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Abstract—Artificial intelligence (AI) technology makes mobile
devices become intelligent objects which can learn and act auto-
matically. Although AI will bring great opportunities for mobile
applications, little work has focused on the architecture and the
interaction with the cloud. In this article, we present three existing
architectures of mobile intelligence in detail and introduce its
broad application prospects. Furthermore, we conduct a series
of experiments to evaluate the performance of the prevalent
commercial applications and intelligent frameworks. Our results
show that there is a big gap between Quality of Experience (QoE)
requirements and the status quo. So far, we have seen only the
tip of the iceberg. We pose issues and challenges to advance the
area of mobile intelligence and hope to pave the way for the
forthcoming.

I. INTRODUCTION

Al has recently attracted significant attention from both
industry and academia, as it gives the machine the ability
to perceive its environment and take actions. Specifically, it
can extract high-level features from image, audio, or other
signals automatically, leading to a wide range of applications
including computer vision, speech and natural language
processing. In the meantime, mobile devices have become
both ubiquitous and increasingly powerful. A large volume of
multimedia data is being produced and released into mobile
cellular networks [[1]. Therefore, there is an increasing interest
in applying AI to mobile environments. Among existing
mobile intelligent applications, Machine Learning (ML) is
the most commonly-used technology. Thus in this article, we
focus on the intelligent applications based on ML.

Previous works on mobile intelligence have only focused
on the hardware platforms or the software models. Specifically,
some teams are optimizing mobile hardware chips to support
the operation of the ML model, others try their best to build
lightweight models without loss of learning performance.
Howeyver, there is scant research on the architecture choice
of the mobile intelligent applications. It is important to
understand the existing architectures and optimize it from a
more global perspective. To fill this gap, in this article we
present the first study on the architecture, experimentation
and challenges of mobile intelligence.

Firstly, we divide the existing intelligent applications into
three different architectures, namely cloud-based, local-based
and partial offloading. We provide a technical overview
including the introduction of the system architecture, major
components and detailed functionalities. This architecture
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is applicable to all the mainstream ML models. Some
researchers have developed intelligent applications using
local-based [2][3] and others have adopted cloud-based
[4][S]. There is also research work concerning combined
models, such as making dynamic decisions on local-based or
cloud-based [6]. Moreover, some researchers are exploring
new architecture: partial offloading [7][8]. On this basis,
we propose three important QoE metrics to evaluate the
performance of these mobile intelligent applications.

Around these metrics, we conduct some measurements on
prevalent commercial applications and intelligent frameworks.
In the process of measuring Google Translate, we have
selected two functions, namely Word Lens and Speech-
to-speech translation, which represent the local-based and
cloud-based architectures respectively. In the process of
measuring TensorFlow’s application programming interfaces
(APIs), we have developed two applications, namely TF-local-
based and TF-cloud-based, which represent the local-based
and cloud-based architectures respectively. Using both
black-box testing and white-box testing, we get important
metrics such as latency, CPU/RAM utilization and discharge
rate. For the data obtained, we sort them out and find the
mean and standard deviation. We conclude all experiment
results and give some analysis. We find that there is indeed
a big gap between QOoE requirements and the status quo.
Furthermore, we conduct a measurement study on partial
offloading architecture using Inception-v3 model [9]. We find
that the best partition point for latency is closely related to
network bandwidth rate and the computational capability of
the mobile device.

Since there are many difficulties and challenges on the
way to mobile intelligence, we propose the key challenges
which are most likely to appear and give some insights
for future improvement. Specifically, we consider unstable
network conditions, considerable energy consuming, privacy
disclosure, increasing model complexity and coarse-grained
partition of the inference process. To the best of our
knowledge, this is the first article that provides a wide
overview and experimental evaluation for the existing
architectures of the mobile intelligent applications.

II. ARCHITECTURE
ML models are particularly well suited for performing
perceptual tasks, which can sense, learn from and respond
to their environment. Depending on the location of these
trained models, we divide the existing applications into
three different architectures, namely cloud-based, local-based
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Fig. 1: Mobile intelligence architecture: cloud-based, local-based and partial offloading.

and partial offloading, which are illustrated in Fig. Two
major components can be identified in this figure: the mobile
client and the cloud server. We first introduce the detailed
functionalities of these two components.

Mobile client: Mobile client receives input signals and
preprocesses them locally. Then the mobile sends them
either to the cloud’s ML model, or to the local model. After
processing, the mobile client obtains the prediction results
and presents the information to the user.

