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Abstract—Cognitive Radio (CR) is a promising technology for
next-generation wireless networks in order to efficiently utilize
the limited spectrum resources and satisfy the rapidly increasing
demand for wireless applications and services. Security isa very
important but not well addressed issue in CR networks. In
this paper we focus on security problems arising from Primary
User Emulation (PUE) attacks in CR networks. We present a
comprehensive introduction to PUE attacks, from the attacking
rationale and its impact on CR networks, to detection and defense
approaches. In order to secure CR networks against PUE attacks,
a two-level database-assisted detection approach is proposed to
detect such attacks. Energy detection and location verification are
combined for fast and reliable detection. An admission control
based defense approach is proposed to mitigate the performance
degradation of a CR network under a PUE attack. Illustrative
results are presented to demonstrate the effectiveness of the
proposed detection and defense approaches.

Index Terms—Cognitive radio, security, primary user emula-
tion attack, energy detection, location verification.

I. I NTRODUCTION

Cognitive Radio (CR) is an enabling technology to ef-
fectively address the spectrum scarcity and it will signif-
icantly enhance the spectrum utilization of future wireless
communications systems. In a CR network, the Secondary (or
unlicensed) User (SU) is allowed to opportunistically access
the spectrum “holes” that are not occupied by the Primary (or
licensed) User (PU). Generally, the SUs constantly observe
the spectrum bands by performing spectrum sensing. Once
a spectrum “hole” is discovered, an SU could temporarily
transmit on this part of the spectrum. Upon the presence of a
PU in this part of the spectrum, however, the SU has to switch
to another available spectrum band by performing spectrum
handoff, avoiding interference with the PU transmission. The
development of CR technology leads to the new communi-
cations paradigm called Dynamic Spectrum Access (DSA),
which relaxes the traditional fixed spectrum assignment policy
and allows a CR networks to temporally “borrow” a part of
the spectrum from the primary network. As a consequence,
the scarce spectrum resources are shared, in a highly efficient
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and resilient fashion, between the primary network and the CR
network.

Among all the key technical problems of CR networks,
security is a crucial but not well addressed issue. Due to the
nature of dynamic spectrum access and the fact that the CR
network should not interact with the primary network, the SUs
in the CR network usually lack global information about the
usage of the spectrum resource in the network. This makes the
CR network vulnerable to attacks by hostile users. In all the
main functionalities of CR networks such as spectrum sensing,
spectrum mobility, spectrum sharing and spectrum manage-
ment, the CR network has been shown to be strategically vul-
nerable [1]. The typical attacks on CR networks may include
Denial of Service (DoS) attacks, system penetration, repudia-
tion, spoofing, authorization violation, malware infection, and
data modification. These attacks cause potential threats tothe
information confidentiality, integrity and availability of the CR
network. Effective defense approaches are urgently neededto
secure CR networks and deal with these attacks. Nowadays,
security threats and their countermeasures have been studied
as one of the most important topics in the research area of CR
technology [6].

In this paper, we mainly focus on the security problem
arising from Primary User Emulation (PUE) attacks in CR
networks. PUE attacks are known as a new type of attacks
unique to CR networks. In such an attack, the hostile user
takes the advantage of the inherent etiquette in CR networks
that the legitimate SU has to evacuate the spectrum band
upon the arrival of a PU. An attacker emulates the PU’s
transmitting signal and misleads the legitimate SU to give up
the spectrum band. The presence of PUE attacks may severely
influence the performance of CR networks. This paper aims
at presenting a comprehensive introduction to PUE attacks,
from the attacking principle and its impact on CR networks,
to the detection and defense approaches. In order to secure CR
networks, we propose a database-assisted detection approach
and an admission control based defense approach against PUE
attacks.

