
This paper has been accepted in IEEE NETWORK Magazine and will appear in May/June 2015 Issue.

The content is final but has NOT been proof-read. Final content may change.

This is an author copy uploaded on personal website. Respective copyrights are with IEEE

± This paper is an extended version of a short paper presented at "6th Joint IFIP Wireless and Mobile

Networking Conference (WMNC'13), April, 23-25, 2013, Dubai, UAE, under the title of “A Multi-Layer

Architecture for Wireless Sensor Network Virtualization".

Wireless Sensor Network Virtualization: Early Architecture and Research

Perspectives±

Imran Khan+ ¥, Fatna Belqasmi#, Roch Glitho*, Noel Crespi+, Monique Morrow++, Paul Polakos++

+Institut Mines-Télécom, Télécom SudParis, Evry, France
#Zayed University, Abu Dhabi, United Arab Emirates

*Concordia University, Montreal, Canada

 ++CISCO Systems
¥ imran@ieee.org

Abstract

Wireless sensor networks (WSNs) have become pervasive and are used in many applications and services.

Usually the deployments of WSNs are task oriented and domain specific; thereby precluding re-use when

other applications and services are contemplated. This inevitably leads to the proliferation of redundant

WSN deployments. Virtualization is a technology that can aid in tackling this issue, as it enables the sharing

of resources/infrastructure by multiple independent entities. In this paper we critically review the state of

the art and propose a novel architecture for WSN virtualization. The proposed architecture has four layers

(physical layer, virtual sensor layer, virtual sensor access layer and overlay layer) and relies on the

constrained application protocol (CoAP). We illustrate its potential by using it in a scenario where a single

WSN is shared by multiple applications; one of which is a fire monitoring application. We present the proof-

of-concept prototype we have built along with the performance measurements, and discuss future research

directions.

Keywords

Wireless Sensor Network (WSN), Virtualization, Node-level virtualization, Network-level virtualization,

Overlay Networks

Introduction

In the last few years, Wireless Sensor Networks (WSNs) have become ubiquitous and are being used in a

broad array of application domains, including healthcare, agriculture, surveillance and security. These

WSNs are composed of small-scale nodes that have the ability to sense, compute and communicate [1].

While early sensor nodes were resource-constrained with limited capabilities, recent advances in sensor

hardware technology have made it possible to produce sensor nodes that have more processing power,

memory and prolonged battery life.

Virtualization is a key technique for the realization of the Future Internet, and it is indeed quite pertinent to

explore it in the context of WSNs. Virtualization makes it possible to present physical computing resources

by abstracting them into logical units, enabling their efficient usage by multiple independent users,

including multiple concurrent applications [2]. Furthermore it even allows for the deployment of

applications that were not even envisioned during an infrastructure’s initial deployment.

To date, the realizations of WSNs have been domain-specific and task-oriented. Applications are bundled

with a WSN at the time of deployment, and it is next to impossible to use the same WSN for another

applications. This leads to redundant deployments and the underutilization of these resources. There are

two approaches to allow multiple applications to access deployed WSN resources. One is to allow multiple

applications to share the data gathered from a WSN. In this approach, a sink/gateway node collects all the

data from the WSN and shares it among multiple users. For example, in [3], WSNs are merged into the

This paper has been accepted in IEEE NETWORK Magazine and will appear in May/June 2015 Issue.

The content is final but has NOT been proof-read. Final content may change.

This is an author copy uploaded on personal website. Respective copyrights are with IEEE

cloud by sending observed sensor data through a host manager that lies outside the WSN. The host manager

simply collects the sensor data, profiles/aggregates it and then allows multiple applications to use it for their

own purposes.

The second approach is to use the capabilities of the individual sensor nodes to execute multiple application

tasks concurrently, and allow applications to group these sensor nodes together according to their

requirements. The key difference between the two approaches is that the former approach allows the sharing

of WSN data among multiple users, while the latter allows sharing of WSN nodes by multiple applications.

This paper is focused on the second approach because it makes it possible to design more innovative

applications over the deployed WSNs, even applications that were not envisioned a priori. This will greatly

improve the efficiency of the deployed WSNs and will also encourage new business models.

This paper introduces the WSN virtualization concept, critically reviews the state-of-the-art in WSN

virtualization and proposes a new early architecture which focuses on fixed WSNs. We illustrate the

potential of the architecture by instantiating it for a fire monitoring scenario [4] in which multiple

applications share the same WSN. We have built a prototype to demonstrate its feasibility and to measure

its performance. We also identify further research directions.

The next section presents a critical overview of the state-of-the-art. The proposed architecture is presented

in the third section. The fourth section discusses the implementation alternatives with the proof-of-concept

prototype and the recorded performance measurements. The research directions are discussed in the fifth

section. We conclude in the last section by discussing the lessons learned.

2. A Critical Overview of the State-of-the-Art

There are two categories of WSN virtualization: node level and network level. Figure 1 shows a high-level

view of WSN virtualization. WSN node-level virtualization allows multiple applications to run their tasks

concurrently on a single WSN node [5] (Fig. 1-a). This execution can be sequential (e.g. round-robin) or it

can be simultaneous, with context switching between application tasks.

In WSN network-level virtualization, a subset of sensor nodes belonging to a deployed WSN form a Virtual

Sensor Network (VSN) to execute given application tasks at a given time [6], while the other sensor nodes

remain available for other application tasks. WSN network-level virtualization can be achieved in two ways.

Different VSNs can be created over the same underlying WSN infrastructure (Fig. 1-b), or sensor nodes

can form a single VSN over multiple WSNs in different administrative domains (Fig. 1-c). The latter

situation is possible whenever the sensor nodes can support the concurrent execution of application tasks.

It is the case these days because many popular sensor operating systems (e.g. Contiki) that run on resource

constrained devices, enable node level virtualization through the concurrent execution of applications tasks

on a same sensor node.

