
This paper has been accepted for publication in IEEE NETWORK Magazine.

The content is final but has NOT been proof-read. This is an author copy for personal record only.

Network Functions Virtualization Architecture for

Gateways for Virtualized Wireless Sensor and

Actuator Networks+
Carla Mouradian¥1, Tonmoy Saha¥2, Jagruti Sahoo¥3, Mohammad Abu-Lebdeh¥4,

Roch Glitho¥5, Monique Morrow€1 , Paul Polakos£1
¥Concordia University, Montreal, Canada,

€CISCO Systems, Zurich, Switzerland,
£CISCO Systems, New Jersey, USA

¥1ca_moura@encs.concordia.ca, ¥2to_saha@encs.concordia.ca, ¥3jagrutiss@gmail.com,
¥4m_abuleb@encs.concordia.ca, ¥5glitho@ece.concordia.ca, €1mmorrow@cisco.com, £1ppolakos@cisco.com

Abstract— Virtualization enables multiple applications to

share the same wireless sensor and actuator network (WSAN).

However, in heterogeneous environments, virtualized wireless

sensor and actuator networks (VWSAN) raise new challenges,

such as the need for on-the-fly, dynamic, elastic, and scalable

provisioning of gateways. Network Functions Virtualization

(NFV) is a paradigm emerging to help tackle these new

challenges. It leverages standard virtualization technology to

consolidate special-purpose network elements on commodity

hardware. This article presents NFV architecture for VWSAN

gateways, in which software instances of gateway modules are

hosted in NFV infrastructure operated and managed by a

VWSAN gateway provider. We consider several VWSAN

providers, each with its own brand or combination of brands of

sensors and actuators/robots. These sensors and actuators can be

accessed by a variety of applications, each may have different

interface and QoS (i.e., latency, throughput, etc.) requirements.

The NFV infrastructure allows dynamic, elastic, and scalable

deployment of gateway modules in this heterogeneous VWSAN

environment. Furthermore, the proposed architecture is flexible

enough to easily allow new sensors and actuators integration and

new application domains accommodation. We present a

prototype that is built using the OpenStack platform. Besides, the

performance results are discussed. 2

Keywords— Gateway; Network Functions Virtualization;

Virtualization; Wireless Sensor and Actuator Networks

I. INTRODUCTION

Research on sensor network virtualization [1] has become

prominent in recent years. Virtualization technology abstracts

sensor resources as logical units and allows for their efficient

and simultaneous use by multiple applications, even if they

have conflicting requirements and goals. New applications can

be deployed in the same WSN with minimal efforts. More

importantly, reusing the same sensors’ capability by multiple

applications transforms WSN into a multi-purpose sensing

platform in which several virtual WSNs (VWSNs) are created

+This paper is an extended version of the paper “Mouradian C.; Saha T.;

Sahoo J.; Glitho R.; Morrow M.; Polakos P., NFV Based Gateways for

Virtualized Wireless Sensor Networks: A Case Study” presented at the IEEE

on-demand, each tailored for a specific task or objective.

Actuators are often incorporated in WSNs to make more

powerful applications, thus the concept of virtualized wireless

sensor and actuator network (VWSAN).

 Gateways are required for the interactions between

applications and heterogeneous, multivendor VWSANs. They

are generally complex. Furthermore, it is difficult and

expensive to upgrade them when new-brand sensors and

actuators/robots are deployed. In addition, their capabilities do

not scale when the number of applications and the

corresponding workload in VWSANs change dynamically.

Network Functions Virtualization (NFV) [2] is an

emerging paradigm in overcoming the aforementioned

challenges. NFV permits standard virtualization technology to

consolidate dedicated network elements (e.g., firewalls,

network address translation (NAT)) onto commodity

hardware. By implementing network functions as software

instances called virtual network functions (VNFs), NFV

reduces the operational costs and provides hardware

independence. Moreover, on-the-fly, dynamic, scalable, and

elastic provisioning of network services are among its benefits.

 This paper presents an NFV architecture for Virtualized

Wireless Sensor and Actuator Networks Gateways (VWSAN).

The firmware/hardware used to provide VWSAN Gateway

functionalities are replaced by VNFs deployed in an NFV

infrastructure. We enable a granular provisioning of NFV,

such as decomposing the gateway into fine-grained modules –

e.g., protocol converter, information model converter, etc. – to

be implemented as VNFs. More importantly, granular NFV is

best suited for virtualized WSANs, wherein the dynamic

growth in the number of applications and addition of new-

brand sensors require a rapid introduction of new VNFs and

update of existing VNFs. VNFs are instantiated on-the-fly and

chained to realize a service in VWSAN.

 The architecture introduces a new business actor - the

VWSAN Gateway Provider – in addition to the traditional

ICC 2015-Third International Workshop on Cloud Computing Systems,

Networks, and Applications (CCSNA), June 8-12, 2015, London, UK.

mailto:ca_moura@encs.concordia.ca
mailto:ppolakos@cisco.com

This paper has been accepted for publication in IEEE NETWORK Magazine.

The content is final but has NOT been proof-read. This is an author copy for personal record only.

actors, meaning the Application Provider and the VWSAN

Provider. This new actor plays a dual role. On the one hand,

it provides the VNFs, chained to make on-the-fly gateways.

On the other hand, it operates and manages the infrastructure

in which the VNFs are executed. We acknowledge that the

introduction of this new actor does bring a host of additional

security and trustability challenges. We consider these

challenges outside the scope of this paper. More and more

standardization work will certainly be required to enable

secure and trustable interactions between different NFV

actors, as the business model opens up.