The remainder of the paper is organized as follows. Section
II illustrates the principles of PUE attacks, and introduces
its classification and impacts on CR networks. A quantitative
analysis of the performance degradation of a CR network due
to a PUE attack is also presented. Section III describes existing
detection measures for PUE attacks. A two-level database-
assisted detection approach is proposed. Energy detectionand
location verification are combined for both fast and reliable
detection. Section VI discusses the defense approaches against
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Fig. 1. Illustration of PUE attacks in the CR network.

PUE attacks, where a guard channel based admission control
is adopted to defend against PUE attacks. Finally, the conclu-
sions of the paper are presented in Section V.

II. PUE ATTACK AND ITS IMPACT ON CR NETWORKS

The term Primary User Emulation (PUE) attack was first
introduced in [2]. A PUE attack is a new type of attack
unique to CR networks, in which the attackers may modify
their radio transmission frequency to mimic a primary signal,
thereby misguiding the legitimate SUs to erroneously identify
the attackers as a PU.

Fig. 1 shows a typical scenario of a PUE attack. There are
two spectrum bands, say, licensed band I and band II. Both of
the spectrum bands have six channels, indexed by frequencies
f1, f2, · · · , f6, andf7, f8, · · · , f12, respectively. Let’s consider
the first example in band I, where the primary base station (BS)
is transmitting in channelsf1, f3 andf4 to the PU receivers.
Channelsf2, f5 andf6 are idle. By observing this, SU1, SU2

and SU3 are allowed to use these three idle channels for
transmissions. However, the appearance of a PUE attacker,
say, EU2, may block the SUs from using an idle channel.
EU2, may, for example, mimic the primary signal in channel
f2. Once the attack succeeds, SU1 and SU3 are misled to
evacuate channelf2 and the link between them is interrupted.
The second example is shown in band II. The primary network
is occupying channelsf11 and f12, while SU4 and SU5 are
using channelsf9 and f10, respectively. PUE attackers EU3

and EU4 are emulating the primary signals in channelsf7 and

f8, respectively. In this situation, suppose that SU4 and SU5
need to find channels to connect with the cognitive base station
(BS). If attackers EU3 and EU4 can not be correctly identified,
SU4 and SU5 will find no vacant channels and hence may not
be able to communicate with the cognitive BS.

The above two examples describe two different attacking
cases. The first example illustrates the case that the PUE
attacker attacks the in-service SUs and seizes one of their
channels, causing interruption of some of the SU services.
The second example illustrates the case that the PUE attackers
occupy the idle channels and waste the spectrum opportunities
of the SUs.

A. Classification of Attackers

Since the security problem caused by PUE attacks was
identified, different types of PUE attacks have been studied.
We now introduce different types of PUE attackers associated
with their classification criteria.

• Selfish & Malicious Attackers:A selfish attacker aims
at stealing bandwidth from legitimate SUs for its own
transmissions. The attacker will monitor the spectrum.
Once an unoccupied spectrum band is discovered, it
will compete with the legitimate SUs by emulating the
primary signal, e.g., SU3 and SU4 in Fig. 1. A selfish
attacker is a rational attacker in the sense that, if it is
detected by the legitimate SUs and the SUs reclaim the
spectrum opportunity by switching back to the band, it
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has to leave the band. The purpose of a malicious attacker,
however, is to disturb the dynamic spectrum access of
legitimate SUs but not to exploit the spectrum for its own
transmissions. Being different from a selfish attacker, the
malicious attacker may emulate a primary signal in both
an unoccupied spectrum band and a band currently used
by legitimate SUs, e.g., SU2 in Fig. 1. When an attacker
attacks a band being used by a legitimate SU, there exists
the possibility that the SU fails to discover the signal, and
hence, an interference occurs between the attacker and the
legitimate SU.

