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Abstract— Virtualization enables multiple applications to 

share the same wireless sensor and actuator network (WSAN). 

However, in heterogeneous environments, virtualized wireless 

sensor and actuator networks (VWSAN) raise new challenges, 

such as the need for on-the-fly, dynamic, elastic, and scalable 

provisioning of gateways. Network Functions Virtualization 

(NFV) is a paradigm emerging to help tackle these new 

challenges. It leverages standard virtualization technology to 

consolidate special-purpose network elements on commodity 

hardware. This article presents NFV architecture for VWSAN 

gateways, in which software instances of gateway modules are 

hosted in NFV infrastructure operated and managed by a 

VWSAN gateway provider. We consider several VWSAN 

providers, each with its own brand or combination of brands of 

sensors and actuators/robots. These sensors and actuators can be 

accessed by a variety of applications, each may have different 

interface and QoS (i.e., latency, throughput, etc.) requirements. 

The NFV infrastructure allows dynamic, elastic, and scalable 

deployment of gateway modules in this heterogeneous VWSAN 

environment. Furthermore, the proposed architecture is flexible 

enough to easily allow new sensors and actuators integration and 

new application domains accommodation. We present a 

prototype that is built using the OpenStack platform. Besides, the 

performance results are discussed. 2 

Keywords— Gateway; Network Functions Virtualization; 

Virtualization; Wireless Sensor and Actuator Networks 

I.  INTRODUCTION  

Research on sensor network virtualization [1] has become 

prominent in recent years. Virtualization technology abstracts 

sensor resources as logical units and allows for their efficient 

and simultaneous use by multiple applications, even if they 

have conflicting requirements and goals. New applications can 

be deployed in the same WSN with minimal efforts. More 

importantly, reusing the same sensors’ capability by multiple 

applications transforms WSN into a multi-purpose sensing 

platform in which several virtual WSNs (VWSNs) are created 

                                                           
+This paper is an extended version of the paper “Mouradian C.; Saha T.; 

Sahoo J.; Glitho R.; Morrow M.; Polakos P., NFV Based Gateways for 

Virtualized Wireless Sensor Networks: A Case Study” presented at the IEEE 

on-demand, each tailored for a specific task or objective. 

Actuators are often incorporated in WSNs to make more 

powerful applications, thus the concept of virtualized wireless 

sensor and actuator network (VWSAN).  

 Gateways are required for the interactions between 

applications and heterogeneous, multivendor VWSANs. They 

are generally complex. Furthermore, it is difficult and 

expensive to upgrade them when new-brand sensors and 

actuators/robots are deployed. In addition, their capabilities do 

not scale when the number of applications and the 

corresponding workload in VWSANs change dynamically.   

Network Functions Virtualization (NFV) [2] is an 

emerging paradigm in overcoming the aforementioned 

challenges. NFV permits standard virtualization technology to 

consolidate dedicated network elements (e.g., firewalls, 

network address translation (NAT)) onto commodity 

hardware. By implementing network functions as software 

instances called virtual network functions (VNFs), NFV 

reduces the operational costs and provides hardware 

independence. Moreover, on-the-fly, dynamic, scalable, and 

elastic provisioning of network services are among its benefits.  

 This paper presents an NFV architecture for Virtualized 

Wireless Sensor and Actuator Networks Gateways (VWSAN). 

The firmware/hardware used to provide VWSAN Gateway 

functionalities are replaced by VNFs deployed in an NFV 

infrastructure. We enable a granular provisioning of NFV, 

such as decomposing the gateway into fine-grained modules – 

e.g., protocol converter, information model converter, etc. – to 

be implemented as VNFs. More importantly, granular NFV is 

best suited for virtualized WSANs, wherein the dynamic 

growth in the number of applications and addition of new-

brand sensors require a rapid introduction of new VNFs and 

update of existing VNFs. VNFs are instantiated on-the-fly and 

chained to realize a service in VWSAN.  

  The architecture introduces a new business actor - the 

VWSAN Gateway Provider – in addition to the traditional 

ICC 2015-Third International Workshop on Cloud Computing Systems, 

Networks, and Applications (CCSNA), June 8-12, 2015, London, UK.   
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actors, meaning the Application Provider and the VWSAN 

Provider.  This new actor plays a dual role. On the one hand, 

it provides the VNFs, chained to make on-the-fly gateways. 

On the other hand, it operates and manages the infrastructure 

in which the VNFs are executed. We acknowledge that the 

introduction of this new actor does bring a host of additional 

security and trustability challenges. We consider these 

challenges outside the scope of this paper. More and more 

standardization work will certainly be required to enable 

secure and trustable interactions between different NFV 

actors, as the business model opens up.   

The next section introduces a motivating scenario, 

requirements, and discusses state-of-the-art. The proposed 

architecture is presented in Section 3, followed by the 

implementation details, the prototype, and performance results 

in Section 4. In the last section, we conclude the paper and 

outline future work.  

II. CRITICAL OVERVIEW OF STATE-OF-THE-ART 

A. Motivating Scenario 

The ability of sensors to withstand harsh environments 
makes WSAN a potential tool for forest monitoring and 
protection. The use of WSAN allows forest researchers to 
understand the impact of air pollutants (e.g., CO2, ozone, etc.) 
and climate change on tree growth. We consider a potential 
scenario in which a forest monitoring agency collects 
environment data using sensor infrastructure provided by a 
third party VWSAN provider. The sensors are of various 
capabilities, including temperature, humidity, rain gauge, CO2 
detector, and wind speed sensors. Let us also consider a 
wildfire management agency that needs to be promptly notified 
when a fire occurs in the forest so that it can deploy a fleet of 
heterogeneous fire fighter robots to suppress the wildfire. 
WSAN virtualization would allow for the concurrent execution 
of the forest monitoring and wildfire management applications 
on the same sensors. In order to collect measurements from the 
sensors and send commands to the robots in a heterogeneous 
environment, a gateway is needed for the interactions between 
the application domain and WSAN domain.   

