and their resources 

(memory, space, and battery-life) at a particular time. The possibility of a lightweight mechanism for 

reporting a sensors’ run-time status is very appealing. Similarly, a semantically-enriched format would be 

of particular use for creating intelligent sensor-based systems in the context of IoT, which is currently not 

possible with SenML. 

An important issue is optimal task assignment to sensors. The problem is essentially the mapping of end-

user application requirements to the available resources, which is very challenging in a virtualized 

environment. Reference [10] proposes a solution, but it assumes that every sensor executes a single task, 

which is not the case in a virtualized environment. However, it could be used as starting point for further 

research. WSN-oriented overlay middleware is yet another issue to investigate. We need an efficient 

solution that prevents overlays from interacting in a harmful way when they compete for underlying 

resources. JXTA and similar protocols work well, but not in resource-constrained environments. Some early 

attempts like [20] exist, but they must be combined with the concept of WSN virtualization.  
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A signalling framework to support Quality of Service (QoS) and session management is also needed. Issues 

like handling application requests for setting/changing task priority will be tackled by such a general QoS 

framework. There are several signalling frameworks, such as SIP/RSVP, but they may not be suitable for 

sensors. Again, a CoAP-based signalling protocol is a potential solution. Virtualization as applied to mobile 

WSNs is also a key issue, since mobile WSNs are becoming more and more popular. Vehicular ad hoc 

networks, social networks and crowd-based sensing can provide concrete application scenarios to motivate 

the virtualization of mobile WSNs.  

6 Lessons learned 

In this paper we have proposed a new preliminary multi-layer architecture for WSN virtualization and have 

identified several research directions.  

We have learned several lessons. The first is that WSN node-level virtualization is still in its infancy and 

very few WSN kits supporting node level virtualization are readily available. This is certainly due to the 

challenges of designing hypervisors in resource-constrained environments. A second lesson is that most 

existing WSN standard specifications pertinent to our work are still embryonic. SenML, for instance, is 

very promising. However, in its present form, it is not suitable for control functions. On the other hand, 

SensorML is complex and comes with additional functionalities that are unsuitable for a general purpose 

and efficient solution. A third lesson is that most existing overlay middleware are unsuitable for WSN 

because they are usually not designed for resource-constrained devices. We used JXSE, which is one of the 

best choices available. However, its current open source implementation is rather old and the future of the 

initiative is uncertain.  
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