The next section introduces a motivating scenario,

requirements, and discusses state-of-the-art. The proposed

architecture is presented in Section 3, followed by the

implementation details, the prototype, and performance results

in Section 4. In the last section, we conclude the paper and

outline future work.

II. CRITICAL OVERVIEW OF STATE-OF-THE-ART

A. Motivating Scenario

The ability of sensors to withstand harsh environments
makes WSAN a potential tool for forest monitoring and
protection. The use of WSAN allows forest researchers to
understand the impact of air pollutants (e.g., CO2, ozone, etc.)
and climate change on tree growth. We consider a potential
scenario in which a forest monitoring agency collects
environment data using sensor infrastructure provided by a
third party VWSAN provider. The sensors are of various
capabilities, including temperature, humidity, rain gauge, CO2
detector, and wind speed sensors. Let us also consider a
wildfire management agency that needs to be promptly notified
when a fire occurs in the forest so that it can deploy a fleet of
heterogeneous fire fighter robots to suppress the wildfire.
WSAN virtualization would allow for the concurrent execution
of the forest monitoring and wildfire management applications
on the same sensors. In order to collect measurements from the
sensors and send commands to the robots in a heterogeneous
environment, a gateway is needed for the interactions between
the application domain and WSAN domain.

B. Requirements

 First, the gateway must support standard northbound and

proprietary southbound interfaces. An example of standard

interface could be the widely used Sensor Markup Language

(SenML) [3] carried over HTTP. It is designed to encode

sensor measurements and device parameters. The proposed

architecture must be extensible to support future scenarios and

new application domains. In addition, the architecture must be

elastic to allow for the efficient utilization of underlying

physical resources. The architecture must be scalable to

promote the accelerated growth of the number of applications.

The architecture should also provide at least two key

gateway functions: Protocol conversion and information

model conversion.

The architecture must ensure that the execution of gateway

modules achieves performance similar to when they are

executed in a traditional WSAN gateway. In particular, the

performance metrics that require significant attention are

latency, throughput, and overhead. The NFV architecture must

be flexible enough to support the integration of various brands

sensors, and it must have the ability to support different

business models.

C. The State-of-the-Art and Its Shortcomings

Our motivating scenario closely resembles the WSN and

Internet of Things (IoT) scenarios, which involve a broad

range of sensors, IoT devices, and communication

technologies at the IoT device domain (e.g., 6LoWPAN,

ZigBee, Bluetooth, etc.) and network domain (e.g., 2G/3G,

LTE, LAN, etc.). In state-of-the-art for WSN/IoT gateway

architectures, the main focus has been on bridging different

sensor domains with public communication networks and the

Internet.
The existing literature describes a growing trend in NFV-

based middlebox design. Since a WSN gateway falls under the
taxonomy of middlebox, a brief overview of NFV architectures
within the context of middleboxes is important. Therefore, we
classify the state-of-the-art into two categories: Traditional
Architectures (WSN/IoT gateway) and NFV architectures
(middleboxes).

1) Traditional Architectures (WSN/IoT Gateway): An

architecture for an in-home IoT gateway is proposed in [4]. It

consists of three subsystems: Sensor node, gateway, and

application platform. The architecture does not support

standard or proprietary interfaces. Jiang et al. [5] present an

IoT gateway architecture for a CorbaNet-based digital

broadcast system, designed to lessen the effects of IoT

technology on backbone networks. The architecture is

extensible by nature. However, it doesn’t account for

information model conversion and its scalability aspect is not

discussed.

A configurable, multifunctional and cost-effective

architecture for smart IoT gateways is proposed in [6]. It is

extensible since modules with different communication

protocols can be plugged into the architecture. It also provides

protocol conversion by granting a common frame structure for

data communication. However, scalability in terms of number

of applications is not discussed.

In [7], the authors propose an IoT gateway-centric

architecture that provides various M2M services, such as

association of metadata to sensor and actuator measurements

using SenML. They also extend SenML capabilities to address

actuator control. Although it is scalable in terms of handling

traffic by using the RESTful paradigm, it cannot support the

dynamic creation of additional M2M services with more IoT

devices. In [8], gateway architecture for home and building

automation system is proposed. The gateway is managed

remotely by the network operator. The architecture supports

standard and proprietary interfaces. However, scalability is not

discussed.

2) NFV architectures (Middleboxes): ClickOS [9] is a Xen-

based software platform that allows hundreds of middleboxes

to run on commodity hardware. It includes both simple

This paper has been accepted for publication in IEEE NETWORK Magazine.

The content is final but has NOT been proof-read. This is an author copy for personal record only.

middleboxes (e.g., packet forwarding from input to output

interfaces) and full-fledged middleboxes (e.g., IPv4 router,

firewall, etc.). However, virtualizating gateway modules is not

investigated. The architecture is scalable, flexible, and

extensible.

T-NOVA [10] is an integrated architecture that enables

network operators and service providers to manage their

NFVs. It provides VNFs, like flow handling control

mechanisms, as value-added services to its customers. T-

NOVA allows third party developers to publish their VNFs as

independent entities. In [11], NFV is used to virtualize an IP

telephony function called a Session Border Controller (SBC),

which operates on both the control plane (i.e., load balancing

and call control) and the media plane (i.e., media adaptation

capabilities). The use of NFV for the virtualization of routing

function in OpenFlow-enabled networks is explored in [12].

These works neither target WSN/WSAN domains, nor support

proprietary southbound interfaces.