B. Requirements 

 First, the gateway must support standard northbound and 

proprietary southbound interfaces. An example of standard 

interface could be the widely used Sensor Markup Language 

(SenML) [3] carried over HTTP. It is designed to encode 

sensor measurements and device parameters. The proposed 

architecture must be extensible to support future scenarios and 

new application domains. In addition, the architecture must be 

elastic to allow for the efficient utilization of underlying 

physical resources. The architecture must be scalable to 

promote the accelerated growth of the number of applications.  

The architecture should also provide at least two key 

gateway functions: Protocol conversion and information 

model conversion.  

The architecture must ensure that the execution of gateway 

modules achieves performance similar to when they are 

executed in a traditional WSAN gateway. In particular, the 

performance metrics that require significant attention are 

latency, throughput, and overhead. The NFV architecture must 

be flexible enough to support the integration of various brands 

sensors, and it must have the ability to support different 

business models.  

C. The State-of-the-Art and Its Shortcomings 

Our motivating scenario closely resembles the WSN and 

Internet of Things (IoT) scenarios, which involve a broad 

range of sensors, IoT devices, and communication 

technologies at the IoT device domain (e.g., 6LoWPAN, 

ZigBee, Bluetooth, etc.) and network domain (e.g., 2G/3G, 

LTE, LAN, etc.). In state-of-the-art for WSN/IoT gateway 

architectures, the main focus has been on bridging different 

sensor domains with public communication networks and the 

Internet. 
The existing literature describes a growing trend in NFV-

based middlebox design. Since a WSN gateway falls under the 
taxonomy of middlebox, a brief overview of NFV architectures 
within the context of middleboxes is important. Therefore, we 
classify the state-of-the-art into two categories: Traditional 
Architectures (WSN/IoT gateway) and NFV architectures 
(middleboxes). 

1) Traditional Architectures (WSN/IoT Gateway): An 

architecture for an in-home IoT gateway is proposed in [4]. It 

consists of three subsystems: Sensor node, gateway, and 

application platform. The architecture does not support 

standard or proprietary interfaces.  Jiang et al. [5] present an 

IoT gateway architecture for a CorbaNet-based digital 

broadcast system, designed to lessen the effects of IoT 

technology on backbone networks. The architecture is 

extensible by nature. However, it doesn’t account for 

information model conversion and its scalability aspect is not 

discussed.  

A configurable, multifunctional and cost-effective 

architecture for smart IoT gateways is proposed in [6]. It is 

extensible since modules with different communication 

protocols can be plugged into the architecture. It also provides 

protocol conversion by granting a common frame structure for 

data communication. However, scalability in terms of number 

of applications is not discussed.   

In [7], the authors propose an IoT gateway-centric 

architecture that provides various M2M services, such as 

association of metadata to sensor and actuator measurements 

using SenML. They also extend SenML capabilities to address 

actuator control. Although it is scalable in terms of handling 

traffic by using the RESTful paradigm, it cannot support the 

dynamic creation of additional M2M services with more IoT 

devices. In [8], gateway architecture for home and building 

automation system is proposed. The gateway is managed 

remotely by the network operator. The architecture supports 

standard and proprietary interfaces. However, scalability is not 

discussed.  

2) NFV architectures (Middleboxes): ClickOS [9] is a Xen-

based software platform that allows hundreds of middleboxes 

to run on commodity hardware. It includes both simple 
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middleboxes (e.g., packet forwarding from input to output 

interfaces) and full-fledged middleboxes (e.g., IPv4 router, 

firewall, etc.). However, virtualizating gateway modules is not 

investigated. The architecture is scalable, flexible, and 

extensible.  

T-NOVA [10] is an integrated architecture that enables 

network operators and service providers to manage their 

NFVs. It provides VNFs, like flow handling control 

mechanisms, as value-added services to its customers. T-

NOVA allows third party developers to publish their VNFs as 

independent entities. In [11], NFV is used to virtualize an IP 

telephony function called a Session Border Controller (SBC), 

which operates on both the control plane (i.e., load balancing 

and call control) and the media plane (i.e., media adaptation 

capabilities). The use of NFV for the virtualization of routing 

function in OpenFlow-enabled networks is explored in [12]. 

These works neither target WSN/WSAN domains, nor support 

proprietary southbound interfaces.  

We conclude that, with the exception of limited support for 

extensibility, proprietary interfaces, and gateway modules, the 

existing WSN gateway architectures fall short of satisfying 

many of our requirements. With regard to NFV-based 

solutions, the current NFV architectures for middleboxes 

exhibit extensibility and scalability properties. However, they 

focus primarily on network elements, e.g., firewall, proxies, 

and NATs.  

III. PROPOSED NFV ARCHITECTURE FOR VIRTUALIZED WSAN 

GATEWAY 

In this section, we present our NFV architecture for 

virtualizing WSAN gateways. The architectural principles are 

discussed first, followed by the architectural components and 

interfaces, VNF migration and scalability issues, control 

plane, and an illustrative scenario. 