Cloud server: The cloud server has abundant computing
resources such as CPU, GPU and TPU, by which the cloud
server can complete the training of ML model. In order to
train it, we need to provide the cloud server with the training
data and configuration files of the related models. The cloud
can also continue to carry well-trained models and provide
web APIs to help inference processing.

As shown in Fig. E], Phone A, B and C represent three
typical architectures respectively. Here we briefly describe
their workflow and their advantages and disadvantages.

Phone A is the cloud-based one, which means the mobile
client and cloud server work together to make prediction
including a training process and an inference process. When
training is done on the server, the cloud server obtains the
learned parameters for the model. Then we can put the trained
model on the server and publish web APIs which mobile
devices can use. Since the model is on the server, it is easy to
port the application to different platforms. However, inference
depends on network and cannot be done locally on the device.

Phone B is the local-based one, which means only the

mobile makes prediction. We put the trained model into
mobile devices and inference locally. We don’t need to ask
the server over the network during the inference process. It
can be faster and more reliable. However, it requires large
amounts of CPU and RAM resources on the mobile.

Phone C represents the partial offloading architecture,
which is a more flexible and dynamic one. The model
is composed of many abstract layers. On one hand, the
mobile client partitions the model according to the current
circumstances, including network condition, mobile capability
and server load. On the other hand, it executes the model
up to a specific layer and transfers the intermediate data to
the cloud through network. Then the cloud server executes
the remaining layers and sends the prediction results back to
the mobile client. This architecture would be more appealing
when mobile applications are becoming more and more
intelligent.

The architecture above is universal to which the
mainstream ML models are all applicable, such as Deep
Neural Network (DNN), Reinforcement Learning (RL) models
and Generative Adversarial Network (GAN). The only thing
we need to do is to make the corresponding replacement for
the specific model.

Based on these three architectures, we have seen diverse
mobile intelligent assistants such as Google Home, Apple
Siri and Microsoft Cortana. All of them use accurate and
complex ML technologies to process voice signals. In order
to better depict the user experience of these mobile intelligent
applications, we introduce three QoE metrics.

Latency: Latency refers to the time that elapses between
the user’s request and the prediction results, including



pre-processing, model operation and post-processing. For
some real-time interactive intelligent applications, such as
mobile Virtual Reality (VR), they require 14ms latency and
60FPS (the phone display refresh rate) [10]. For cloud gaming
providers, interaction latency must be kept as short as possible
in order to provide a rich experience to cloud gaming players
(L]

Accuracy: Accuracy refers to the ratio of the number of
samples that get the correct results to the total number of
samples, which can be used to measure the performance of
the model. For some applications requiring a high level of
security, such as autonomous driving and road navigation, they
require ultrahigh accuracy. Inaccuracy of any prediction result
will be life-threatening. Some researchers have proposed that
a well-trained DNN can predict the steering angle with an
accuracy close to that of a human driver [12].

Energy: Mobile devices are energy-constrained. However,
running these complex models can introduce considerable
computing and communication overhead. Although mobile
intelligent applications are very attractive to users, they will
most likely choose not to use them if the energy consumption
is huge. Therefore, energy efficiency is a desired goal in these
mobile intelligent applications.

III. EXPERIMENTATION

There have been a lot of daily-used commercial mobile
intelligent applications, such as Google Translate [13[]. In
addition, many effective open-source libraries and frameworks
have also appeared, such as Tensorflow, which provides
convenience for developing intelligent applications on mobile
devices. We conduct a measurement study to quantitatively
describe their QoE level. Specifically, we measure from two
perspectives: commercial mobile intelligent applications and
mobile intelligent frameworks. Furthermore, We also measure
the QoE on the partial offloading architecture based on
Inception-v3 model [9]. We run the applications on a Nexus
6P smartphone. The data is sent to the cloud over the wireless
network.

A. Measurement on commercial mobile intelligent applica-
tions

We first measure Google Translate, one of the most
commonly used mobile application. When using its speech-to-
speech translation function, we need to connect the Internet.
Hence, it belongs to the cloud-based architecture. However,
Google Translate’s augmented reality feature, Word Lens,
is done through offline language packs. Consequently, it
belongs to the local-based architecture. Since the source code
for the app is not public, we conduct a black box test by
recording video. Specifically, we collect 100 images and 100
sentences in English, which are transmitted to the mobile
application (Google Translate) in the form of image and voice
respectively. In the process of translating these sentences
from English into Chinese, we record it into videos. Then we
analyze the video frame by frame and calculate the latency of
processing each image or voice. As for the CPU and RAM
utilization, we use Emmagee software, which is a simple and
easy-to-use Android performance monitoring tool. Users can

configure monitoring frequency and get performance statistics
eventually. What’s more, we leverage the Google Battery
Historian tool to inspect the discharge rate of the Android
device over time. For the data obtained, we sort them out and
find the mean and standard deviation, as shown in the Fig.
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Fig. 2: Latency, CPU/RAM utilization and discharge rate of
Word Lens and speech-to-speech translation.