• Power-Fixed & Power-Adaptive Attackers:The ability to
emulate the power levels of a primary signal is crucial
for PUE attackers, because most of the SUs employ an
energy detection technique in spectrum sensing. A power-
fixed attacker uses an invariable predefined power level
regardless of the actual transmitting power of the PUs
and the surrounding radio environment. Compared to
the power fixed attacker, the power-adaptive attacker is
smarter in the sense that, it could adjust its transmitting
power according to the estimated transmitting power of
the primary signal and the channel parameters [3]. Specif-
ically, the attacker employs an estimation technique and
a learning method against the detection by the legitimate
SUs. It is demonstrated that such an advanced attack can
defeat a naive defense approach that focuses only on the
received signal power.

• Static & Mobile Attackers:The location of a signal
source is also a key characteristic to verify the identity
of an attacker. A static attacker has a fixed location
that would not change in all round of attacks. By using
positioning techniques such as Time of Arrival (ToA) or
dedicated positioning sensors [8], the location of a static
attacker could be revealed. A static attacker will be easily
recognized due to the difference between its location and
that of the PUs. A mobile attacker will constantly change
its location so that it is difficult to trace and discover. A
viable detection approach that exploits the correlations
between RF signals and acoustic information is proposed
in [4] to verify the existence of a mobile PUE attacker.

B. Essential Conditions for Successful PUE Attacks

In a CR network, the successful realization of a PUE attack
relies on several essential conditions. To better understand
PUE attacks and facilitate the design of the countermeasures,
we summarize these essential conditions as follows.

• No PU-SU interaction:There is no interaction between
the primary and the secondary networks. This is a neces-
sary condition for a successful PUE attack. Otherwise, if
the legitimate SUs are allowed to exchange information
with the PUs, a PU verification procedure could be
designed to easily detect a PUE attack. In most cases,
this condition holds. It is regulated in the IEEE 802.22
standard and also a general assumption in most existing
research work of CR networks.

• PU and SU signals have different characteristics:The
primary and secondary networks use wireless signals with

different characteristics, i.e., using different modulation
modes and different signal statistical features. An SU
receiver is inherently designed only for the secondary
signal but unable to demodulate and decode the primary
signal. The PUE attackers take advantage of this funda-
mental condition to emulate the primary signal that is
unrecognisable for the legitimate SUs.

• Primary signal learning and channel measurement:To
emulate the primary signal, the attacker has to track and
learn the characteristics of the primary signal. For an
advanced attack, the attacker may also estimate the power
level as well as the channel conditions to generate more
tricky transmitting signals.

• Avoiding interference with the primary network:Al-
though this is usually a primary concern for the SUs,
it is also a important condition that the PUE attackers
have to comply with. The attackers, especially the selfish
ones, should carefully monitor the behaviors of PUs as
not to cause extra interference with the primary network.

C. Impact of PUE attacks on CR Networks

The presence of PUE attacks causes a number of trouble-
sproblems for CR networks. The list of potential consequences
of PUE attacks is:

• Bandwidth waste:The ultimate objective of deploying
CR networks is to address the spectrum under-utilization
that is caused by the current fixed spectrum usage policy.
By dynamically accessing the spectrum “holes”, the SUs
are able to retrieve these otherwise wasted spectrum re-
sources. However, PUE attackers may steal the spectrum
“holes” from the SUs, leading to spectrum bandwidth
waste again.

• QoS degradation:The appearance of a PUE attack may
severely degrade the Quality-of-Service (QoS) of the
CR network by destroying the continuity of secondary
services. For instance, a malicious attacker could disturb
the ongoing services and force the SUs to constantly
change their operating spectrum bands. Frequent spec-
trum handoff will induce unsatisfying delay [7] and jitter
for the secondary services.

• Connection unreliability:If a realtime secondary service
is attacked by a PUE attacker and finds no available chan-
nel when performing spectrum handoff, the service has to
be dropped. This realtime service is then terminated due
to the PUE attack. In principle, the secondary services
in CR networks inherently have no guarantee that they
will have stable radio resource because of the nature of
dynamic spectrum access. The existence of PUE attacks
significantly increases the connection unreliability of CR
networks.