A. Architectural Principles 

Our first architectural principle is granular provisioning of 

network functions. We aim to use highly granular VNFs for 

virtualized WSAN gateway functions. Examples include 

protocol conversion and information model conversion. The 

protocol converter decodes a packet received in one protocol 

and encodes it in another protocol. The information model 

conversion converts data from one format to another. We do 

acknowledge the fact that converting a protocol X (or an 

information model X) into a protocol Y (or an information 

model Y) is not always feasible. Consequently, the Gateway 

Provider provisions the related VNFs only when the 

conversion is feasible. Our second principle is that the 

VWSAN Gateway Provider maintains a centralized store of 

VNF images. VNFs are dispatched on-demand to the VWSAN 

provider’s domain. This principle is in accordance with the 

ETSI, that VNFs must be deployed throughout the networks 

where they are most effective and highly customized to a 

specific application or user [13]. The third and last principle is 

that the interaction interfaces between different domains are 

REpresentational State Transfer (REST)-based. REST is 

selected because it is lightweight, standard-based, and can 

support multiple data representations (e.g., plain text, JSON, 

and XML).  

B. Overall Architecture 

Fig. 1 shows the proposed architecture. It comprises 

several Application Domains, a VWSAN Gateway Provider 

Table 1-Resources on the VWSAN Provider Domain and VWSAN Gateway Provider Domain 

Domain 

Name 

Resource Operation Http Action 

 

 

 

 

Resources 

on VWSAN 

Provider 

Domain 

List of 

application 

service 

requests 

Create: Add application information (protocol 

used, data format, latency, etc.) 

POST:  

/ApplicationsServiceRequests 

Specific 

application’s 

service request 

Update: Change information of specific 

application 

PUT: /ApplicationsServiceRequests 

/(RequestId} 

Delete: Delete specific application information DELETE:   

/ApplicationsServiceRequests 

/(RequestId} 

Notification of 

service 

availability 

Create: Send notification to VWSAN domain via 

the gateway domain about the availability of 

requested VNFs. 

POST: 

/ServiceAvailabilityNotification 

 

Resources 

on VWSAN 

Gateway 

Provider 

Domain 

Request for 

VNFs 

Create: Send request from VWSAN domain to 

gateway domain for VNFs with specific 

information (northbound interface, VWSAN 

description, etc.)  

POST: /VNFsRequest 

Specific 

request for 

VNFs 

Update: Change information of specific request for 

VNFs. 

PUT: /VNFsRequest/{VNFsRequestId} 

Delete: Delete information of specific request for 

VNFs.  

DELETE:  

/VNFsRequest/{VNFsRequestId} 

 



This paper has been accepted for publication in IEEE NETWORK Magazine. 

The content is final but has NOT been proof-read. This is an author copy for personal record only. 

Domain, and VWSAN Provider Domains. The components 

and interfaces are presented, followed by a discussion of the 

VNF migration and scalability issues.  

1) Components and Interfaces:  

a) Components: Each Application Domain contains an 

Application that requires the services of one or more VWSAN 

providers. The Application contains two components: 

Infrastructure Agent and Sensor/Actuator Agent. The 

Infrastructure Agent is responsible for the singaling procedure. 

It communicates with the VWSAN Provider Domain to 

negotiate the use of VWSAN infrastructure. The 

Sensor/Actuator Agent is responsible for gathering 

measurements from the sensor and sending commands to the 

robots. The VWSAN Gateway Provider Domain consists of 

the following  entities:  

 Core Layer: Contains VNFs and their corresponding 

Element Management Systems (EMS), where each EMS 

is responsible for monitoring the resource utilization of its 

corresponding VNF [13].  

 NFV Infrastructure (NFVI): provides hardware and 

software resources, including computation, storage, and 

networking needed to deploy, manage, and execute VNFs.  

 NFV Management and Orchestration (MANO):  

Responsible of orchestration and lifecycle management of 

physical/software resources, and the lifecycle 

management of VNFs (instantiation, update, migration, 

and termination).  

 Central Controller: Performs functions as part of the 

signaling procedure that occurs during service negotiation 

(this is described later).  

 VNF Store: A repository that contains VNFs of various 

gateway modules. It provides VNFs that match the 

requirements of an end-to-end service.    

Each VWSAN Provider Domain comprises the following 

components:  

 Southbound (SB) Handler Layer: Contains VNFs that 

have been migrated from the VWSAN Gateway Provider 

Domain and their corresponding EMSs.  

 NFVI: (explained in previous section). 

 
Figure 1. Overall Architecture 
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 NFV MANO: Performs the typical orchestration and 

management functions for the execution of migrated 

VNFs.  

 Operational Support System/Business Support System 

(OSS/BSS): Provides the description of VWSAN (e.g., 

sensor/robot brands).  

 Local Controller: Interacts with the Infrastructure Agent 

and the Central Controller.   

b) Interfaces: The NFV components i.e., Core Layer, 

NFVI, NFV MANO, SB Handler Layer interact with each 

other through the interfaces defined by ETSI [13]. They 

include Vn-Nf, Nf-Vi and Ve-Vnfm. Vn-Nf represents the 

execution environment provided by NFVI to the Core Layer 

and to the SB Handler Layer. Nf-Vi is used for assigning 

virtualized resources in response to resource allocation 

requests (e.g., allocating VMs on hypervisors). It is also used 

by NFVI to communicate status information about virtualized 

and hardware resources to the  MANO. Nf-Vi is also used to 

configure hardware resources. Ve-Vnfm carries out all 

operations during a VNF life cycle, including instantiation, 

scaling, updating, and termination. It is also used for 

exchanging VNF configuration information.  