Figure 1: WSN Virtualization Categories

This paper has been accepted in IEEE NETWORK Magazine and will appear in May/June 2015 Issue.

The content is final but has NOT been proof-read. Final content may change.

This is an author copy uploaded on personal website. Respective copyrights are with IEEE

2.1. Motivating Example and Requirements

In this section we first present a motivating example and then draw requirements from it.

2.1.1. Motivating Example

A real-world deployment of a WSN is presented in [7], in which a WSN is used to monitor the impact of

constructing a road tunnel under an ancient tower in Italy, as it was feared that the tower could lose its

ability to stand on its own and that it might collapse during the construction. Now consider that there are

three users interested in the fate of the tower. The first is the construction company, as it needs make sure

that the tower does not lose its ability to stand on its own, otherwise it will have to pay a heavy fine. The

second user is the conservation board which routinely monitors all the ancient sites around the city, and the

third user is the local municipality which will have to plan emergency remedial/rescue actions in case the

tower falls during the construction.

It is quite possible that the conservation board has already deployed its own WSN to monitor the health of

ancient sites including this tower. In this case the construction company and the local municipality can reuse

the existing sensor nodes during the construction period. In the absence of WSN virtualization, there are

only two possible solutions. One is to rely on the information provided by the conservation board

application. However this information may not be at the required granularity level. Worse, some of the

information that is needed might simply not be available because the requirements of the construction

company and of the local municipality were not considered when the conservation board application was

designed and implemented. The second solution is that each user deploys redundant WSN nodes.

2.1.2. Requirements

The first requirement is the support of node-level virtualization to allow the execution of multiple

application tasks on the same sensor node. The second requirement is the ability of sensor nodes to

dynamically form groups to execute isolated and transparent application tasks concurrently (i.e. support for

WSN network-level virtualization). The third requirement is the support of application priority. In some

critical application scenarios such as fire monitoring, it is important that other tasks have less priority than

the one reporting the fire event.

The fourth requirement is that the proposed solution should be applicable to a wide range of applications

and should not be tailored for a particular scenario or domain, which is the usual case with most solutions.

The fifth requirement is that the proposed solution should be platform-independent and should not depend

on specific operating systems or customized/tailored interfaces. The sixth and final requirement is that the

solution should address heterogeneity, i.e., cope with sensor nodes that have different capabilities (e.g.

processing power, memory).

2.2. The State-of-the-Art and its Shortcomings

We divide the related work into three classes: node-level, network-level and hybrid virtualization solutions.

The hybrid solutions combine both node- and network-level virtualization.

2.2.1. Node-level Virtualization

In order to achieve node-level virtualization, mechanisms must be in place to allow deployed WSN nodes

to execute new application tasks as well as update existing ones. One solution is to reprogram WSN nodes

individually, but that is neither feasible nor efficient. Wireless reprogramming, on the other hand, allows

large number of WSN nodes to be updated with new application tasks with minimum effort. It is now the

This paper has been accepted in IEEE NETWORK Magazine and will appear in May/June 2015 Issue.

The content is final but has NOT been proof-read. Final content may change.

This is an author copy uploaded on personal website. Respective copyrights are with IEEE

main mechanism used for node-level virtualization. Two examples of node-level virtualization based on

wireless reprogramming are discussed below. Their main drawback is platform dependency.

Maté [5] is a pioneering work that provides sequential execution of application tasks on resource-limited,

early generation sensor nodes. It is a tiny virtual machine consisting of a stack-based binary code interpreter

and works on top of TinyOS. Application tasks are divided into code capsule(s) of up to 24 instructions and

are executed one by one. A viral code distribution scheme is used to propagate code and to reprogram the

sensor nodes. As there is tight coupling between the application code and TinyOS, installing a new code

requires the replacement of the whole OS. There is no support for application priority, and only a limited

set of applications is supported. Furthermore, the approach is not platform-independent since it only works

on TinyOS, but it does address heterogeneity.

MANTIS [8] is a thread-based embedded operating system. Programs are created as user-level threads with

dedicated memory space and static data attached to them at compile time. Long-running threads can be pre-

empted by short-running threads. The work on wireless reprogramming is ongoing, according to the

authors. The techniques being used are the wireless re-flashing of the OS and the re-programming of single

threads. Unlike Mate, MANTIS does provide application priority. However, it is not platform-independent.

2.2.2. Network-level Virtualization

In [6], sensor nodes form clusters to support applications that monitor dynamic phenomena. The sensor

nodes within each cluster executes application(s) tasks, meaning a sensor node can be part of multiple

clusters. With each cluster dedicated to an application, a WSN can be utilized by multiple applications

concurrently, hence realizing network-level virtualization. Two illustrative applications are presented as

motivation. Unfortunately the work is poor in terms of technical details (e.g. how individual nodes execute

application tasks). Furthermore, there is no discussion of how application priority, heterogeneity and

platform independence are tackled. This work has been extended in reference [9] in order to facilitate the

creation, operation and maintenance of dynamic clusters to achieve network-level virtualization. Once an

event is detected, sensor nodes are grouped as a dynamic cluster tree by exchanging VSN formation

messages. However, in terms of our requirements none of the drawbacks of reference [6] are addressed.

The authors in [10] introduce the problem of mission assignment in WSNs. The work can be related to

network-level virtualization because the WSN is able to support multiple missions at the same time. Each

mission uses a dedicated subset of sensor nodes which are not shared with other missions. A mission

assignment problem is modelled as a weighted bipartite graph to optimally assign the sensor nodes to

missions. Achieving a mission produces a profit, so the goal is to maximize profit by efficiently achieving

as much missions as possible. Both centralized and distributed solutions are presented, using proofs and

algorithms including an energy aware solution. This solution does not consider any specific application

domain. Heterogeneity is addressed along with platform independence. However, application task priority

is not provided since each sensor node executes only one application task at a time.