We conclude that, with the exception of limited support for

extensibility, proprietary interfaces, and gateway modules, the

existing WSN gateway architectures fall short of satisfying

many of our requirements. With regard to NFV-based

solutions, the current NFV architectures for middleboxes

exhibit extensibility and scalability properties. However, they

focus primarily on network elements, e.g., firewall, proxies,

and NATs.

III. PROPOSED NFV ARCHITECTURE FOR VIRTUALIZED WSAN

GATEWAY

In this section, we present our NFV architecture for

virtualizing WSAN gateways. The architectural principles are

discussed first, followed by the architectural components and

interfaces, VNF migration and scalability issues, control

plane, and an illustrative scenario.

A. Architectural Principles

Our first architectural principle is granular provisioning of

network functions. We aim to use highly granular VNFs for

virtualized WSAN gateway functions. Examples include

protocol conversion and information model conversion. The

protocol converter decodes a packet received in one protocol

and encodes it in another protocol. The information model

conversion converts data from one format to another. We do

acknowledge the fact that converting a protocol X (or an

information model X) into a protocol Y (or an information

model Y) is not always feasible. Consequently, the Gateway

Provider provisions the related VNFs only when the

conversion is feasible. Our second principle is that the

VWSAN Gateway Provider maintains a centralized store of

VNF images. VNFs are dispatched on-demand to the VWSAN

provider’s domain. This principle is in accordance with the

ETSI, that VNFs must be deployed throughout the networks

where they are most effective and highly customized to a

specific application or user [13]. The third and last principle is

that the interaction interfaces between different domains are

REpresentational State Transfer (REST)-based. REST is

selected because it is lightweight, standard-based, and can

support multiple data representations (e.g., plain text, JSON,

and XML).

B. Overall Architecture

Fig. 1 shows the proposed architecture. It comprises

several Application Domains, a VWSAN Gateway Provider

Table 1-Resources on the VWSAN Provider Domain and VWSAN Gateway Provider Domain

Domain

Name

Resource Operation Http Action

Resources

on VWSAN

Provider

Domain

List of

application

service

requests

Create: Add application information (protocol

used, data format, latency, etc.)

POST:

/ApplicationsServiceRequests

Specific

application’s

service request

Update: Change information of specific

application

PUT: /ApplicationsServiceRequests

/(RequestId}

Delete: Delete specific application information DELETE:

/ApplicationsServiceRequests

/(RequestId}

Notification of

service

availability

Create: Send notification to VWSAN domain via

the gateway domain about the availability of

requested VNFs.

POST:

/ServiceAvailabilityNotification

Resources

on VWSAN

Gateway

Provider

Domain

Request for

VNFs

Create: Send request from VWSAN domain to

gateway domain for VNFs with specific

information (northbound interface, VWSAN

description, etc.)

POST: /VNFsRequest

Specific

request for

VNFs

Update: Change information of specific request for

VNFs.

PUT: /VNFsRequest/{VNFsRequestId}

Delete: Delete information of specific request for

VNFs.

DELETE:

/VNFsRequest/{VNFsRequestId}

This paper has been accepted for publication in IEEE NETWORK Magazine.

The content is final but has NOT been proof-read. This is an author copy for personal record only.

Domain, and VWSAN Provider Domains. The components

and interfaces are presented, followed by a discussion of the

VNF migration and scalability issues.

1) Components and Interfaces:

a) Components: Each Application Domain contains an

Application that requires the services of one or more VWSAN

providers. The Application contains two components:

Infrastructure Agent and Sensor/Actuator Agent. The

Infrastructure Agent is responsible for the singaling procedure.

It communicates with the VWSAN Provider Domain to

negotiate the use of VWSAN infrastructure. The

Sensor/Actuator Agent is responsible for gathering

measurements from the sensor and sending commands to the

robots. The VWSAN Gateway Provider Domain consists of

the following entities:

 Core Layer: Contains VNFs and their corresponding

Element Management Systems (EMS), where each EMS

is responsible for monitoring the resource utilization of its

corresponding VNF [13].

 NFV Infrastructure (NFVI): provides hardware and

software resources, including computation, storage, and

networking needed to deploy, manage, and execute VNFs.

 NFV Management and Orchestration (MANO):

Responsible of orchestration and lifecycle management of

physical/software resources, and the lifecycle

management of VNFs (instantiation, update, migration,

and termination).

 Central Controller: Performs functions as part of the

signaling procedure that occurs during service negotiation

(this is described later).

 VNF Store: A repository that contains VNFs of various

gateway modules. It provides VNFs that match the

requirements of an end-to-end service.

Each VWSAN Provider Domain comprises the following

components:

 Southbound (SB) Handler Layer: Contains VNFs that

have been migrated from the VWSAN Gateway Provider

Domain and their corresponding EMSs.

 NFVI: (explained in previous section).

Figure 1. Overall Architecture

This paper has been accepted for publication in IEEE NETWORK Magazine.

The content is final but has NOT been proof-read. This is an author copy for personal record only.

 NFV MANO: Performs the typical orchestration and

management functions for the execution of migrated

VNFs.

 Operational Support System/Business Support System

(OSS/BSS): Provides the description of VWSAN (e.g.,

sensor/robot brands).

 Local Controller: Interacts with the Infrastructure Agent

and the Central Controller.

b) Interfaces: The NFV components i.e., Core Layer,

NFVI, NFV MANO, SB Handler Layer interact with each

other through the interfaces defined by ETSI [13]. They

include Vn-Nf, Nf-Vi and Ve-Vnfm. Vn-Nf represents the

execution environment provided by NFVI to the Core Layer

and to the SB Handler Layer. Nf-Vi is used for assigning

virtualized resources in response to resource allocation

requests (e.g., allocating VMs on hypervisors). It is also used

by NFVI to communicate status information about virtualized

and hardware resources to the MANO. Nf-Vi is also used to

configure hardware resources. Ve-Vnfm carries out all

operations during a VNF life cycle, including instantiation,

scaling, updating, and termination. It is also used for

exchanging VNF configuration information.