2) VNF Migration and Scalability Issuses:  

a) VNF Migration: In the architecture, VNFs are 

migrated on-demand from VWSAN Gateway Provider 

Domain to VWSAN Provider Domain. The architecture 

supports two approaches for migration. In the first approach, 

VNFs are instantiated and chained in VWSAN Gateway 

Provider Domain. Then, using live migration, running VMs 

are sent from the VWSAN Gateway Provider Domain to 

VWSAN Provider Domain. In the second approach, VNFs are 

migrated from the VWSAN Gateway Provider Domain to 

VWSAN Provider Domain, where they are instantiated and 

chained. 

b) Scalability: The architecture relies on dynamic 

resource allocation algorithms to meet the growing demand of 

applications. These algorithms enable vertical scaling – i.e., 

increasing the resources of a VNF instance (e.g., CPU, 

memory) and/or horizontal scaling – i.e., increasing the 

number of VNF instances that serve an application.  Existing 

algorithms such as [14] and [15] could be used as basis.  We 

consider the design of these algorithms as items for future 

work.  

 
Figure 2. Sequence Diagram  
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C. Control Plane 

The control plane consists of signaling procedure and 

control interfaces, R1 and R2. In a typical end-to-end service, 

the application sends query to sensors to receive 

measurements and deploy robots. Before the service begins, a 

signaling procedure is conducted, in which different business 

players (i.e., Application Domain, VWSAN Provider, and 

VWSAN Gateway Provider) engage in service negotiation and 

exchange the necessary parameters to obtain the appropriate 

VNFs. 

1) Signaling procedure: Signaling is initiated when an 

application requires services from VWSAN Provider Domain. 

The Sensor/Actuator Agent instructs the Infrastructure Agent 

to start the service negotiation. The Infrastructure Agent 

creates a service request that includes a description of the 

northbound interface used by the application (i.e., 

communication protocol, information model, etc.) and QoS 

parameters associated with the service delivery (i.e., latency, 

throughput, etc.)   and sends it to the Local Controller of 

VWSAN Provider Domain. Upon receipt of the service 

request, the Local Controller communicates with the OSS/BSS 

to obtain informaton on parameters specific to the VWSAN 

(e.g., type of sensors/robots). It then creates a VNF request 

containing parameters of the service request as well as 

parameters specific to the VWSAN and sends it to the Central 

Controller. Based on these parameters, the Central Controller 

searches for appropriate VNFs in VNF Store.  

If the VNFs are found, the Central Controller instructs 

NFV MANO of VWSAN Gateway Provider Domain to 

instantiate and migrate the VNFs to VWSAN Provider 

Domain. The Central Controller also receives a notification 

from NFV MANO of VWSAN Gateway Provider Domain 

when the VNFs are ready for use in VWSAN Provider 

Domain. The Central Controller then forwards the notification 

to the Local Controller, which sends a notification about 

service availability to the Infrastructure Agent, which then 

notifies the Sensor/Actuator Agent to start the service. It is 

important to note that, when the required VNFs are not found 

in the VNF Store, a service unavailability notification is sent 

to the Infrastructure Agent, to either cancel the negotiation or 

resume signaling after a certain time period.  

2) Control Interfaces: R1 is used for the interactions 

between Infrastructure Agent and Local Controller. R2 is used 

for the interactions between Local Controller and Central 

Controller. R1 and R2 are based on REST paradigm. The 

important information is modelled as resources and each 

resource is uniquely identified by the Uniform Resource 

Identifier (URI). Table 1 summarizes the proposed REST 

interface for the interactions between different domains. It 

defines resources on VWSAN Provider Domain, used to 

reserve resources when it receives service request from 

Application Domain with a description of parameters. They 

also allow the Application Domain to modify parameters and 

delete resources of specific applications. Furthermore, they 

allow VWSAN Gateway Provider Domain to send 

notifications to VWSAN Provider Domain about the 

availability of the requested VNFs. The resources defined on 

VWSAN Gateway Provider Domain allow it to receive VNF 

requests from VWSAN Provider Domain. They also allow the 

VWSAN Provider Domain to update or delete information 

(e.g., sensor/robot brand) about specific VNF requests. 

 
Figure 3. Prototype Architecture 
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D. Illustrative Scenario 

In Fig. 2, we illustrate an end-to-end scenario, wherein an 

application (e.g., forest monitoring) queries the sensors owned 

by VWSAN Provider 1 and collect their measurements, and 

another application (e.g., wildfire management) needs to be 

notified when fire occurs and deploy robots. Before using 

VWSAN Provider Domain’s service, the signaling procedure 

starts. The northbound interface description sent to the Local 

Controller for both sensors and robots is SenML over HTTP. 

Since the current SenML implementation only supports sensor 

measurements, we have used the extended capabilities of 

 
a)  

 
b)  

Sample Protocol Conversion 

Downtime (sec) 

Info Model Processor 

Downtime (sec) 

1 30 39 

2 24 39 

3 31 38 

4 33 38 

5 24 38 

         
c)  

Figure 4. Results of Service Provisioning: a) Live migration delay of VM b) Pinging the VM during live migration c) VM 

downtime during live migration 

 

 

 

 

 

 

 

 

 

Fig. 5. Pinging the VMs during Live Migration 
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SenML proposed by Datta et al. in [7] and [16] to send robot 

commands from the application.  

 Upon receiving the description from Infrastructure Agent, 

the Local Controller obtains a description of the sensors (i.e., 

SunSpot) and the robots (i.e., Lego Mindstorms) from 

OSS/BSS. The signaling procedure continues as described in 

section-III.C.1 for both applications. For VNF migration, the 

second approach (see section-III.B.3) is used; the VNFs are 

instantiated, chained, and then migrated to VWSAN Provider 

Domain. After service negotiation, the Sensor/Actuator Agent 

sends a query to the sensors through the VNFs. Upon receiving 

the query, SunSpot sensors send their raw measurements over 

CoAP protocol. These measurements are processed by 

protocol conversion (encoded in HTTP protocol) followed by 

information model conversion (mapped to SenML format), in 

order to enable the applications to interpret the measurements.  