2.2.3. Hybrid Solutions

The authors in [11] discuss the SenShare platform, which supports both WSN-node and network-level

virtualization. They consider TinyOS applications with an embedded hardware abstraction layer (HAL).

The underlying sensor node resources are then accessed using a run-time layer on top of TinyOS. Since

TinyOS supports multiple tasks at the same time, node-level virtualization is thus achieved. For network-

level virtualization, an overlay network using Collection Tree Protocol (CTP) is created to group sensor

nodes executing the same application. The physically scattered sensor nodes executing the same application

can be grouped into a single overlay network. SenShare is the first solution targeting comprehensive WSN

virtualization. It supports node- and network-level virtualization, application priority and heterogeneity,

This paper has been accepted in IEEE NETWORK Magazine and will appear in May/June 2015 Issue.

The content is final but has NOT been proof-read. Final content may change.

This is an author copy uploaded on personal website. Respective copyrights are with IEEE

and it is independent of any application domain. However, it is not platform-independent, as only TinyOS

applications are supported.

Melete [12] is an extension of Maté and supports both node- and network-level virtualization. Concurrent

execution of application tasks is achieved by making the following enhancements to Maté: dedicated

storage and execution space for applications to allow concurrency, and a code dissemination protocol to

allow selective and reactive (re)programming of sensor nodes. For network-level virtualization it uses a

dynamic grouping technique of sensor nodes. A sensor node can be part of more than one logical group at

the same time. The supported network topology is a connected graph. Melete does not support application

priority, and is not platform-independent. It only supports a limited set of applications, but it does tackle

heterogeneity.

3. Proposed Architecture

In this section, we first present the architectural principles. We then present our multi-layer architecture

based on overlays, followed by a discussion of the interfaces and the overlay creation procedure.

3.1 Architectural Principles

The first architectural principle is that new applications/services are deployed as new overlays on top of the

physical WSN. Overlays have several advantages: they are distributed, lack central control and allow

resource sharing [13]. The second principle is that any given physical sensor node can execute (locally) a

task for a given application deployed in the overlay. Any given sensor node may execute several such

application tasks at any given time.

The third principle is that not all WSN nodes perform the overlay-related operations, as they may not have

enough capabilities to support the overlay middleware. When that is the case, they will delegate the

operations to more powerful sensors and even to other nodes. This principle in effect makes it possible to

address the heterogeneity requirement and enables network level virtualization for current generation

resource constrained sensor nodes.

The fourth principle is that within the architecture there are separate data and control paths. The sensor data

(e.g. temperature values) is transmitted from sensor nodes to the overlay application using the data path.

The control data (e.g. changing application priority and overlay management) is sent over the control path.

This separation of paths makes it easy to work on new protocols for each path independently.

The last principle is the use of emerging standards, aimed at resource-constrained devices, to tackle the

platform independence challenge. These standards include protocols such as the Constrained Application

Protocol (CoAP) [14], DNS-Service Discovery (DNS-SD) [15] and standards such as Sensor Model

Language (SensorML) [16], Observations & Measurements (O&M) [17] and Sensor Markup Language

(SenML) [18]. This principle of course implies the need for converters/mappers for devices which do not

support the standards.

CoAP is an application layer transfer protocol, like HTTP, designed to work with resource-constrained

devices. It has less overhead, memory and processing requirements than HTTP. DNS-SD offers service

discovery in resource-constrained networks and allows for the seamless integration of such architectures to

the existing IP networks. SensorML provides standard models and XML-based encoding to describe sensor

measurements and processes. It is able to provide interoperability, automatic discovery, utilization and

sensor sharing. O&M is a standard which defines encoding schemas for the observations made by sensors.

SenML provides a data model for sensor measurements and simple metadata about sensors in JSON, XML

and EXI formats.

This paper has been accepted in IEEE NETWORK Magazine and will appear in May/June 2015 Issue.

The content is final but has NOT been proof-read. Final content may change.

This is an author copy uploaded on personal website. Respective copyrights are with IEEE

3.2 Overall Architecture

Figure 2 shows our proposed multi-layer architecture, and Table I provides the list of components used.

There are four layers (physical, virtual sensor, virtual sensor access and overlay), two paths (data and

control), five interfaces (data (Di), proprietary Di (PDi), control (Ci), proprietary Ci (PCi) and gateway

(Gi)) and a registration server.

TABLE I. COMPONENTS OF THE ARCHITECTURE

Abbreviation Component Remarks

– Type A Sensor Legacy/resource constrained sensor

– Type B Sensor New generation smart IP sensor node

GTO Node Gates-to-Overlay

Node

Gateway/sink node capable of joining application

overlays on behalf of Type A sensors

– Sensor Agent Functional entity providing a unified interface to

provide platform independence

– Registration

Server

Sensor repository

Di Data Interface Interface to send sensor data to application overlay

PDi Proprietary Data

Interface

Proprietary interface to send virtual sensor data to

sensor agent

Ci Control Interface Interface to send/receive control data from end-user

application

PCi Proprietary

Control Interface

Proprietary interface to send/receive control data from

virtual sensor to sensor agent

Gi Gates-to-Overlay

Interface

Interface to send/receive the control data between Type

A sensors and Type B sensors/GTO nodes

At the physical layer we have independent WSNs that consist of two types of sensor nodes, i.e., resource

constrained (type A) and capable (type B) sensors. Each WSN also has specialized nodes, called GTO

nodes. Their role is to help type A sensors join the application overlays and provide heterogeneity.

Gateways, sink nodes or a type B sensors can act as GTO nodes when required. For example, in the

motivating example in section 2.1.1, if the existing sensors are of type A, then either the existing gateway

node or Type B sensors, deployed by the construction company, can help those sensors to become part of

the construction company overlay. This might increase the complexity of the type B sensor nodes but it

does allow flexibility.