2) VNF Migration and Scalability Issuses:

a) VNF Migration: In the architecture, VNFs are

migrated on-demand from VWSAN Gateway Provider

Domain to VWSAN Provider Domain. The architecture

supports two approaches for migration. In the first approach,

VNFs are instantiated and chained in VWSAN Gateway

Provider Domain. Then, using live migration, running VMs

are sent from the VWSAN Gateway Provider Domain to

VWSAN Provider Domain. In the second approach, VNFs are

migrated from the VWSAN Gateway Provider Domain to

VWSAN Provider Domain, where they are instantiated and

chained.

b) Scalability: The architecture relies on dynamic

resource allocation algorithms to meet the growing demand of

applications. These algorithms enable vertical scaling – i.e.,

increasing the resources of a VNF instance (e.g., CPU,

memory) and/or horizontal scaling – i.e., increasing the

number of VNF instances that serve an application. Existing

algorithms such as [14] and [15] could be used as basis. We

consider the design of these algorithms as items for future

work.

Figure 2. Sequence Diagram

This paper has been accepted for publication in IEEE NETWORK Magazine.

The content is final but has NOT been proof-read. This is an author copy for personal record only.

C. Control Plane

The control plane consists of signaling procedure and

control interfaces, R1 and R2. In a typical end-to-end service,

the application sends query to sensors to receive

measurements and deploy robots. Before the service begins, a

signaling procedure is conducted, in which different business

players (i.e., Application Domain, VWSAN Provider, and

VWSAN Gateway Provider) engage in service negotiation and

exchange the necessary parameters to obtain the appropriate

VNFs.

1) Signaling procedure: Signaling is initiated when an

application requires services from VWSAN Provider Domain.

The Sensor/Actuator Agent instructs the Infrastructure Agent

to start the service negotiation. The Infrastructure Agent

creates a service request that includes a description of the

northbound interface used by the application (i.e.,

communication protocol, information model, etc.) and QoS

parameters associated with the service delivery (i.e., latency,

throughput, etc.) and sends it to the Local Controller of

VWSAN Provider Domain. Upon receipt of the service

request, the Local Controller communicates with the OSS/BSS

to obtain informaton on parameters specific to the VWSAN

(e.g., type of sensors/robots). It then creates a VNF request

containing parameters of the service request as well as

parameters specific to the VWSAN and sends it to the Central

Controller. Based on these parameters, the Central Controller

searches for appropriate VNFs in VNF Store.

If the VNFs are found, the Central Controller instructs

NFV MANO of VWSAN Gateway Provider Domain to

instantiate and migrate the VNFs to VWSAN Provider

Domain. The Central Controller also receives a notification

from NFV MANO of VWSAN Gateway Provider Domain

when the VNFs are ready for use in VWSAN Provider

Domain. The Central Controller then forwards the notification

to the Local Controller, which sends a notification about

service availability to the Infrastructure Agent, which then

notifies the Sensor/Actuator Agent to start the service. It is

important to note that, when the required VNFs are not found

in the VNF Store, a service unavailability notification is sent

to the Infrastructure Agent, to either cancel the negotiation or

resume signaling after a certain time period.

2) Control Interfaces: R1 is used for the interactions

between Infrastructure Agent and Local Controller. R2 is used

for the interactions between Local Controller and Central

Controller. R1 and R2 are based on REST paradigm. The

important information is modelled as resources and each

resource is uniquely identified by the Uniform Resource

Identifier (URI). Table 1 summarizes the proposed REST

interface for the interactions between different domains. It

defines resources on VWSAN Provider Domain, used to

reserve resources when it receives service request from

Application Domain with a description of parameters. They

also allow the Application Domain to modify parameters and

delete resources of specific applications. Furthermore, they

allow VWSAN Gateway Provider Domain to send

notifications to VWSAN Provider Domain about the

availability of the requested VNFs. The resources defined on

VWSAN Gateway Provider Domain allow it to receive VNF

requests from VWSAN Provider Domain. They also allow the

VWSAN Provider Domain to update or delete information

(e.g., sensor/robot brand) about specific VNF requests.

Figure 3. Prototype Architecture

This paper has been accepted for publication in IEEE NETWORK Magazine.

The content is final but has NOT been proof-read. This is an author copy for personal record only.

D. Illustrative Scenario

In Fig. 2, we illustrate an end-to-end scenario, wherein an

application (e.g., forest monitoring) queries the sensors owned

by VWSAN Provider 1 and collect their measurements, and

another application (e.g., wildfire management) needs to be

notified when fire occurs and deploy robots. Before using

VWSAN Provider Domain’s service, the signaling procedure

starts. The northbound interface description sent to the Local

Controller for both sensors and robots is SenML over HTTP.

Since the current SenML implementation only supports sensor

measurements, we have used the extended capabilities of

a)

b)

Sample Protocol Conversion

Downtime (sec)

Info Model Processor

Downtime (sec)

1 30 39

2 24 39

3 31 38

4 33 38

5 24 38

c)

Figure 4. Results of Service Provisioning: a) Live migration delay of VM b) Pinging the VM during live migration c) VM

downtime during live migration

Fig. 5. Pinging the VMs during Live Migration

This paper has been accepted for publication in IEEE NETWORK Magazine.