From the measurement results, we observe that the Word
Lens function achieves lower latency, higher utilization rate
of CPU/RAM and higher discharge rate. Since it computes
locally based on offline language packs, it is faster but
more resource-consuming. On the contrary, the speech-to-
speech function has larger latency, lower utilization rate of
CPU/RAM and lower discharge rate. Since it sends voice
to the cloud for processing, the network round-trip latency
is larger while the local CPU/RAM resource utilization and
discharge rate of mobile device is lower. After more in-depth
analysis, we find that the latency of the two functions are
in the hundred-millisecond level, which is relatively large.
In the measurement of Word Lens, we find if we move
the smartphone in real time, it can not process immediately
to give the right results and it seems to be stalling. In
addition, this function only provides accurate translation for
short and simple sentences. Once complex texts appear, the
accuracy rate is greatly reduced. Worse still, some words are
translated while others are not, which seriously affects the
user experience. What’s more, CPU utilization of this function
has reached 32.37% and discharge rate has reached 39.94%
per hour, leading to high workload and energy consumption
of smartphone. In the measurement of speech-to-speech,
we find that although the CPU/RAM resource utilization
and discharge rate is lower, the latency is larger. When we
gradually weaken the wireless network, the latency can reach
even few seconds, which is unbearable.

B. Measurement on mobile intelligent frameworks
TensorFlow is one of the most prevalent frameworks in
the deep learning ecosystem. It provides an inference interface
which can be called to complete the entire neural network
processing including input, running and output. In order
to measure its performance, we develop two applications
which can classify camera image based on the two kinds of
architectures. We call them TF-local-based and TF-cloud-
based respectively. TF-local-based can classify image and



display the top results in an overlay on the camera image.
It runs the neural network totally on the mobile device. In
contrast, TF-cloud-based is a client-server architecture. We
first need to start a Flask web server preparing to receive
the mobile’s request. When the mobile device captures an
image, the application will send it to the server through the
network. The server receives the image and runs the neural
network model to get the final results. The top classification
results will be sent back to the mobile edge through the
network and presented to the user. We use Inception-v3 model
trained on the ImageNet Large Visual Recognition Challenge
dataset for both applications. The model can differentiate
between 1,000 different classes. During the measurement, we
collect 100 images from test set and transmit them to these
two applications respectively. Since we have source code
for both applications, we measure the latency by inserting
timestamps into the code. Latency refers to the time that
elapses between the image request and the prediction result.
For the CPU and RAM utilization measurement, we still use
Emmagee software. For the battery energy measurement, we
still use Google Battery Historian. We also compare latency,
CPU/RAM utilization and discharge rate between them, which
are illustrated in Fig.
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Fig. 3: Latency, CPU/RAM utilization and discharge rate of
TF-local-based and TF-cloud-based.

From the experimental results, we can find that the
latencies of both applications are more than 3000ms,
under which condition real-time object classification is not
applicable. More seriously, TF-local-based’s CPU and RAM
utilization reach 49.96% and 10.46%, respectively, which
seriously affects the normal operation of the smartphone.
What’s more, its discharge rate is about 35.39% per hour,
which means this application can only last for 2.83 hours.

Combining all the measurement results, we can find that
existing cloud-based and local-based solutions do not meet
the needs of users. Although ML brings intelligence to mobile
applications, there still exist hundreds of milliseconds or even
seconds in terms of latency. CPU and RAM utilization is
excessively high and the corresponding energy consumption
is increasing. In addition, accuracy of the processing results
is far from satisfactory. Hence, there is indeed a big gap
between QoE requirements and the status quo.

C. Measurement on partial offloading architecture

Since both cloud-based and local-based architectures fail
to meet the requirements, we make some measurements on a
new architecture: partial offloading. We develop an application
based on Tensorflow which can classify the images captured
by the phone camera. We partition Inception-v3 model at the
layer granularity. Specifically, we set each layer as a partition
point. For the given partition point, mobile-end executes the
computation up to it and transfers intermediate data to the
cloud. Next, cloud executes the remaining layers and transfers
the prediction results back to the mobile-end. For each
partition method, we send 100 test images to the application
and compute the average latency. We make experiments under
different network bandwidth (0.2, 1 and SMB/s) and different
mobile phones (Pixel and Nexus 6P) which represent various
computation capabilities. Since we have source code for
both applications, we break down the end-to-end processing
latency, including mobile processing, network communication
and server processing. The results are shown in Fig. ] Each
bar represents the end-to-end latency for a specific partition
way. The leftmost bar represents the cloud-based architecture
while the rightmost bar belongs to the local-based architecture.