The virtual sensor layer consists of the logical representation of each sensor executing multiple application

tasks concurrently. Each logical representation is called a virtual sensor in our architecture, which is an

abstraction of an application task run by a sensor.

This paper has been accepted in IEEE NETWORK Magazine and will appear in May/June 2015 Issue.

The content is final but has NOT been proof-read. Final content may change.

This is an author copy uploaded on personal website. Respective copyrights are with IEEE

Figure 2: Multi-layer WSN Virtualization Architecture

The virtual sensor access layer consists of sensor agents which ensure platform independence. This is

achieved by providing standardized interfaces (Di and Ci) to interact with the end-user applications, and

are mapped onto platform-specific (proprietary) interfaces (PDi and PCi) for the underlying physical sensor

nodes. Sensor agents can be implemented either in capable (type B) sensors or in GTO nodes.

The overlay layer consists of independent application-specific overlays (two are shown in the figure 2, but

there could be many more). Each application overlay is created by the end user application and consists of

virtual sensors that run the overlay application tasks. An overlay protocol is used for message exchange

inside an overlay. A Registration Server, which contains the details of the deployed sensor nodes, is used

by end-user applications to find sensor nodes.

3.3 Interfaces

The data path uses the data interface (Di) supported by all of the sensor agents to send the data received

from the virtual sensors executing the end user’s application task to the application overlays. The control

path uses the control interface (Ci) supported by all sensor agents to send/receive control data. Examples

of control data include sending requests to change application priority and sampling frequency. The

interfaces, PDi and PCi are proprietary interfaces and are used by the sensor agent to communicate with

WSNs. Figure 3 shows high level examples of when sensor data is sent over PDi and Di interfaces (3a)

(when fire is detected) and when a request to change application task priority is sent over Ci and PCi

interfaces (3b). In this case it is the priority of the task running on sensor 02. The Gates-to-overlay interface

(Gi) is provided by all the sensors as well as the GTO nodes. Any communication from type B or GTO

nodes with type A sensors is done using this interface.

3.4 Overlay Creation Procedure

This section describes the overlay creation procedure. The creation of the overlay is a three step procedure,

initiated by the end user application. The first step is the dynamic resource discovery and overlay pre-

Virtual

Sensor 2Virtual

Sensor 1

Virtual

Sensor 1

Virtual

Sensor 2

Type A

Sensor

Gi

GTO Node

Wireless Sensor Network CWireless Sensor Network B

A

A

B

B B

B

B BA

A
A BA

B

B

A

Virtual

Sensor 3

Ci

End User

Application

End User

Application

Application Overlay

Application Overlay

Ci

Registration

Server

Internet

GTO Node

Gi

PDi PCi

PDi

PDiPDi

A
A

B

B

B

A

A

A

B

PDi
PDi PDi

PDi

PDi

Di

Di

Di

Di

Di

Sensor Agent

AB

Ci

Di
Di Di

Di

Di

Sensor Agent Sensor Agent

Ci

Physical Layer

Virtual Sensor Layer

Overlay Layer

(Heterogeneous sensors,

& GTO Nodes)

(Logical representation of each

sensor executing multiple

tasks)

(Independent application

overlays)

Virtual Sensor Access

Layer

(Functional entities providing

unified interfaces to support

heterogeneous sensor nodes)

A

Wireless Sensor Network A

BA AAAA

Gi

Type A Sensor

Type B Sensor
B

AA

A BBB

B
A

A
A

A

A

A

A

This paper has been accepted in IEEE NETWORK Magazine and will appear in May/June 2015 Issue.

The content is final but has NOT been proof-read. Final content may change.

This is an author copy uploaded on personal website. Respective copyrights are with IEEE

configuration, allowing the discovery of the sensors and GTO nodes on the fly according to the

requirements of the end user application. The second step is the activation of the overlay. The selected

sensor (type B) and GTO nodes receive an overlay join request (or advertisement) over the Ci interface.

After joining the overlay, the type B sensors and the GTO nodes (for type A sensors) may receive the

application task, with its desired priority level. The final step is the execution of the end user application,

which begins when each sensor starts executing the end user application task. Depending on the application

requirements, sensors may exchange messages among themselves in the overlay before sending any data to

the end user application over the Di interface.

Figure 3: Example of communication over data and control interfaces

Virtual Sensor of

Sensor01 [Type A]

GTO Node

[Sensor Agent]

End-user

Application

Fire Detected

PDi Interface

Di Interface

Content-Type = application/json

{"e":[

 { "v": 20.1 }],

 "bn": "Sensor01",

 "bt": 1376020076,

 "bu": "Cel"

}

201 Created

RadiogramConnection.send

(sensor01, 1376020076,

20.1, Cel)

Virtual Sensor

of Sensor02

[Type B]

GTO Node

[Sensor Agent]

return(true)

End-user

Application

Ci Interface

PCi Interface

200 OK

getinstance(tasks02Thread);

setPriority(DEFAULT+1)

Content-Type = application/json

{"e":[

 { "n": "task02"},

 {"sv": "increase task priority"}],

 "bn": "Sensor02"

}

RadiogramConnection.send

(task02, increase)

a) Sending sensor data over PDi and Di interfaces

b) Changing application task priority over PCi and Ci interfaces

This paper has been accepted in IEEE NETWORK Magazine and will appear in May/June 2015 Issue.

The content is final but has NOT been proof-read. Final content may change.

This is an author copy uploaded on personal website. Respective copyrights are with IEEE

4 Implementation Alternatives, Proof of concept Prototype and Measurements

4.1 Implementation Alternatives

Our proposed architecture consists of the data plane, the control plane and several interfaces that belong to

them. The Di interface, belonging to the data plane, carries the actual data. The Ci and Gi interfaces carry

control messages and are part of the control plane.

There are several options for implementing a data plane interface. Both HTTP and CoAP can be used as

application layer protocols, but we chose CoAP as it will allow type A nodes to support the same protocol

for Di and Gi interfaces. We use SenML specifications to encode the sensor data in standard JSON format.