• Denial of Service:Consider PUE attacks with high at-
tacking frequency; then the attackers may occupy many of
the spectrum opportunities. The SUs will have insufficient
bandwidth for their transmissions, and hence, some of the
SU services will be interrupted. In the worst case, the CR
network may even find no channels to set up a common
control channel for delivering the control messages. As



4

Saturation States Outage States

PU departure

PU arrival

Successful PUE Attack

PUE attacker departure

Fig. 2. Saturation state and outage state transition.

a consequence, the CR network will be suspended and
unable to serve any SU. This is called Denial of Service
(DoS) in CR networks.

• Interference with the primary network:Although a PUE
attacker is motivated to steal the bandwidth from the
SUs, there exists the chance that the attacker generates
additional interference with the primary network. This
happens when the attacker fails to detect the occurrence
of a PU. On the other hand, when the SUs are tackling a
PUE attack, it is also possible to incorrectly identify the
true PU as the attacker and interfere with the primary net-
work. In any case, causing interference with the primary
network is strictly forbidden in CR networks.

D. Performance Degradation due to PUE Attacks

We adopt the termsaturationto characterize the state of a
CR network in which all the channels are occupied by PUs,
SUs and PUE attackers, i.e., there are no idle channels, and the
termoutageto characterize the state of a CR network in which
there is no spectrum band available for the Common Control
Channel (CCC). In a practical CR network, it is necessary to
build up a CCC for exchanging control messages. The CCC
might be established by using a dedicated radio transceiver
and setting up an out-of-band fixed channel. However, this is
very difficult in a real CR network due to the additional cost of
hardware and the assignment of a dedicated spectrum band. It
is more likely that the CCC should be constructed by means of
dynamic spectrum access. This implies that the CR network
need to maintain a stable channel as its CCC. Under PUE
attacks, the CCC may also be attacked and disconnected. The
system will be suspended in this case. Two new performance
metrics are defined as follows.

• Outage probability:The outage probability is defined as
the probability that a CR network stays in the outage
state in which there is no available spectrum band for
constructing a CCC.

• System recovery time:The system recovery time is de-
fined as the average time duration that a CR network (in
the outage state) takes to acquire an available spectrum
band as a CCC for delivering control messages.

Fig. 2 shows the saturation state and the outage state transi-
tion. When the current CCC is not available any more, due to
the arrival of a PU or a PUE attack, it has to switch to a new
channel. Since the CCC has priority over the other common
SUs, it could switch to anyone of the available channels, even
one already occupied by the SUs. As a consequence, the CCC
is disconnected only in the case that all of the channels are
occupied by PUs or PUE attackers. In the saturation states with
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Fig. 3. Outage probability and system recovery time.

only one SU channel being used as the CCC, if a PU arrives
and occupies the CCC, or if a PUE attacker successfully
attacks the CCC, the CR network transits to the outage state.

Fig. 3 shows the outage probability and the system recovery
time in terms of the PUE attacking strength, i.e., the attack
arrival rate. In the figure,λEU and µEU denote the PUE
attacker arrival rates and the PUE attacker departure rate,
respectively. It is observed that, both the outage probability
and the system recovery time increase dramatically with the
increase of the attacking strength. Without PUE attacks, the
outage probability is near zero and the recovery time is very
short. In the case of a PUE attack, say,λEU = 0.4 and
µEU = 0.1, the outage probability is over0.3% and the
recovery time is nearly 2ms. Hence, the outage probability
increases dramatically, and the recovery time extend substan-
tially, compared to the case when there are no PUE attacks.
These observations indicate that, the existence of PUE attacks
may seriously degrade the performance of a CR network.
Detection and defense approaches against PUE attacks are
becoming very critical to secure CR networks.

III. D ETECTION APPROACHES FORPUE ATTACKS

A. Existing Detection Approaches

In the literature, some detection approaches against PUE
attacks have been presented. The existing detection approaches
can be classified into energy detection, Received Signal
Strength (RSS) based detection, feature detection, location
verification and cooperative detection.