From the results, we can find that every layer has a
totally different computational capacity. The best partition
point for latency is different under different circumstances,
which is closely related to network bandwidth rate and the
computational capability of the mobile device. We can also
find that these existing best results are still high and far from
meeting the users’ need for latency.

IV. CHALLENGES
Since there is a huge gap between QoE requirements and
the status quo, we should make every effort to bridge it.
However, during this process we may face many challenges
as we highlight in this section.

Network condition is unstable, unsatisfied and
unpredictable. Network condition is constantly changing
and it is difficult to select a fixed formula to characterize it.
In addition, for some mobile VR applications, the existing
network situation is far away from the QoE requirements.
Therefore, it is a challenge to dynamically assign tasks
between the mobile and the cloud according to diverse
network conditions. A relatively simple method is that we
use some regression models to predict the current wireless
network conditions based on some real-time probe data.

Either local computing or communicating with cloud
will consume considerable energy. The successful operation
of mobile assistant requires a lot of computation and
communication overhead. To solve this problem, we need to
propose a more efficient mobile energy-saving mechanism.
A viable solution is to develop an energy model tool to
record data flow and energy flow. It tells us how much energy
the model consumes and where the bottleneck exists. Then
we can use such information to design new energy-efficient
models or to optimize the existing models.

Cooperation with the cloud will inevitably produce
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Fig. 4: End-to-end latency when choosing different partition points with different mobile devices and network conditions.

the issue of privacy disclosure. The data collected by the
mobile devices can be very sensitive and private. Uploading
these information onto the cloud without any preprocessing
constitutes a great danger to an individual’s privacy. In the
future, users may have the choice to use a different method
to process these data (local-based, cloud-based or partial
offloading), depending on which option best suits the situation.

Model complexity and data size are increasing. Take
the example of deep learning. The models are becoming
more and more complex, with the number of parameters and
layers increasing significantly. Although this change improves
the performance of models, it also brings new challenges
in adapting resource-constrained mobile to these advanced
models. To deal with this challenge, some teams provide
hardware solutions. For example, Huawei’s new flagship

Kirin 970 is Huawei’s first mobile Al computing platform
featuring a dedicated Neural Processing Unit (NPU). This
chip can perform the same AI computing tasks faster and
with less power. In the meantime, some teams are developing
extending software frameworks for the mobile. For example,
Google has announced Tensorflow Lite which is a lightweight
solution for mobile and embedded devices. It can also support
hardware acceleration with the Android Neural Networks API.

Current partition of the inference process is still coarse-
grained. Actually, many models can be split into different
kinds of modules which are respectively responsible for dif-
ferent functions. In addition, distribution of latency varies
a lot and is closely related to the corresponding workload.
For example, DeepMon [14] indicates that the convolutional
layers dominate the execution cycles in the VGG-VeryDeep-



16 and YOLO model. DeepEye [15] demonstrates that the
loading of fully-connected layers is the most time-consuming
task across 8 different models. Neurosurgeon [7] indicates
that for AlexNet, VGG and DeepFace, convolution layers are
most time-consuming; for MNIST, fully-connected layers are
most time-consuming; for Kaldi and SENNA, layers of the
model incur similar latency. Faced with this situation, we
should propose a deep integration architecture between mobile
and cloud, which splits the functional modules intelligently
according to different workloads, models, network conditions
and server loads.

V. CONCLUSION

Since there will be more and more applications imple-
mented with ML technology on the mobile, understanding
the existing architectures of the mobile intelligent applications
is significant for both industry and academia. In this article,
we present a thorough overview of the mobile intelligence by
introducing its architectures, components and functionalities
followed by an experimental study that evaluates the prevalent
commercial applications and intelligent frameworks. All tested
services suffer performance limitations. Our results show that
there is a big gap between QOE requirements and the status
quo. Finally, we conclude experiment results and propose some
challenges. To the best of our knowledge, this is the first article
that provides a wide overview and experimental evaluation for
the existing architectures of the mobile intelligent applications.
As for future work, we intend to do more detailed mea-
surements and identify the bottleneck and propose advanced
mobile intelligence architectures.
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