The combination of SensorML and O&M is another option, but we selected SenML since it is less complex.

For the control plane, one candidate protocol is JXTA [19], an open source peer-to-peer protocol

specification that allows the creation of independent, robust and efficient overlay networks. ScatterPastry

[20] is another option. For our work we opted to use JXTA since its implementations are readily available.

4.2 Prototype

We implemented a simple brush fire scenario discussed in [4] as a prototype. In this scenario, the city

administration is interested in the early detection of brush fire eruption and in its evolution, using a WSN

and a Fire Contour Algorithm (FCA). Some houses in the area already have their own sensors to detect fire.

To accelerate the deployment of its application and to avoid redundancy, the city administration has opted

to deploy sensors in areas under its jurisdiction (i.e. streets and parks) and to incorporate the sensor nodes

already deployed in private homes. The home owners get incentives like tax rebates for allowing the use of

their sensors by city administration. The home gateways acts as GTO nodes. All of the privately-owned

sensors execute two application tasks – one for the home owner and one for the city administration. Figure

4a shows the mapping of the scenario onto our architecture.

We make the following assumptions. First we assume that the city administration has already discovered

and sent its application task to each of these sensors. The second assumption is that all of the sensors in the

prototype are type A sensors which need a GTO node for overlay-related tasks. Third, as it was not possible

to generate a fire in a lab environment, the city administration application task periodically measured the

temperature value in a sensor and sent it to the GTO node. We used six Java SunSpots sensors, each

executing three application tasks concurrently. The application tasks and the FCA were coded in Java 2

Platform Micro Edition (J2ME). J2ME is a robust, flexible Java platform that enables the development of

applications for mobile and embedded devices. The city administration’s overlay network was implemented

using a Java based implementation of the JXTA protocol, JXSE 2.6.

A RESTful web service is used by the city administration node to receive fire alerts. Each GTO node, upon

receiving fire notification from its sensor, sends an HTTP POST message to a URI

(http://…/FireContourService/events/fire/) to create a fire event. The content type of the HTTP POST

message is set to application/senml+json and the event data received from Java SunSpot is mapped to JSON

format according to SenML specifications. Once the event is created, the city administration node sends a

fire notification message to the peers in the overlay.

The overlay is created by the city admin node, acting as rendezvous peer, by advertising its peer group (fire

contour service) using JXTA pipe advertisements before the fire event. The GTO nodes join the fire contour

service as edge peers by replying to the received pipe advertisement. The city admin node sends the fire

notification message using the JXTA multicast socket, which provides efficient message exchange between

This paper has been accepted in IEEE NETWORK Magazine and will appear in May/June 2015 Issue.

The content is final but has NOT been proof-read. Final content may change.

This is an author copy uploaded on personal website. Respective copyrights are with IEEE

members of the same peer group. After the execution of the fire contour algorithm, the reply message is

sent directly to the city admin node instead of being multicast.

The prototype uses a simple probabilistic fire contour algorithm, considering that a distant house will send

fire notifications less frequently than a nearby house because the fire is far from it. The city administrations’

application is created using JavaFX, and receives the fire alert messages as well as the peers’ replies and

displays the output on the area map. JavaFX is a set of Java libraries that allow developers to rapidly design,

create and deploy client applications that operate across diverse platforms.

The prototype setup is illustrated in Fig. 4b. The city administration application and its fire contour web

service ran on a laptop with an Intel Core i5 CPU clocked at 2.67 GHz, and a 4GB RAM with 32bit

Windows 7 Enterprise. The other two laptops acted as GTO nodes for Java SunSpots and ran three JXTA

peers each. Their configurations were an Intel Core i7 CPU clocked at 2.70 GHz with 8GB RAM, 64-bit

Windows 7 Professional and an Intel Core i5 CPU clocked at 2.60 GHz, and a 4GB RAM with Windows 7

Enterprise. All three laptops used JVM version 1.7.0_21 and were connected to a private LAN.

Figure 4: Instantiation of the architecture and Prototype setup

USB USB

House A House B

GTO

Node

Home
Task

City Admin
Task 1

City Admin

Overlay

Sensor

Agent
Sensor

Agent

PDi

PDi

Di

Di

Di

Ci
Ci

Ci

City Admin

Application

GTO Node

A

GTO Node

B

Sensor Agent Sensor Agent

RESTful City Admin

Web Service

HTTP POST message

In JSON format

City Admin Overlay

(JXTA Peer Group)

JXTA

Peer A

JXTA

Peer B

JXTA

Peer C

JXTA

Peer D

JXTA

Peer E

JXTA

Peer F

Sensor B

Sensor C

Sensor F
Sensor A

Sensor D

Sensor E

City

Admin

JXTA

Peer

City Admin
Control Task

City Admin
Task 1

City Admin

Node

City Admin Area

Map Display

a) Instantiation of the architecture b) Prototype Setup

Gi

Home
Task

City Admin
Task 1

GTO

Node

Gi

This paper has been accepted in IEEE NETWORK Magazine and will appear in May/June 2015 Issue.

The content is final but has NOT been proof-read. Final content may change.

This is an author copy uploaded on personal website. Respective copyrights are with IEEE

4.3 Performance Measurements

Performance Metrics – The performance of the prototype was assessed in terms of the following delays:

HTTP POST Delay (HPD), Overlay Creation Delay (OCD) and Fire Notification Delay (FND).

HPD is the time difference between when the GTO node sends an HTTP POST request and when it receives

the corresponding success code (201 created). HPD is calculated for each sensor. OCD is the time it takes

to set up the city administration overlay from a non-existent state to a ready state, when it advertises its fire

contour service and is ready to accept join requests. We measured this delay inside the Java code to ensure

that the OCD does not include the JVM start-up delay. FND is measured as the time it takes for the city

admin node to multicast fire notification messages to JXTA peers and to receive their replies after they

execute fire contour algorithm. For each experiment we restarted the JVM and cleared the previous JXTA

configuration cache. All delays are measured in milliseconds and calculated at the sender side.