1) Energy Detection:Energy detection is a simple but
widely used approach for spectrum sensing in CR networks.
It is also one of the basic approaches for the detection of PUE
attacks. By measuring the power level of the received signal
at the SU receiver and comparing it with that from the true
PUs, the CR network could judge whether the signal comes
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from an attacker or not. However, a pure energy detector is
not robust enough to tackle an advanced PUE attack.

2) RSS-based Detection:Received Signal Strength (RSS)
based detection approach is discussed in [5], where the authors
analyze the PUE attack in the CR network without using
any location information. Thus, this detection approach does
not need dedicated sensor networks. The PUE attackers are
assumed to be distributed randomly around the SUs. The
authors present an analysis using Fentons approximation and
Walds sequential probability ratio test (WSPRT) to detect PUE
attacks.

3) Feature Detection:The approach proposed in [9] uses
energy detection to identify the existing users in the frequency
band. The approach then employs a cyclostationary calculation
to represent the features of the user signals, which are then
fed into an artificial neural network for classification. As
opposed to current techniques for detecting PUE attacks in CR
networks, this approach does not require additional hardware
or time synchronization algorithms in the wireless network.

4) Location Verification:Two location verification schemes
are proposed in [2]. They are called Distance Ratio Test
(DRT) and Distance Difference Test (DDT), respectively. In
both schemes, dedicated cognitive nodes (SUs or a cognitive
BS) with enhanced functionality are involved for location
verification. DRT uses a Received Signal Strength (RSS) based
method, where two dedicated cognitive nodes measure the
RSS of the signal source and calculate the ratio of these two
RSS to check whether it coincides with their distances to the
true PU (e.g., a TV broadcast tower). Using DDT, the arrival
time of the transmitted signal from the source is measured
by the two dedicated cognitive nodes. The product of the time
difference and the light speed is then compared to the distance
difference from the true PU to the two dedicated nodes in order
to identify the source.

B. A Database-Assisted Detection Approach

Fig. 4 shows our proposed database-assisted PUE attack de-
tection approach, which has three key components: the multi-
threshold fast energy detection, the fingerprint-based location
verification and the two-level database. In the approach, a local
database is integrated in each SU, while a global database is
built up in the cognitive BS. The local database is used to
store historical spectrum sensing data and the local detection
decisions of each SU. The global database is used to collect
and record all the SUs’ spectrum sensing data and the local
detection decisions, as well as the global detection decisions.
If the proposed approach is applied in wireless regional area
networks, according to the IEEE 802.22 standard [10], the
global database in a cognitive BS can provide an interface to
the incumbent database for information query, e.g., the geo-
location of a primary BS and the list of available channels.
The main operations of the proposed detection approach are
explained as follows.

1) Basic Operations:We consider a system model in which
there are one primary BS (e.g., the TV broadcasting tower) and
multiple PUE attackers. In our model the attackers are static
or quasi-static, say, moving very slowly. In a given moment

and in a specific spectrum band (channel), only one of the
attackers, at most, will emulate a primary signal.

In the proposed approach, there are four main units in the
SU: a signal pre-processing unit, a fast energy detector, a loca-
tion verifier and a local database. The local database consists of
two components: An RSS Probability Density Function (PDF)
database and a fingerprint database. The signal pre-processing
unit gets the received signalr(t) from the radio frequency (RF)
unit as input. Letx(t), h(t) andω(t) denote the transmitted
signal, channel impulse response and the receiver thermal
noise, respectively. Lets(t) ands′(t) denote the real PU signal
and the PUE attack signal, respectively. Then, the transmitted
signalx(t) = s(t) for the real PU signal,x(t) = s′(t) for the
PUE attack signal, andx(t) = 0 when no signal is transmitted.
The input signal is given byr(t) = x(t)∗h(t)+ω(t). Let {tn}
denote the sequence of sampling times andNs the number
of samples in one sensing period. After sampling, squaring
and aggregation, the signal pre-processing unit generatesthe
sampled energy vectore = e[n] (n = 1, 2, · · · , Ns) and
the aggregated energyE. Then, we have the sampled energy
e[n] = r2(tn) and the aggregated energyE =

∑Ns

1
e[n].