If the wildfire management application receives notification of 

fire, it sends actuating commands to the robots in SenML 

format through HTTP, where the commands are mapped to 

LeJOS Java API and to Lego Communication Protocol (LCP). 

The end-to-end service is completed when the robots are 

deployed.   

IV. IMPLEMENTATION  

A. Prototype 

For the prototype, we implemented the scenario in which 

the forest monitoring agency is interested in collecting 

environmental data to monitor the forests and a wildfire 

management agency that needs to be notified when fire occurs 

and deploy robots in order to suppress it. We consider a forest 

wherein WSANs have already been deployed to monitor and 

suppress wildfires. Two different brands sensors were used, 

each belonging to different WSAN cloud infrastructures. The 

sensors measure the temperature and can thereby detect fires 

and the robots can detect extinguisher and grab it in order to 

suppress the fire. In order to communicate with different types 

of sensors and robots, the application needs a gateway for 

handling different types of communication interfaces. A third 

party provider provides this gateway. 

The forest monitoring and wildfire management 

applications was created using java dynamic web application 

and hosted on Tomcat8 server. We used OpenStack Icehouse 

to build our private cloud. OpenStack is a free, open-source 

software for creating private and public clouds. Fig. 3 depicts 

our prototype architecture. We used a multi-node OpenStack 

with two compute nodes. We considered each compute node 

as a domain: One as VWSAN Provider Domain and the other 

as VWSAN Gateway Provider Domain.  In our prototype, we 

assume the two domains are in the same data center. In order 

to provide live migration, both compute nodes share the same 

storage. This allows the migration of only the memory 

footprint of the VM. If each domain were in a separate data 

center, we would assume a provision for live migration among 

them.  

The VNFs are instantiated in VWSAN Gateway Provider 

Domain and migrated to VWSAN Provider Domain after 

being chained. For simplicity’s sake, we assume that the VNFs 

are chained in a static way in VWSAN Gateway Provider 

Domain.  

In the node representing VWSAN Gateway Provider 

Domain, all necessary components of Openstack were 

installed, including: Identity Service-Keystone, Controller-

Nova, Image-Glance, and Networking-Neutron. NFS 

(Network File System) server was also configured in this node, 

allowing servers to share directories and files with each other 

over a network. The two nodes representing VWSAN Provider 

Domain contains Compute-Nova. The fourth node is 

configured as Network-Neutron and LBaaS (Load Balancing 

as a Service) was installed on it, which is a service of Neutron, 

allowing to load balance traffic for services running on VMs 

in OpenStack. We used OpenStack4j API, as an open-source 

OpenStack client, allowing the provision and control of an 

OpenStack system as a controller. Because all domains are in 

the same data centers, the controller can control all domains. 

Each VNF runs a Linux Ubuntu V14.04 on 1 VM, and is 

equipped with 1 VCPU and 2GB RAM. The VNFs 

communicate with each other through REST interface (R2), 

using the RESTlet framework [13]. Communication between 

VWSAN Provider Domain and Application Domains is also 

achieved via REST interface (R1). 

B. Setup 

The applications and the domains controller run on a PC 

with Intel® Xeon® CPU clocked at 2.67 GHz and a 6GB 

RAM with 64-bit Windows 7 Enterprise. This PC uses JVM 

version 1.8.0_51. We used four PowerEdge™ T410s, which is 

an Intel® processor-based server – two as nova compute 

nodes, one as the nova controller, and one as the network node.  

Two Java Sun SPOT sensors, two Advanticsys sensors, and 

one LEGO Mindstorms NXT robot were used. Each sensor 

executes the forest monitoring task. We implemented a simple 

gateway that runs on a laptop with Intel® Core ™i7-2620 CPU 

with 2.70Hz, and 8 GB of RAM. This gateway exposes the 

robots and the sensors capabilities as APIs. For example, in 

order to send command to the robot, the protocol converter and 

information model conversion convert the REST request 

received at its northbound interface to LeJOS Java API 

commands that implements the LCP. The gateway then wraps 

the request to either Bluetooth or USB communication channel 

and sends it to the robot.  

 

C. Performance Evaluations 

1) Performance Metrics: The performance metrics 

according to which we evaluate system performance are: 

a) Service Provisioning Time: Time between the moment 

the VM instantiation starts in VWSAN Gateway Provider 

Domain and when the VMs are migrated to VWSAN Provider 

Domain, including the chaining time of VMs, while also 

calculating the downtime duration of the VMs. 

b) End-to-End (E2E) Delay: Time between the moment 

the sensors send a measurement and when the robots are 
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deployed. We calculated E2E delay for both, non-virtualized 

and virtualized environments. 

c) Scalability: Ability of the system to handle the 

growing amount of loads without suffering significant 

degradation in the performance. We considered the Response 

Time of the system as a metric to evaluate the scalability of our 

architecture. Response time is the time period from when 

measurements are sent by the sensors to when these 

measurements are received by the VNFs.   
2) Results and Discussions: This section discusses the 

performance results obtained, beginning with the live 

migration delay.  

Test Case 1: Service Provisioning Time 
Fig. 4-a depicts the live migration delay of chained VMs, 

based on shared storage in a virtualized environment. We 

studied 20 tests and found a maximum delay of 38.4s and a 

minimum delay of 34.3s. We observed that the delay fluctuates 

between samples. This is because the time needed to 

instantiate VMs and migrate them in OpenStack is 

inconsistent. One of the limitations of OpenStack is the time 

needed to start a new VM, which could cause a prolonged 

delay in service provisioning time. As reported in [17], VM 

instantiation delay can sometimes reach up to 60s. 