The content is final but has NOT been proof-read. This is an author copy for personal record only.

SenML proposed by Datta et al. in [7] and [16] to send robot

commands from the application.

 Upon receiving the description from Infrastructure Agent,

the Local Controller obtains a description of the sensors (i.e.,

SunSpot) and the robots (i.e., Lego Mindstorms) from

OSS/BSS. The signaling procedure continues as described in

section-III.C.1 for both applications. For VNF migration, the

second approach (see section-III.B.3) is used; the VNFs are

instantiated, chained, and then migrated to VWSAN Provider

Domain. After service negotiation, the Sensor/Actuator Agent

sends a query to the sensors through the VNFs. Upon receiving

the query, SunSpot sensors send their raw measurements over

CoAP protocol. These measurements are processed by

protocol conversion (encoded in HTTP protocol) followed by

information model conversion (mapped to SenML format), in

order to enable the applications to interpret the measurements.

If the wildfire management application receives notification of

fire, it sends actuating commands to the robots in SenML

format through HTTP, where the commands are mapped to

LeJOS Java API and to Lego Communication Protocol (LCP).

The end-to-end service is completed when the robots are

deployed.

IV. IMPLEMENTATION

A. Prototype

For the prototype, we implemented the scenario in which

the forest monitoring agency is interested in collecting

environmental data to monitor the forests and a wildfire

management agency that needs to be notified when fire occurs

and deploy robots in order to suppress it. We consider a forest

wherein WSANs have already been deployed to monitor and

suppress wildfires. Two different brands sensors were used,

each belonging to different WSAN cloud infrastructures. The

sensors measure the temperature and can thereby detect fires

and the robots can detect extinguisher and grab it in order to

suppress the fire. In order to communicate with different types

of sensors and robots, the application needs a gateway for

handling different types of communication interfaces. A third

party provider provides this gateway.

The forest monitoring and wildfire management

applications was created using java dynamic web application

and hosted on Tomcat8 server. We used OpenStack Icehouse

to build our private cloud. OpenStack is a free, open-source

software for creating private and public clouds. Fig. 3 depicts

our prototype architecture. We used a multi-node OpenStack

with two compute nodes. We considered each compute node

as a domain: One as VWSAN Provider Domain and the other

as VWSAN Gateway Provider Domain. In our prototype, we

assume the two domains are in the same data center. In order

to provide live migration, both compute nodes share the same

storage. This allows the migration of only the memory

footprint of the VM. If each domain were in a separate data

center, we would assume a provision for live migration among

them.

The VNFs are instantiated in VWSAN Gateway Provider

Domain and migrated to VWSAN Provider Domain after

being chained. For simplicity’s sake, we assume that the VNFs

are chained in a static way in VWSAN Gateway Provider

Domain.

In the node representing VWSAN Gateway Provider

Domain, all necessary components of Openstack were

installed, including: Identity Service-Keystone, Controller-

Nova, Image-Glance, and Networking-Neutron. NFS

(Network File System) server was also configured in this node,

allowing servers to share directories and files with each other

over a network. The two nodes representing VWSAN Provider

Domain contains Compute-Nova. The fourth node is

configured as Network-Neutron and LBaaS (Load Balancing

as a Service) was installed on it, which is a service of Neutron,

allowing to load balance traffic for services running on VMs

in OpenStack. We used OpenStack4j API, as an open-source

OpenStack client, allowing the provision and control of an

OpenStack system as a controller. Because all domains are in

the same data centers, the controller can control all domains.

Each VNF runs a Linux Ubuntu V14.04 on 1 VM, and is

equipped with 1 VCPU and 2GB RAM. The VNFs

communicate with each other through REST interface (R2),

using the RESTlet framework [13]. Communication between

VWSAN Provider Domain and Application Domains is also

achieved via REST interface (R1).

B. Setup

The applications and the domains controller run on a PC

with Intel® Xeon® CPU clocked at 2.67 GHz and a 6GB

RAM with 64-bit Windows 7 Enterprise. This PC uses JVM

version 1.8.0_51. We used four PowerEdge™ T410s, which is

an Intel® processor-based server – two as nova compute

nodes, one as the nova controller, and one as the network node.

Two Java Sun SPOT sensors, two Advanticsys sensors, and

one LEGO Mindstorms NXT robot were used. Each sensor

executes the forest monitoring task. We implemented a simple

gateway that runs on a laptop with Intel® Core ™i7-2620 CPU

with 2.70Hz, and 8 GB of RAM. This gateway exposes the

robots and the sensors capabilities as APIs. For example, in

order to send command to the robot, the protocol converter and

information model conversion convert the REST request

received at its northbound interface to LeJOS Java API

commands that implements the LCP. The gateway then wraps

the request to either Bluetooth or USB communication channel

and sends it to the robot.

C. Performance Evaluations

1) Performance Metrics: The performance metrics

according to which we evaluate system performance are:

a) Service Provisioning Time: Time between the moment

the VM instantiation starts in VWSAN Gateway Provider

Domain and when the VMs are migrated to VWSAN Provider

Domain, including the chaining time of VMs, while also

calculating the downtime duration of the VMs.

b) End-to-End (E2E) Delay: Time between the moment

the sensors send a measurement and when the robots are

This paper has been accepted for publication in IEEE NETWORK Magazine.