After that, the aggregated energyE is sent to the fast energy
detector for comparison to the preset thresholdsγk’s. If the
comparison result indicates that there is no signal or it is aPUE
attack signal, the detection procedure is terminated and the
corresponding decision is made. Otherwise, the energy vector
e[n], containing more detailed energy information, is sent to
the location verification unit. The location of the source of
the signal is estimated using Bayesian hypothesis testing.The
estimated location̂m of the signal source is then transmitted
to the cognitive BS for data fusion. The operations of fast
energy detector and location verifier are elaborated below.

2) Multiple Thresholds based Fast Energy Detection:The
goal of a fast energy detector is to quickly react to possible
PUE attacks. The basic idea of a fast energy detector stems
from conventional energy detection. In a conventional energy
detector, there is only one energy threshold, to distinguish the
cases of presence or absence of a primary signal. This single-
threshold detector is not efficient for detecting a PUE attack
signal. To distinguish a PUE attacker from a real PU, a fast
energy detector sets up three energy thresholds, denoted by
γ0, γ1 and γ2. Here, γ0 < γ1 < γ2, and γ0 is according
to the original threshold in a conventional energy detector.
If the inputE < γ0, it is decided that there is no PU or PUE
attacker present. The two new thresholdsγ1 andγ2 are used
to distinguish the signals of PU and PUE attacker. If the input
γ0 < E < γ1 or E > γ2, it is decided that a PUE attack is
detected. Otherwise, the received signal is initially diagnosed
to be a PU signal. The location verifier will be launched for
further examination. It is emphasized that, using two energy
thresholds to distinguish a PU from a PUE attacker is justified
by the following fact. A PUE attacker tries to emulate the
transmitting power of a real PU. However, it is very difficult
for the attacker to fabricate a signal so that all of the SUs
receive the signal with the power level similar to that of the
real PU. By randomly assigning a few SUs to measure the
received signal power, and letting these SUs know the signal
power of the real PUs, a PUE attack could be discovered with
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a high probability.
Generally, the received energyE has the form of a Chi-

Square distribution. Since the number of samples is large in
most cases, we can use the Central Limit Theorem (CLT)
to approximate the Chi-Square distribution by a Gaussian
distribution. Let H0, H1 and H ′

1 denote the hypothesis of
receiving no signal, a real PU signal and a PUE attack signal,
respectively. LetPd(γ1, γ2) and Pf (γ1, γ2) denote the PUE
attack detection and false alarm probabilities, respectively. We
havePd(γ1, γ2) = Pr{γ0 < E < γ1|H

′
1
}+ Pr{E > γ2|H

′
1
},

andPf (γ1, γ2) = Pr{γ0 < E < γ1|H1}+ Pr{E > γ2|H1}.

3) Data Fusion driven Location Verification:The proposed
location verification does not need any dedicated positioning
sensors [8]. In particular, suppose that the global database has
recorded the location fingerprints ofM PUE attackers as well
as that of the real PU. The location verification will specifically
identify the source of the received signal from the real PU and
the PUE attackers. The location verification consists of three
main steps. In step one, the SUs observe the input energy
vectore and estimate the location of the source by finding the
best matching entry in their local databases. In step two, the
SUs send the estimated location to the cognitive BS for data
fusion. The cognitive BS makes a final decision and identifies
the signal source. In step three, the cognitive BS updates
the global database according to the gathered fingerprinting
information from the multiple SUs. An update information is
also sent to the SUs’ local databases.