Although the live migration of VMs allows to transfer VM 

to other physical servers without shutdown and ensures high 

availability with non-stop services, VMs still face some period 

of downtown, depending on the memory state of the VM. In 

this experiment, we tested ping on the VMs during live 

migration.  

 
a)  

 
b)  

Figure 5. Results: a) End to end delay (virtualized gateway vs. non-virtualized gateway) b) Response time for 

scalability  



This paper has been accepted for publication in IEEE NETWORK Magazine. 

The content is final but has NOT been proof-read. This is an author copy for personal record only. 

We started pinging before the live migration starts and it 

lasted until the migration ends. We noticed that during the 

migration, some ping requests were lost. Fig. 4-b shows the 

process of pinging the VMs and Fig. 4-c shows the downtime 

of the VMs considering 5 samples. 

Test Case 2: E2E Delay  
Fig. 5-a illustrates a comparison of E2E delay for 

virtualized and non-virtualized environments, wherein each 

sample represents the average E2E delay for the first 10 

measurements. In order to ensure an accurate comparison, we 

repeated the experiment 10 times. The average E2E delay for 

virtualized environment is always higher than the delay for 

non-virtualized environment. This is because the delay 

includes the time needed to instantiate and migrate the VMs. 

The maximum E2E delay for the virtualized gateway is around 

39736 msec (sample 9), whereas it is 1784 msec (sample 10) 

for the non-virtualized gateway. Frameworks such as [18] can 

be integrated with OpenStack to overcome the performance 

gap between virtualized and non-virtualized environments.  

We observe that the minimum E2E delay of virtualized 

gateway, excluding VM instantiation and migration delay, 

(1603 msec) is close to the minimum E2E delay of non-

virtualized gateway (1601ms). Thus, we can conclude that the 

time needed to instantiate and migrate the chained VMs has a 

significant impact on E2E delay of virtualized gateway, which 

demonstrates the overhead of virtualization. However, E2E 

delay in a virtualized environment increases only when a new 

brand of sensor joins and sends requests to dispatch VMs to 

VWSAN Gateway Provider Domain. 

Test Case 3: Scalability 

We used a simplified resource allocation mechanism to test 

the scalability. It is based on the resource utilization of the 

VMs (i.e., CPU) and on horizontal scaling. Each T period of 

time, VM’s resources are monitored. If the utilization of the 

resource exceeds the threshold (i.e., 70%), we perform 

horizontal scaling.  To conduct our case study, we set the 

number of requests as variable within a unit time (T) and 

gradually increase it from 500 to 4000 requests.  We 

considered 10sec as the unit time. We used Apache JMeter to 

generate the requests using a uniform distribution of threads.  

Fig. 5-b shows the results of our experiments, where we 

compared it with the same scenario without having a scaling 

mechanism. In the case of having scaling mechanism, we 

notice that as the load (i.e., number of requests) increases, the 

system experiences a very slight increase in response time. 

This is because scaling is triggered before the system enters 

the overload state. For the initial increase in load (i.e., from 

500 to 1000), the effect on response time is slightly more than 

the one afterwards. This is because initially as load increases, 

more resources cannot be allocated until the T period is 

elapsed. From load 1000 till the maximum load, the response 

time increases by only 5ms for every 2-fold increase in load. 

In contrast, if no scaling is performed, the system suffers from 

a significant increase in response time, as indicated in the 

figure. We observe that from load 1000 till the maximum load, 

the response time increases by 600ms for every 2-fold increase 

in load. Overall, with a scaling mechanism, the load has a very 

negligible impact on the response time. This demonstrates the 

scalability of our architecture. 

V. CONCLUSION AND FUTURE WORKS  

In this paper, we introduce an NFV architecture that 

deploys virtualized instances of a VWSAN gateway in an NFV 

infrastructure. The virtualized instances are dynamically 

migrated from a Gateway Provider Domain to several 

VWSAN Domains. With NFV, it is possible to achieve 

scalable deployment of gateways in heterogeneous VWSAN 

environments. In addition, several business actors involved in 

the proposed NFV architecture creates potentials for unique 

business models.  

We also discuss a proof-of-concept of the NFV-based 

virtualized gateway. We evaluate the prototype by conducting 

a set of experiments. The performance comparison of 

virtualized and non-virtualized approaches is analyzed, and 

the scalability of the architecture is proved.  

There are several potential items for future work.  An 

example is the host of security and trustability issues brought 

by the introduction of the VWSAN gateway provider (or more 

generally new actors). Another example is the distribution of 

virtualized environment in the VWSAN domain. New 

interface mechanisms will then be required between the 

gateway provider and the different nodes that will host the 

VNFs in the distributed virtualized environment and also 

between the VNFs that now reside on separate nodes in this 

very same environment. Standardization will indeed be 

required to ensure interoperability.  Yet another example is the 

design of resource allocation algorithms in the specific context 

of VNFs. A potential starting point is the resource allocation 

algorithms that exist today for VMs.   

ACKNOWLEDGMENT 

This work is partially supported by CISCO systems 

through grant CG-576719. 

REFERENCES 

[1] I. Khan, F. Belqasmi, R. Glitho, N. Crespi, M. Morrow, and P. 

Polakos, “Wireless sensor network virtualization: early 

architecture and research perspectives,” IEEE Netw., vol. 29, 

no. 3, pp. 104–112, May 2015. 