Figure 5: Results

Performance Results – The HPD measurements are shown in Fig. 5(a) (for clarity, only 15 measurements

are shown). The dark blue horizontal line shows the average delay for the 50 measurements, 18.96ms. It is

observed that the delay for first POST message is much larger than that for the subsequent messages. This

long delay is due to the three-way handshake of TCP connection that takes place during the first POST

message, whereas for subsequent requests a persistent HTTP connection (a.k.a. HTTP keep-alive) reduces

delay considerably. Figure 5(b) shows the OCD of a city admin JXTA peer with an average value of 1983ms

from 50 iterations indicated by the horizontal blue line. The delay includes the JXTA core start-up, the

creation of a fire contour service, related pipe advertisement, a JXTA multicast socket and the thread for

a) HTTP POST message delay b) Overlay creation delay

c) Fire notification message delay

This paper has been accepted in IEEE NETWORK Magazine and will appear in May/June 2015 Issue.

The content is final but has NOT been proof-read. Final content may change.

This is an author copy uploaded on personal website. Respective copyrights are with IEEE

accepting join requests from other JXTA peers. For each iteration a new JXTA cache was generated instead

of using the old one. Figure 5(c) shows the average FND of five sensors that executed a fire contour

algorithm in response to the notification message sent by a city admin JXTA peer. In this case sensor E

reported the fire. The average FND of five sensors is 19.58ms.

In order to determine the overhead of WSN virtualization, we consider the scenario where sensors do not

support node-level virtualization and only execute city admin tasks. There is also no network-level

virtualization and no overlay network for message exchange. In this case, the fire counter algorithm will be

executed by the GTO nodes after getting an HTTP POST message from the city admin node. For a simple

comparison, if we consider that the FND without WSN virtualization is similar to HPD, i.e., 18.96ms, and

FND with WSN virtualization is 19.58ms, then with WSN virtualization we have approximately 3.27%

overhead. This overhead is due to the processing of XML-based JXTA messages. Our implementation

demonstrates that WSN virtualization is indeed feasible and does not incur much overhead. Node-level

virtualization is achieved with Java SunSpots with very little effort. Network-level virtualization is achieved

using JXTA, and once JXTA is operational, the delays are minimal. OCD is inevitable, but in the long-run,

using JXTA is beneficial as it provides a robust, highly scalable and efficient solution.

Overall the results show the typical delays experienced in a private LAN setting. The same JXTA pipe

advertisement of the fire contour service was used to send and receive the fire notification messages over

JXTA multicast socket, which greatly improved the overall performance.

5 Research Directions

WSN virtualization is a very rich research area and our proposed preliminary architecture has raised several

interesting issues. This section provides a non-exhaustive sample. A first issue is a dynamic publication

and discovery framework for sensor and GTO nodes. In this work, we assumed a static publication process

where the sensor and GTO owners publish their nodes to a central repository. To automate the process of

WSN virtualization, an on-the-fly publication and discovery mechanism would be required. A CoAP-based

framework could be used as starting point. For a centralized solution, a CoAP Resource Directory (RD)

mechanism can be used, while a CoAP resource discovery mechanism would be more appropriate for a

distributed solution. Similarly, a DNS-SD mechanism can be used in combination with CoAP to provide

new, powerful solutions.

The choice of data formats for various interfaces is another issue. The current OGC – O&M and SensorML

specifications use the XML format, which is inefficient in resource-constrained environments. SenML

addresses this issue by using JSON and EXI formats, and it works with both HTTP and CoAP, but it also

has some open issues. For example, we can use it to specify simple metadata about measurements but there

is no mechanism to provide such data for describing the sensors, their capabilities and their resources

(memory, space, and battery-life) at a particular time. The possibility of a lightweight mechanism for

reporting a sensors’ run-time status is very appealing. Similarly, a semantically-enriched format would be

of particular use for creating intelligent sensor-based systems in the context of IoT, which is currently not

possible with SenML.

An important issue is optimal task assignment to sensors. The problem is essentially the mapping of end-

user application requirements to the available resources, which is very challenging in a virtualized

environment. Reference [10] proposes a solution, but it assumes that every sensor executes a single task,

which is not the case in a virtualized environment. However, it could be used as starting point for further

research. WSN-oriented overlay middleware is yet another issue to investigate. We need an efficient

solution that prevents overlays from interacting in a harmful way when they compete for underlying

resources. JXTA and similar protocols work well, but not in resource-constrained environments. Some early

attempts like [20] exist, but they must be combined with the concept of WSN virtualization.

This paper has been accepted in IEEE NETWORK Magazine and will appear in May/June 2015 Issue.

The content is final but has NOT been proof-read. Final content may change.

This is an author copy uploaded on personal website. Respective copyrights are with IEEE

A signalling framework to support Quality of Service (QoS) and session management is also needed. Issues

like handling application requests for setting/changing task priority will be tackled by such a general QoS

framework. There are several signalling frameworks, such as SIP/RSVP, but they may not be suitable for

sensors. Again, a CoAP-based signalling protocol is a potential solution. Virtualization as applied to mobile

WSNs is also a key issue, since mobile WSNs are becoming more and more popular. Vehicular ad hoc

networks, social networks and crowd-based sensing can provide concrete application scenarios to motivate

the virtualization of mobile WSNs.

6 Lessons learned

In this paper we have proposed a new preliminary multi-layer architecture for WSN virtualization and have

identified several research directions.