The location estimation using Bayesian hypothesis testingis
described as follows. LetLm (m = 0, 1, 2, · · · ,M ) denote the
location of the signal source, whereL0 corresponds to the real
PU andL{1,2,··· ,M} correspond to the attackers, respectively.
The input energy vectore follows a parameterized probability
density function with the parameter stored in the database.
Specifically, the probability density function ofe under the hy-
pothesis that the source is located inLm is denotedf(e|Lm).
The estimation of the location of the source of the signal is

given by
m̂ = argmax

m=0,1,2,·,M
πmf(e|Lm) (1)

whereπm is the a priori probability of the hypothesis that the
source is located inLm.

The estimated location̂m is sent as the local decision to the
cognitive BS for data fusion. The data fusion rules that lead
to various global decisions are explained below.

• True PU: If all local decisions are identical andL0, i.e.
m̂ = 0, the cognitive BS will decide that the signal source
is the true PU.

• PUE attack in a known location:If all local decisions
are identical and̂m ∈ L{1,2,··· ,M}, the cognitive BS will
decide that the source is the PUE attacker in locationLm.

• PUE attack in a new location:If the local decisions are
different, the cognitive BS will decide that the source is a
PUE attacker in a new location. A new fingerprint entry
is added to the global database.

The final decision will be sent by the cognitive BS to the
SUs. Both the local and global databases will be updated when
a PUE attack is detected, either by the fast energy detector
or by the location verifier. In particular, in the fast energy
detector, the energy thresholds will be re-computed. In the
location verifier, the probability density functions of theenergy
vector will be updated. In addition, if a new location of a PUE
attacker is detected, a new profile will be created to track this
new attacker. The communication overheads to update the two-
level database is proportional to the frequency of PUE attacks.
The computational complexity in detecting PUE attacks is
determined by the number of samples in each spectrum sensing
and the number of possible locations of the PUE attackers.
The overall computational complexity isO(MNs), which is
sufficiently low for practical deployment.

4) Illustrative Result:We consider a scenario where there
are three PUE attackers located in positionsL1, L2 andL3,
respectively. The SUs are distributed in a circular field with
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Fig. 5. PUE Attack detection probability in terms of false alarm probability.

radius1 km. The primary BS is located in the center, while
L1, L2 and L3 are respectively100 m, 200 m, and300 m
away from the center. Fig. 5 demonstrates the effectiveness
of the proposed detection approach. The PUE attack detection
probability is shown in terms of the false alarm probability.
In this example, we have shown two cases when the sampling
parameter varies. The comparison indicates that more samples
lead to higher detection probability. We can observe that, the
farther the PUE attacker is located from the primary BS, the
easier it is to detect it. For example, whenNs = 12 andPf =
0.1%, the PUE attack detection probabilities are0.93, 0.95 and
0.97 when the PUE attacks are performed from locationsL1,
L2 andL3, respectively. The results indicate that the proposed
approach works effectively and is able to successfully detect
the attacks.

IV. D EFENSEAPPROACHES AGAINSTPUE ATTACKS

The defense against PUE attacks is an important but sel-
dom explored topic in CR networks. There are practical
requirements for efficient PUE attack defense approaches. We
illustrate this by two examples below. First, although a variety
of PUE attack detection approaches have been proposed, none
of the existing approaches is able to promise accurate detection
of all attacks. There still is a chance that some attacks are
not detected. This necessitates system level mechanisms to
maintain the overall performance of a CR network under
undetected PUE attacks. Second, when there are malicious
attackers in the network, their purpose is to interrupt the
communications of the cognitive users. Even if they have been
discovered, malicious attackers may stil transmit in orderto
interfere with the transmissions of the SUs. In this case, the
signal processing units in the RF front-ends of the SU receivers
should be applied to get rid of the interference signals, in order
to try to recover the secondary signal.

A. Defense Approaches at Various Protocol Layers

To defend against PUE attacks, effective counter measures
could be taken at different layers of the communications
protocol stack.
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Fig. 6. Performance comparison in dropping rate of CR networks with and
without admission control.