The content is final but has NOT been proof-read. This is an author copy for personal record only.

deployed. We calculated E2E delay for both, non-virtualized

and virtualized environments.

c) Scalability: Ability of the system to handle the

growing amount of loads without suffering significant

degradation in the performance. We considered the Response

Time of the system as a metric to evaluate the scalability of our

architecture. Response time is the time period from when

measurements are sent by the sensors to when these

measurements are received by the VNFs.
2) Results and Discussions: This section discusses the

performance results obtained, beginning with the live

migration delay.

Test Case 1: Service Provisioning Time
Fig. 4-a depicts the live migration delay of chained VMs,

based on shared storage in a virtualized environment. We

studied 20 tests and found a maximum delay of 38.4s and a

minimum delay of 34.3s. We observed that the delay fluctuates

between samples. This is because the time needed to

instantiate VMs and migrate them in OpenStack is

inconsistent. One of the limitations of OpenStack is the time

needed to start a new VM, which could cause a prolonged

delay in service provisioning time. As reported in [17], VM

instantiation delay can sometimes reach up to 60s.

Although the live migration of VMs allows to transfer VM

to other physical servers without shutdown and ensures high

availability with non-stop services, VMs still face some period

of downtown, depending on the memory state of the VM. In

this experiment, we tested ping on the VMs during live

migration.

a)

b)

Figure 5. Results: a) End to end delay (virtualized gateway vs. non-virtualized gateway) b) Response time for

scalability

This paper has been accepted for publication in IEEE NETWORK Magazine.

The content is final but has NOT been proof-read. This is an author copy for personal record only.

We started pinging before the live migration starts and it

lasted until the migration ends. We noticed that during the

migration, some ping requests were lost. Fig. 4-b shows the

process of pinging the VMs and Fig. 4-c shows the downtime

of the VMs considering 5 samples.

Test Case 2: E2E Delay
Fig. 5-a illustrates a comparison of E2E delay for

virtualized and non-virtualized environments, wherein each

sample represents the average E2E delay for the first 10

measurements. In order to ensure an accurate comparison, we

repeated the experiment 10 times. The average E2E delay for

virtualized environment is always higher than the delay for

non-virtualized environment. This is because the delay

includes the time needed to instantiate and migrate the VMs.

The maximum E2E delay for the virtualized gateway is around

39736 msec (sample 9), whereas it is 1784 msec (sample 10)

for the non-virtualized gateway. Frameworks such as [18] can

be integrated with OpenStack to overcome the performance

gap between virtualized and non-virtualized environments.

We observe that the minimum E2E delay of virtualized

gateway, excluding VM instantiation and migration delay,

(1603 msec) is close to the minimum E2E delay of non-

virtualized gateway (1601ms). Thus, we can conclude that the

time needed to instantiate and migrate the chained VMs has a

significant impact on E2E delay of virtualized gateway, which

demonstrates the overhead of virtualization. However, E2E

delay in a virtualized environment increases only when a new

brand of sensor joins and sends requests to dispatch VMs to

VWSAN Gateway Provider Domain.

Test Case 3: Scalability

We used a simplified resource allocation mechanism to test

the scalability. It is based on the resource utilization of the

VMs (i.e., CPU) and on horizontal scaling. Each T period of

time, VM’s resources are monitored. If the utilization of the

resource exceeds the threshold (i.e., 70%), we perform

horizontal scaling. To conduct our case study, we set the

number of requests as variable within a unit time (T) and

gradually increase it from 500 to 4000 requests. We

considered 10sec as the unit time. We used Apache JMeter to

generate the requests using a uniform distribution of threads.

Fig. 5-b shows the results of our experiments, where we

compared it with the same scenario without having a scaling

mechanism. In the case of having scaling mechanism, we

notice that as the load (i.e., number of requests) increases, the

system experiences a very slight increase in response time.

This is because scaling is triggered before the system enters

the overload state. For the initial increase in load (i.e., from

500 to 1000), the effect on response time is slightly more than

the one afterwards. This is because initially as load increases,

more resources cannot be allocated until the T period is

elapsed. From load 1000 till the maximum load, the response

time increases by only 5ms for every 2-fold increase in load.

In contrast, if no scaling is performed, the system suffers from

a significant increase in response time, as indicated in the

figure. We observe that from load 1000 till the maximum load,

the response time increases by 600ms for every 2-fold increase

in load. Overall, with a scaling mechanism, the load has a very

negligible impact on the response time. This demonstrates the

scalability of our architecture.

V. CONCLUSION AND FUTURE WORKS

In this paper, we introduce an NFV architecture that

deploys virtualized instances of a VWSAN gateway in an NFV

infrastructure. The virtualized instances are dynamically

migrated from a Gateway Provider Domain to several

VWSAN Domains. With NFV, it is possible to achieve

scalable deployment of gateways in heterogeneous VWSAN

environments. In addition, several business actors involved in

the proposed NFV architecture creates potentials for unique

business models.

We also discuss a proof-of-concept of the NFV-based

virtualized gateway. We evaluate the prototype by conducting

a set of experiments. The performance comparison of

virtualized and non-virtualized approaches is analyzed, and

the scalability of the architecture is proved.

There are several potential items for future work. An

example is the host of security and trustability issues brought

by the introduction of the VWSAN gateway provider (or more

generally new actors). Another example is the distribution of

virtualized environment in the VWSAN domain. New

interface mechanisms will then be required between the

gateway provider and the different nodes that will host the

VNFs in the distributed virtualized environment and also

between the VNFs that now reside on separate nodes in this

very same environment. Standardization will indeed be

required to ensure interoperability. Yet another example is the

design of resource allocation algorithms in the specific context

of VNFs. A potential starting point is the resource allocation

algorithms that exist today for VMs.

ACKNOWLEDGMENT

This work is partially supported by CISCO systems

through grant CG-576719.