[2] H. Hawilo, A. Shami, M. Mirahmadi, and R. Asal, “NFV: state 

of the art, challenges, and implementation in next generation 

mobile networks (vEPC),” IEEE Netw., vol. 28, no. 6, pp. 18–

26, Nov. 2014. 

[3] “draft-jennings-senml-07 - Media Types for Sensor Markup 

Language (SENML).” [Online]. Available: 

https://tools.ietf.org/html/draft-jennings-senml-07. [Accessed: 

03-May-2015]. 

[4] Q. Zhu, R. Wang, Q. Chen, Y. Liu, and W. Qin, “IOT Gateway: 

BridgingWireless Sensor Networks into Internet of Things,” in 

2010 IEEE/IFIP 8th International Conference on Embedded 

and Ubiquitous Computing (EUC), 2010, pp. 347–352. 

[5] X. Jiang, D. Li, S. Nie, J. Luo, and Z. Lu, “An Enhanced IOT 

Gateway in a Broadcast System,” in 2012 9th International 

Conference on Ubiquitous Intelligence Computing and 9th 



This paper has been accepted for publication in IEEE NETWORK Magazine. 

The content is final but has NOT been proof-read. This is an author copy for personal record only. 

International Conference on Autonomic Trusted Computing 

(UIC/ATC), 2012, pp. 746–751. 

[6] S. Guoqiang, C. Yanming, Z. Chao, and Z. Yanxu, “Design and 

Implementation of a Smart IoT Gateway,” in Green Computing 

and Communications (GreenCom), 2013 IEEE and Internet of 

Things (iThings/CPSCom), IEEE International Conference on 

and IEEE Cyber, Physical and Social Computing, 2013, pp. 

720–723. 

[7] S. K. Datta, C. Bonnet, and N. Nikaein, “An IoT gateway centric 

architecture to provide novel M2M services,” in 2014 IEEE 

World Forum on Internet of Things (WF-IoT), 2014, pp. 514–

519. 

[8] R. Fantacci, T. Pecorella, R. Viti, and C. Carlini, “Short paper: 

Overcoming IoT fragmentation through standard gateway 

architecture,” in 2014 IEEE World Forum on Internet of Things 

(WF-IoT), 2014, pp. 181–182. 

[9] J. Martins, M. Ahmed, C. Raiciu, V. Olteanu, M. Honda, R. 

Bifulco, and F. Huici, “ClickOS and the Art of Network 

Function Virtualization,” in Proceedings of the 11th USENIX 

Conference on Networked Systems Design and Implementation, 

Berkeley, CA, USA, 2014, pp. 459–473. 

[10] G. Xilouris, E. Trouva, F. Lobillo, J. M. Soares, J. Carapinha, 

M. J. McGrath, G. Gardikis, P. Paglierani, E. Pallis, L. Zuccaro, 

Y. Rebahi, and A. Kourtis, “T-NOVA: A marketplace for 

virtualized network functions,” in 2014 European Conference 

on Networks and Communications (EuCNC), 2014, pp. 1–5. 

[11] G. Monteleone and P. Paglierani, “Session Border Controller 

Virtualization Towards ‘Service-Defined’ Networks Based on 

NFV and SDN,” in Future Networks and Services (SDN4FNS), 

2013 IEEE SDN for, 2013, pp. 1–7. 

[12] J. Batalle, J. Ferrer Riera, E. Escalona, and J. A. Garcia-Espin, 

“On the Implementation of NFV over an OpenFlow 

Infrastructure: Routing Function Virtualization,” in Future 

Networks and Services (SDN4FNS), 2013 IEEE SDN for, 2013, 

pp. 1–6. 

[13] “Network Functions Virtualisation (NFV); Architectural 

Framework. Availble: 

http://www.etsi.org/deliver/etsi_gs/nfv/001_099/002/01.01.01_

60/gs_nfv002v010101p.pdf.” . 

[14] R. Han, L. Guo, M. M. Ghanem, and Y. Guo, “Lightweight 

Resource Scaling for Cloud Applications,” in 2012 12th 

IEEE/ACM International Symposium on Cluster, Cloud and 

Grid Computing (CCGrid), 2012, pp. 644–651. 

[15] “AWS | Amazon Elastic Compute Cloud (EC2) - Scalable 

Cloud Hosting,” Amazon Web Services, Inc. [Online]. 

Available: //aws.amazon.com/ec2/. [Accessed: 19-Aug-2015]. 

[16] S. K. Datta, C. Bonnet, and N. Nikaein, “CCT: Connect and 

Control Things: A novel mobile application to manage M2M 

devices and endpoints,” in 2014 IEEE Ninth International 

Conference on Intelligent Sensors, Sensor Networks and 

Information Processing (ISSNIP), 2014, pp. 1–6. 

[17] M. Scholler, M. Stiemerling, A. Ripke, and R. Bless, “Resilient 

deployment of virtual network functions,” in 2013 5th 

International Congress on Ultra Modern Telecommunications 

and Control Systems and Workshops (ICUMT), 2013, pp. 208–

214. 

[18] X. Ge, Y. Liu, D. H. C. Du, L. Zhang, H. Guan, J. Chen, Y. 

Zhao, and X. Hu, “OpenANFV: Accelerating Network Function 

Virtualization with a Consolidated Framework in Openstack,” 

in Proceedings of the 2014 ACM Conference on SIGCOMM, 

New York, NY, USA, 2014, pp. 353–354.

 

BIOGRAPHIES 

 

Carla Mouradian received her Bachelor’s degree in 

Telecommunication Engineering from University of Aleppo, 

Syria in 2009, and obtained her Master’s degree in Electrical 

and Computer Engineering from Concordia University, 

Canada in 2014. She is working towards her Ph.D. degree in 

Information System Engineering at Concordia University. Her 

research interests include cloud computing, wireless sensor 

networks, Network Function Virtualization, and Internet of 

Things. She is a member of the IEEE Communications 

Society. 