• Physical-layer approach:Physical-layer techniques such
as source separation, signal design, spread spectrum and
directional antennas could be employed to deal with the
intended interference from malicious PUE attackers. The
key in the design of an efficient physical-layer counter-
measure is to exploit the a priori knowledge about the
characteristics of the primary signal and its dissimilarity
with the interference signal.

• MAC-layer approach:Undetected PUE attacks will steal
bandwidth from the CR network. To let the SUs maintain
moderate QoS performance, Radio Resource Manage-
ment (RRM) strategies such as admission control, spec-
trum handoff and spectrum scheduling should be studied.

• Network-layer approach:In cognitive ad hoc networks,
once the location of the PUE attackers are estimated, a
position-based cognitive routing strategy could be em-
ployed to deal with the PUE attacks. Those SUs that are
located within the attacking range of the PUE attackers
should be considered to be temporary unavailable. End-
to-end routing paths should be established without cross-
ing the unavailable SU nodes.

• Cross-layer approach:A cross-layer design framework
may be set up to defend against PUE attacks. In the
framework, the behavior of the detected PUE attacks
is observed at the physical layer and reported to the
upper layers, such as the RRM mechanism at the MAC
layer or the routing mechanism at the network layer. We
emphasize that, even the undetected PUE attacks could
be estimated in the physical layer by considering the
theoretically derived detection probability. The control
parameters of the upper layer are jointly optimized con-
sidering the existence of PUE attacks.

B. Admission Control to Defend Against PUE Attacks

In CR network, due to the nature of dynamic spectrum
access, ongoing SU services may be forced to be drop in
the presence of PUs. When a CR network suffers from
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PUE attacks, the phenomenon of dropping will be severely
magnified, leading to the discontinuity of SU services. A
Guard Channel (GC) is a simple but effective approach to
protect the ongoing services in a wireless networks. In this
paper, we propose a GC-based admission control strategy
to defend against PUE attacks. Upon the arrival of PUs or
PUE attackers (if not detected), the ongoing services have to
perform spectrum handoff. The handoff services need to aquire
new available channels to resume the transmissions. Similar
to conventional GCs, the proposed approach reserves a certain
portion of the available channels for the handoff services.Once
an SU needs a new channel for transmissions, it has to send a
request message to the cognitive BS, applying for an available
channel. The cognitive BS observes the remaining available
channels. If the number of available channels is larger than
the reservation number, the SU is allocated a new available
channel. Otherwise, the SU’s request is denied. The proposed
GC strategy takes into account of the existence of PUE attacks,
and has considered channel reservation for the PUE attacks.
Hence, the dropping rate caused by PUE attacks could be
significantly alleviated.

Fig. 6 compares the feature-based PUEA detection [9]
without admission control and the feature-based PUEA de-
tection with admission control. The results show that the
introduction of admission control is able to significantly reduce
the dropping rate. It is clear that the admission control based
mechanism can significantly reduce the dropping rate. For
instance, whenPd = 0.9 andλEU = 0.8, the dropping rate is
about1.8 × 10−3 without admission control while it is only
about6.2 × 10−5 with admission control. Consequently, the
proposed admission control based scheme can applied as an
efficient defense approach.

V. CONCLUSION

This paper focuses on the PUE attack security problem in
CR networks. A comprehensive introduction to PUE attacks
is presented and several technical challenges are discussed,
including classification of attackers, conditions for successful
PUE attacks, and impacts of PUE attacks on CR networks.
After that, a database-assisted detection approach is proposed
to efficiently discover PUE attacks. Multi-threshold fast en-
ergy detection and fingerprint-based location verificationare
integrated and driven by a two-level database. In addition,
an admission control based defense approach is proposed to
alleviate the impact of PUE attacks on the performance of CR
networks. By reserving a portion of channels for the handoff
services, the dropping rate induced by successful PUE attacks
could be evidently reduced. Illustrative results demonstrate that
the reported detection and defense approaches are effective in
discovering and defending PUE attacks in CR networks.
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