REFERENCES

[1] I. Khan, F. Belqasmi, R. Glitho, N. Crespi, M. Morrow, and P.

Polakos, “Wireless sensor network virtualization: early

architecture and research perspectives,” IEEE Netw., vol. 29,

no. 3, pp. 104–112, May 2015.

[2] H. Hawilo, A. Shami, M. Mirahmadi, and R. Asal, “NFV: state

of the art, challenges, and implementation in next generation

mobile networks (vEPC),” IEEE Netw., vol. 28, no. 6, pp. 18–

26, Nov. 2014.

[3] “draft-jennings-senml-07 - Media Types for Sensor Markup

Language (SENML).” [Online]. Available:

https://tools.ietf.org/html/draft-jennings-senml-07. [Accessed:

03-May-2015].

[4] Q. Zhu, R. Wang, Q. Chen, Y. Liu, and W. Qin, “IOT Gateway:

BridgingWireless Sensor Networks into Internet of Things,” in

2010 IEEE/IFIP 8th International Conference on Embedded

and Ubiquitous Computing (EUC), 2010, pp. 347–352.

[5] X. Jiang, D. Li, S. Nie, J. Luo, and Z. Lu, “An Enhanced IOT

Gateway in a Broadcast System,” in 2012 9th International

Conference on Ubiquitous Intelligence Computing and 9th

This paper has been accepted for publication in IEEE NETWORK Magazine.

The content is final but has NOT been proof-read. This is an author copy for personal record only.

International Conference on Autonomic Trusted Computing

(UIC/ATC), 2012, pp. 746–751.

[6] S. Guoqiang, C. Yanming, Z. Chao, and Z. Yanxu, “Design and

Implementation of a Smart IoT Gateway,” in Green Computing

and Communications (GreenCom), 2013 IEEE and Internet of

Things (iThings/CPSCom), IEEE International Conference on

and IEEE Cyber, Physical and Social Computing, 2013, pp.

720–723.

[7] S. K. Datta, C. Bonnet, and N. Nikaein, “An IoT gateway centric

architecture to provide novel M2M services,” in 2014 IEEE

World Forum on Internet of Things (WF-IoT), 2014, pp. 514–

519.

[8] R. Fantacci, T. Pecorella, R. Viti, and C. Carlini, “Short paper:

Overcoming IoT fragmentation through standard gateway

architecture,” in 2014 IEEE World Forum on Internet of Things

(WF-IoT), 2014, pp. 181–182.

[9] J. Martins, M. Ahmed, C. Raiciu, V. Olteanu, M. Honda, R.

Bifulco, and F. Huici, “ClickOS and the Art of Network

Function Virtualization,” in Proceedings of the 11th USENIX

Conference on Networked Systems Design and Implementation,

Berkeley, CA, USA, 2014, pp. 459–473.

[10] G. Xilouris, E. Trouva, F. Lobillo, J. M. Soares, J. Carapinha,

M. J. McGrath, G. Gardikis, P. Paglierani, E. Pallis, L. Zuccaro,

Y. Rebahi, and A. Kourtis, “T-NOVA: A marketplace for

virtualized network functions,” in 2014 European Conference

on Networks and Communications (EuCNC), 2014, pp. 1–5.

[11] G. Monteleone and P. Paglierani, “Session Border Controller

Virtualization Towards ‘Service-Defined’ Networks Based on

NFV and SDN,” in Future Networks and Services (SDN4FNS),

2013 IEEE SDN for, 2013, pp. 1–7.

[12] J. Batalle, J. Ferrer Riera, E. Escalona, and J. A. Garcia-Espin,

“On the Implementation of NFV over an OpenFlow

Infrastructure: Routing Function Virtualization,” in Future

Networks and Services (SDN4FNS), 2013 IEEE SDN for, 2013,

pp. 1–6.

[13] “Network Functions Virtualisation (NFV); Architectural

Framework. Availble:

http://www.etsi.org/deliver/etsi_gs/nfv/001_099/002/01.01.01_

60/gs_nfv002v010101p.pdf.” .

[14] R. Han, L. Guo, M. M. Ghanem, and Y. Guo, “Lightweight

Resource Scaling for Cloud Applications,” in 2012 12th

IEEE/ACM International Symposium on Cluster, Cloud and

Grid Computing (CCGrid), 2012, pp. 644–651.

[15] “AWS | Amazon Elastic Compute Cloud (EC2) - Scalable

Cloud Hosting,” Amazon Web Services, Inc. [Online].

Available: //aws.amazon.com/ec2/. [Accessed: 19-Aug-2015].

[16] S. K. Datta, C. Bonnet, and N. Nikaein, “CCT: Connect and

Control Things: A novel mobile application to manage M2M

devices and endpoints,” in 2014 IEEE Ninth International

Conference on Intelligent Sensors, Sensor Networks and

Information Processing (ISSNIP), 2014, pp. 1–6.

[17] M. Scholler, M. Stiemerling, A. Ripke, and R. Bless, “Resilient

deployment of virtual network functions,” in 2013 5th

International Congress on Ultra Modern Telecommunications

and Control Systems and Workshops (ICUMT), 2013, pp. 208–

214.

[18] X. Ge, Y. Liu, D. H. C. Du, L. Zhang, H. Guan, J. Chen, Y.

Zhao, and X. Hu, “OpenANFV: Accelerating Network Function

Virtualization with a Consolidated Framework in Openstack,”

in Proceedings of the 2014 ACM Conference on SIGCOMM,

New York, NY, USA, 2014, pp. 353–354.