 

Tonmoy Saha is currently pursuing his Master of Computer 

Science from Concordia University, Montreal, Quebec, 

Canada and received his B.Sc (Hons) in Computer Science & 

Engineering from Jahangirnagar University, Savar, Dhaka, 

Bangladesh. He worked as a Senior Software Engineer in 

Solution Lab at Samsung R&D Institute Bangladesh. His 

research interests are Cloud Computing, Wireless Sensor 

Network, Internet of Things, Network Function Virtualization 

and Software Engineering. 

 

Jagruti Sahoo received a Ph.D. degree in computer science 

and information engineering from the National Central 

University, Taiwan, in January 2013. She worked as 

Postdoctoral Fellow in University of Sherbrooke, Canada from 

2013 to 2014. She is currently a Postdoctoral Fellow at the 

Telecommunication Service Engineering Research 

Laboratory, CIISE, Concordia University, Canada. Her 

research interests include wireless sensor networks, vehicular 

networks, content delivery networks, Cloud Computing and 

Network Functions Virtualization. She served as a member of 

the Technical Program Committee in many conferences and as 

a Reviewer for many journals and conferences. She is a 

member of the IEEE Communications Society. 

 

Mohammad Abu-Lebdeh received his B.Sc. degree in 

Computer Engineering from An-Najah National University, 

Palestine, and M.Sc. degree in Electrical & Computer 

Engineering from Concordia University, Canada. He is 

currently pursuing his Ph.D. degree in Information & Systems 

Engineering at Concordia University. In the past, he worked 

for several years as a software engineer. His current research 

interests include cloud computing, service engineering, and 

next generation networks. 

 

Roch Glitho holds a Ph.D. (Tekn. Dr.) in tele-informatics 

(Royal Institute of Technology, Stockholm, Sweden), and 

M.Sc. degrees in business economics (University of Grenoble, 

France), pure mathematics (University of Geneva, 

Switzerland), and computer science (University of Geneva). 



This paper has been accepted for publication in IEEE NETWORK Magazine. 

The content is final but has NOT been proof-read. This is an author copy for personal record only. 

He is an associate professor and Canada Research Chair at 

Concordia University. He is also an adjunct professor at 

several other universities including Telecom Sud Paris, 

France, and the University of Western Cape, South Africa. In 

the past, he has worked in industry and has held several senior 

technical positions (e.g., senior specialist, principal engineer, 

expert) at Ericsson in Sweden and Canada. His industrial 

experience includes research, international standards setting, 

product management, project management, systems 

engineering, and software/firmware design. He has also served 

as an IEEE Distinguished Lecturer, Editor-In-Chief of IEEE 

Communications Magazine, and Editor-In-Chief of IEEE 

Communications Surveys & Tutorials Journal. 

 

Monique Morrow holds the title of CTO Cisco Services. Ms. 

Morrow’s focus is in developing strategic technology and 

business architectures for Cisco customers and partners. With 

over 13 years at Cisco, Monique has made significant 

contributions in a wide range of roles, from Customer 

Advocacy to Corporate Consulting Engineering. With 

particular emphasis on the Service Provider segment, her 

experience includes roles in the field (Asia-Pacific) where she 

undertook the goal of building a strong technology team, as 

well as identifying and grooming a successor to assure a 

smooth transition and continued excellence. Monique has 

consistently shown her talent for forward thinking and risk 

taking in exploring market opportunities for Cisco. She was an 

early visionary in the realm of MPLS as a technology service 

enabler, and she was one of the leaders in developing new 

business opportunities for Cisco in the Service Provider 

segment, SP NGN. Monique holds 3 patents, and has an 

additional nine patent submissions filed with US Patent Office. 

Ms. Morrow is the co-author of several books, and has 

authored numerous articles. She also maintains several 

technology blogs, and is a major contributor to Cisco’s 

Technology Radar, having achieved Gold Medalist Hall of 

Fame status for her contributions. Monique is also very active 

in industry associations. She is a new member of the Strategic 

Advisory Board for the School of Computer Science at North 

Carolina State University. Monique is particularly passionate 

about Girls in ICT and has been active at the ITU on this topic 

- presenting at the EU Parliament in April of 2013 as an 

advocate for Cisco. Within the Office of the CTO, first as an 

individual contributor, and now as CTO, she has built a strong 

leadership team, and she continues to drive Cisco’s 

globalization and country strategies. 

 

Paul Polakos is currently a Cisco Fellow and member of the 

Mobility CTO team at Cisco Systems focusing on emerging 

technologies for future Mobility systems. Prior to joining 

Cisco, Paul was Senior Director of Wireless Networking 

Research at Bell Labs, Alcatel-Lucent in Murray Hill, NJ and 

Paris, France. During his  28 years at Bell Labs he worked on 

a broad variety of topics in Physics and in Wireless 

Networking Research including the flat-IP cellular network 

architecture, the Base Station Router, femtocells, intelligent 

antennas and MIMO, radio and modem algorithms and 

ASICSs, autonomic networks and dynamic network 

optimization. Prior to joining Bell Labs, he was a member of 

the research staff at the Max-Planck Institute for Physics and 

Astrophysics (Munich) and visiting scientist at CERN and 

Fermilab. He holds BS, MS, and Ph.D. degrees in Physics 

from Rensselaer Polytechnic Institute and the University of 

Arizona, and author of more than 50 publications and 30 

patents.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