We have learned several lessons. The first is that WSN node-level virtualization is still in its infancy and

very few WSN kits supporting node level virtualization are readily available. This is certainly due to the

challenges of designing hypervisors in resource-constrained environments. A second lesson is that most

existing WSN standard specifications pertinent to our work are still embryonic. SenML, for instance, is

very promising. However, in its present form, it is not suitable for control functions. On the other hand,

SensorML is complex and comes with additional functionalities that are unsuitable for a general purpose

and efficient solution. A third lesson is that most existing overlay middleware are unsuitable for WSN

because they are usually not designed for resource-constrained devices. We used JXSE, which is one of the

best choices available. However, its current open source implementation is rather old and the future of the

initiative is uncertain.

Acknowledgement

This work is partially supported by CISCO systems through grant CG-576719, and by the Canadian Natural

Science and Engineering Research Council (NSERC) through the Canada Research Chair in End-User

Service Engineering for Communications Networks.

References

[1] – Akyildiz, Ian F., et al. "Wireless sensor networks: a survey," Computer networks, 38.4 (2002): pp. 393-422.

[2] – S. Loveland et.al, "Leveraging virtualization to optimize high-availability system configurations," IBM Systems

Journal, vol. 47, no. 4, 2008, pp. 591-604

[3] – Fazio, M.; Paone, et al., "Huge amount of heterogeneous sensed data needs the cloud", in Proceedings of the 9th

IEEE International Multi-Conference on Systems, Signals and Devices (SSD), Chemnitz, 20-23 March 2012

[4] – Khan, Imran, et al., "A Multi-Layer Architecture for Wireless Sensor Network Virtualization," in Proceedings

of the 6th Joint IFIP Wireless and Mobile Networking Conference (WMNC'13), April, 23-25, 2013, Dubai, UAE,

pp. 1-4

[5] – P. Levis and D. Culler: "Maté: A tiny virtual machine for sensor networks," In ASPLOSX: Proceedings of the

10th International Conference on Architectural Support for Programming Languages and Operating Systems,

San Jose, CA, 2002, pp. 85-95.

[6] – A. P. Jayasumana, et al., "Virtual sensor networks a resource efficient approach for concurrent applications," In

Proc. Information Technology, 2007. ITNG’07. Fourth International Conference on, Las Vegas, 2007, pp. 111-

115

This paper has been accepted in IEEE NETWORK Magazine and will appear in May/June 2015 Issue.

The content is final but has NOT been proof-read. Final content may change.

This is an author copy uploaded on personal website. Respective copyrights are with IEEE
[7] –.Ceriotti, Matteo, et al. "Monitoring heritage buildings with wireless sensor networks: The Torre Aquila

deployment." in Proceedings of the 2009 International Conference on Information Processing in Sensor

Networks., IEEE Computer Society, 2009.

[8] – S. Bhatti, J. et al, "MANTIS OS: an embedded multithreaded operating system for wireless micro sensor

platforms," Mob. Netw. Appl., 10(4), 2005, pp.563–579

[9] – H. M. N. Dilum Bandara, et al., "Cluster Tree Based Self Organization of Virtual Sensor Networks," In Proc.

IEEE Globecom workshop on Wireless Mesh and Sensor Networks, New Orleans, Nov. 2008

[10] – Rowaihy, Hosam, et al. "Sensor-mission assignment in wireless sensor networks." ACM Transactions on Sensor

Networks (TOSN), 6.4, (2010): 36

[11] – Leontiadis, Ilias, et al. "SenShare: transforming sensor networks into multi-application sensing infrastructures,"

Wireless Sensor Networks, Springer Berlin Heidelberg, 2012, pp. 65-81.

[12] – Y. Yu et al., "Supporting concurrent applications in wireless sensor networks," In proceedings of the 4th

International Conference on Embedded Networked Sensor Systems, SenSys’06, Boulder, Colorado, 2006,

pp.139-152

[13] – Lua, Eng Keong, et al. "A survey and comparison of peer-to-peer overlay network schemes," IEEE

Communications Surveys and Tutorials, 7.2 (2005): 72-93.

[14] – Shelby, Z., "Embedded web services," Wireless Communications, IEEE, vol.17, no.6, Dec. 2010, pp.52-57

[15] – Jara, A.J, et al., "Light-Weight Multicast DNS and DNS-SD (lmDNS-SD): IPv6-Based Resource and Service

Discovery for the Web of Things," Innovative Mobile and Internet Services in Ubiquitous Computing (IMIS),

2012 Sixth International Conference on , vol., no., pp.731,738, 4-6 July 2012

[16] – Botts, M., Robin, A., "Sensor Model Language (SensorML)," Open Geospatial Consortium (OGC) document

number: 07-000, Wayland, Massachusetts, USA.

[17] – Cox, S. (Ed.), "Observations and Measurements—Part 1—Observation Schema," Open Geospatial Consortium

(OGC) document number: 07-002r1, Wayland, Massachusetts, USA

[18] – Jennings, et al., "draft-jennings-senml-10", Internet Draft, IETF, October 22, 2012, expires April 25, 2013

(work in progress)

[19] - Gong, Li. "JXTA: A network programming environment." Internet Computing, IEEE 5.3 (2001): 88-95.

[20] – Al-Mamou, AA-B., and Houda Labiod. "ScatterPastry: An overlay routing using a DHT over wireless sensor

networks." Intelligent Pervasive Computing, 2007. IPC. The 2007 International Conference on. IEEE, 2007.

274-279

This paper has been accepted in IEEE NETWORK Magazine and will appear in May/June 2015 Issue.

The content is final but has NOT been proof-read. Final content may change.

This is an author copy uploaded on personal website. Respective copyrights are with IEEE

Biographies

IMRAN KHAN (imran@ieee.org) received his BCS degree in Computer Science from COMSATS Institute of IT,

Pakistan in 2005 and M.S. degree in Multimedia and Communication from M.A. Jinnah University, Pakistan in 2009.

Since May 2011 he is a Ph.D. research student in CNRS Lab UMR5157 at Institut Mines-Télécom, Télécom SudParis

jointly with Paris VI (UPMC). Currently he is a collaborating researcher at Concordia University, Montreal working

on a CISCO project. In past he worked on projects funded by ISOC and ITEA2. He is student member of IEEE. His

research interests are Virtualization, Wireless Sensor Networks, Internet of Thing (IoT), and M2M Communications.