BIOGRAPHIES

Carla Mouradian received her Bachelor’s degree in

Telecommunication Engineering from University of Aleppo,

Syria in 2009, and obtained her Master’s degree in Electrical

and Computer Engineering from Concordia University,

Canada in 2014. She is working towards her Ph.D. degree in

Information System Engineering at Concordia University. Her

research interests include cloud computing, wireless sensor

networks, Network Function Virtualization, and Internet of

Things. She is a member of the IEEE Communications

Society.

Tonmoy Saha is currently pursuing his Master of Computer

Science from Concordia University, Montreal, Quebec,

Canada and received his B.Sc (Hons) in Computer Science &

Engineering from Jahangirnagar University, Savar, Dhaka,

Bangladesh. He worked as a Senior Software Engineer in

Solution Lab at Samsung R&D Institute Bangladesh. His

research interests are Cloud Computing, Wireless Sensor

Network, Internet of Things, Network Function Virtualization

and Software Engineering.

Jagruti Sahoo received a Ph.D. degree in computer science

and information engineering from the National Central

University, Taiwan, in January 2013. She worked as

Postdoctoral Fellow in University of Sherbrooke, Canada from

2013 to 2014. She is currently a Postdoctoral Fellow at the

Telecommunication Service Engineering Research

Laboratory, CIISE, Concordia University, Canada. Her

research interests include wireless sensor networks, vehicular

networks, content delivery networks, Cloud Computing and

Network Functions Virtualization. She served as a member of

the Technical Program Committee in many conferences and as

a Reviewer for many journals and conferences. She is a

member of the IEEE Communications Society.

Mohammad Abu-Lebdeh received his B.Sc. degree in

Computer Engineering from An-Najah National University,

Palestine, and M.Sc. degree in Electrical & Computer

Engineering from Concordia University, Canada. He is

currently pursuing his Ph.D. degree in Information & Systems

Engineering at Concordia University. In the past, he worked

for several years as a software engineer. His current research

interests include cloud computing, service engineering, and

next generation networks.

Roch Glitho holds a Ph.D. (Tekn. Dr.) in tele-informatics

(Royal Institute of Technology, Stockholm, Sweden), and

M.Sc. degrees in business economics (University of Grenoble,

France), pure mathematics (University of Geneva,

Switzerland), and computer science (University of Geneva).

This paper has been accepted for publication in IEEE NETWORK Magazine.

The content is final but has NOT been proof-read. This is an author copy for personal record only.

He is an associate professor and Canada Research Chair at

Concordia University. He is also an adjunct professor at

several other universities including Telecom Sud Paris,

France, and the University of Western Cape, South Africa. In

the past, he has worked in industry and has held several senior

technical positions (e.g., senior specialist, principal engineer,

expert) at Ericsson in Sweden and Canada. His industrial

experience includes research, international standards setting,

product management, project management, systems

engineering, and software/firmware design. He has also served

as an IEEE Distinguished Lecturer, Editor-In-Chief of IEEE

Communications Magazine, and Editor-In-Chief of IEEE

Communications Surveys & Tutorials Journal.

Monique Morrow holds the title of CTO Cisco Services. Ms.

Morrow’s focus is in developing strategic technology and

business architectures for Cisco customers and partners. With

over 13 years at Cisco, Monique has made significant

contributions in a wide range of roles, from Customer

Advocacy to Corporate Consulting Engineering. With

particular emphasis on the Service Provider segment, her

experience includes roles in the field (Asia-Pacific) where she

undertook the goal of building a strong technology team, as

well as identifying and grooming a successor to assure a

smooth transition and continued excellence. Monique has

consistently shown her talent for forward thinking and risk

taking in exploring market opportunities for Cisco. She was an

early visionary in the realm of MPLS as a technology service

enabler, and she was one of the leaders in developing new

business opportunities for Cisco in the Service Provider

segment, SP NGN. Monique holds 3 patents, and has an

additional nine patent submissions filed with US Patent Office.

Ms. Morrow is the co-author of several books, and has

authored numerous articles. She also maintains several

technology blogs, and is a major contributor to Cisco’s

Technology Radar, having achieved Gold Medalist Hall of

Fame status for her contributions. Monique is also very active

in industry associations. She is a new member of the Strategic

Advisory Board for the School of Computer Science at North

Carolina State University. Monique is particularly passionate

about Girls in ICT and has been active at the ITU on this topic

- presenting at the EU Parliament in April of 2013 as an

advocate for Cisco. Within the Office of the CTO, first as an

individual contributor, and now as CTO, she has built a strong

leadership team, and she continues to drive Cisco’s

globalization and country strategies.

Paul Polakos is currently a Cisco Fellow and member of the

Mobility CTO team at Cisco Systems focusing on emerging

technologies for future Mobility systems. Prior to joining

Cisco, Paul was Senior Director of Wireless Networking

Research at Bell Labs, Alcatel-Lucent in Murray Hill, NJ and

Paris, France. During his 28 years at Bell Labs he worked on

a broad variety of topics in Physics and in Wireless

Networking Research including the flat-IP cellular network

architecture, the Base Station Router, femtocells, intelligent

antennas and MIMO, radio and modem algorithms and

ASICSs, autonomic networks and dynamic network

optimization. Prior to joining Bell Labs, he was a member of

the research staff at the Max-Planck Institute for Physics and

Astrophysics (Munich) and visiting scientist at CERN and

Fermilab. He holds BS, MS, and Ph.D. degrees in Physics

from Rensselaer Polytechnic Institute and the University of

Arizona, and author of more than 50 publications and 30

patents.