FATNA BELQASMI (fatna.belqasmi@zu.ac.ae) holds a Ph.D. and an M.Sc. degree in electrical and computer

engineering from Concordia University, Canada. She is current working as Assistant Professor at Zayed University

Abu Dhabi, UAE. In the past, she worked as a research associate at Concordia University, Canada and as a researcher

at Ericsson Canada. She was part of the IST Ambient Network project (a research project sponsored by the European

Commission within the Sixth Framework Programme -FP6-). She worked as an R&D engineer for Maroc Telecom in

Morocco. Her research interests include next generation networks, service engineering, distributed systems, and

networking technologies for emerging economies.

ROCH GLITHO [SM] (http://users.encs.concordia.ca/~glitho/) holds a Ph.D. (Tekn. Dr.) in tele-informatics (Royal

Institute of Technology, Stockholm, Sweden) and M.Sc. degrees in business economics (University of Grenoble,

France), pure mathematics (University Geneva, Switzerland), and computer science (University of Geneva). He works

in Montreal, Canada, as an associate professor of networking and telecommunications at the Concordia Institute of

Information Systems Engineering (CIISE) where he leads the telecommunication service engineering (TSE) research

laboratory (.http://users.encs.concordia.ca/~tse/). In the past he has worked in industry for almost a quarter of a century

and has held several senior technical positions at LM Ericsson in Sweden and Canada (e.g. expert, principal engineer,

senior specialist). His industrial experience includes research, international standards setting (e.g. contributions to

ITU-T, ETSI, TMF, ANSI, TIA, and 3GPP), product management, project management, systems engineering and

software/firmware design. In the past he has served as IEEE Communications Society distinguished lecturer, Editor-

In-Chief of IEEE Communications Magazine and Editor-In-Chief of IEEE Communications Surveys & Tutorials. His

research areas are: virtualization and cloud computing; Machine-to-Machine communications (M2M) and Internet of

Things; Distributed systems (e.g. SOAP Based – Web Services, RESTful Web Services); Rural communications and

networking technologies for emerging economies.

NOEL CRESPI (noel.crespi@mines-telecom.fr) holds a Master’s from the Universities of Orsay and Kent, a diplome

d’ingénieur from Telecom ParisTech, and a Ph.D. and a Habilitation from Paris VI University. He worked from 1993

in CLIP, Bouygues Telecom, France Telecom R&D in 1995, and Nortel Networks in 1999. He joined Institut Mines-

Télécom in 2002 and is currently professor and program director, leading the Service Architecture Laboratory. He is

appointed as coordinator for the standardization activities in ETSI and 3GPP. He is also a visiting professor at the

Asian Institute of Technology and is on the four-person Scientific Advisory Board of FTW, Austria. His current

research interests are in service architectures, P2P service overlays, future Internet, and Web-NGN convergence. He

is the author/co-author of more than 230 papers and contributions in standardization.

MONIQUE MORROW (mmorrow@cisco.com) holds the title of CTO Cisco Services. Ms. Morrow’s focus is in

developing strategic technology and business architectures for Cisco customers and partners. With over 13 years at

Cisco, Monique has made significant contributions in a wide range of roles, from Customer Advocacy to Corporate

Consulting Engineering. With particular emphasis on the Service Provider segment, her experience includes roles in

the field (Asia-Pacific) where she undertook the goal of building a strong technology team, as well as identifying and

grooming a successor to assure a smooth transition and continued excellence. Monique has consistently shown her

talent for forward thinking and risk taking in exploring market opportunities for Cisco. She was an early visionary in

the realm of MPLS as a technology service enabler, and she was one of the leaders in developing new business

opportunities for Cisco in the Service Provider segment, SP NGN. Monique holds 3 patents, and has an additional

nine patent submissions filed with US Patent Office. Ms. Morrow is the co-author of several books, and has authored

numerous articles. She also maintains several technology blogs, and is a major contributor to Cisco’s Technology

Radar, having achieved Gold Medalist Hall of Fame status for her contributions. Monique is also very active in

industry associations. She is a new member of the Strategic Advisory Board for the School of Computer Science at

North Carolina State University. Monique is particularly passionate about Girls in ICT and has been active at the ITU

This paper has been accepted in IEEE NETWORK Magazine and will appear in May/June 2015 Issue.

The content is final but has NOT been proof-read. Final content may change.

This is an author copy uploaded on personal website. Respective copyrights are with IEEE
on this topic - presenting at the EU Parliament in April of 2013 as an advocate for Cisco. Within the Office of the

CTO, first as an individual contributor, and now as CTO, she has built a strong leadership team, and she continues to

drive Cisco’s globalization and country strategies.

PAUL POLAKOS (ppolakos@cisco.com) is currently a Cisco Fellow and member of the Mobility CTO team at Cisco

Systems focusing on emerging technologies for future Mobility systems. Prior to joining Cisco, Paul was Senior

Director of Wireless Networking Research at Bell Labs, Alcatel-Lucent in Murray Hill, NJ and Paris, France. During

his 28 years at Bell Labs he worked on a broad variety of topics in Physics and in Wireless Networking Research

including the flat-IP cellular network architecture, the Base Station Router, femtocells, intelligent antennas and

MIMO, radio and modem algorithms and ASICSs, autonomic networks and dynamic network optimization. Prior to

joining Bell Labs, he was a member of the research staff at the Max-Planck Institute for Physics and Astrophysics

(Munich) and visiting scientist at CERN and Fermilab. He holds BS, MS, and Ph.D. degrees in Physics from

Rensselaer Polytechnic Institute and the University of Arizona, is a Bell Labs and Cisco Fellow, and author of more

than 50 publications and 30 patents.

