
Abstract
Network slicing offers numerous benefits, 

particularly the ability to deliver highly custom-
izable services to new industry sectors that have 
been unserved or inadequately served by current 
mobile network operators. Among new industry 
use cases that are targeted by the fifth genera-
tion (5G) mobile systems, there exist scenarios 
that go beyond what the current device-centric 
mobility approaches can support. The mobility 
of low latency communication services, shared 
by a group of moving devices, e.g., autonomous 
vehicles that share sensor data, is a prime exam-
ple of these cases. These use cases’ demands for 
ultra-low latency can be addressed by leveraging 
the Multi-Access Edge Computing (MEC) concept, 
techniques for live migration of virtual resources, 
Software Defined Networking (SDN), and net-
work slicing. In this article, we define different slice 
mobility patterns, different methods for group-
ing users, and different triggers for network slice 
mobility. Furthermore, we evaluate the mobility of 
services and network slices based on the simulta-
neous migrations of multiple containers. 

Introduction
The 5th generation mobile networks (5G) will go 
beyond providing only high data rates for mobile 
users, as it will be a platform for a wider commu-
nication ecosystem for the Internet of Things and 
machine-type communications applications [1]. 
The services of new vertical industries, e.g., auto-
motive, e-health, public safety, and smart grids, 
impose unique requirements that will push the 
envelope for high performance, scalability, and 
availability. To achieve such ambitious goals, 5G 
has been re-architected from the ground up in 
comparison to the previous mobile network gen-
erations. Decoupling logical network functions 
from the physical infrastructure forms the basis of 
deployment of self-contained, programmable and 
customizable networks [2]. 

Network Function Virtualization (NFV) and 
Software Defined Networking (SDN) are the 
fundamental technologies to implement the sep-
aration of logical network functions from the 
infrastructure leading to network softwarization 
[3]. SDN offers programmability of the connectiv-
ity between the network functions while NFV pro-
vides the means to define, instantiate and manage 
virtualized network functions that are required to 

create multiple logical (virtual) networks. The shar-
ing of the same underlying infrastructure among 
isolated and self-contained networks leads to the 
key concept of network slicing [4]. 

Network slicing is an active research field with-
in the academic community and among the differ-
ent standards development organizations (SDOs), 
such as the Next Generation Mobile Network 
Alliance (NGMN), Third Generation Partnership 
Project (3GPP), and International Telecommuni-
cation Union — Telecommunication Standardiza-
tion Sector (ITU-T). In the scope of this article, 
we define a network slice as an end-to-end (E2E) 
logical network running on top of a common 
underlying (physical or virtual) network, fully iso-
lated, with independent control and management, 
and flexibly programmable to meet service level 
agreements (SLA) of a specific service. A network 
slice consists of computing and storage resources, 
associated with virtual networks, possibly com-
posed of multiple virtual sub-network segments; 
and may span across multiple technological as 
well as administrative domains. Mobile users can 
connect to multiple slices simultaneously depend-
ing on the type of services they are using [5]. Fur-
thermore, for latency-sensitive services, MEC [6] 
provides powerful service delivery with minimal 
delay. In a MEC environment, MEC servers, as 
well as network access points, can be sliced to 
serve multiple slices with very different service 
characteristics. 

However, as users move with their mobile 
devices from one domain to another, their ongo-
ing mobile communication and service sessions, 
running on at least a network slice, may suffer a 
drop in QoS if not a total disconnect. This may 
happen if their ongoing network service has to 
be served by instantiating a totally new network 
slice of the same type at the destination network 
(new radio resources, backhaul, computing, and 
storage). This leads to a network slice that has 
to support moving its computation, following its 
users’ mobility patterns. Additionally, the slice 
itself may need to adjust its resource allocation, 
adding more resources or freeing unused ones. 
These requirements lead us to the definition of 
the concept of slice mobility. 

Each instantiated network slice should ensure 
service continuity for its end-users. Intuitively, a 
simple service replication would solve the issue, 
yet not all services are stateless (i.e., services that 
do not save user session/context). It is worth not-
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ing that the migration of stateless services is less 
demanding than the migration of stateful (i.e., ser-
vices that save user session/context) services [7]. 
To support migration of stateful services, sepa-
rate mobility mechanisms must be designed and 
implemented to ensure consistency of the ser-
vice context. In addition, the resources of a slice 
could become saturated and over-consumed due 
to a sudden increase in the service demand, thus 
actions for slice scaling or breathing should be 
supported. Fortunately, the same actions that are 
needed for slice mobility are well suited for slice 
scaling. Based on these observations, the contri-
butions of this article are: 
•	 The introduction of a number of slice mobil-

ity patterns to optimally manage and use 
slices with their allocated resources, while 
leveraging the ideas of the Follow me Edge 
concept introduced earlier in [8]–[10]. 

•	 The examination of service migration capa-
bilities needed for slice mobility inside one 
Infrastructure as a Service (IaaS) cloud 
domain, that we then extend to cover slice 
mobility across multiple IaaS domains. 

•	 The definition of several key slice mobility 
triggers and user equipment (UE) grouping 
methods to enable efficient slice mobility 
needed for the described slice mobility use 
cases. 

•	 A preliminary evaluation of two key enabling 
technologies for slice mobility patterns: sys-
tem virtualization with containers and SDN 
to allow a fast and seamless allocation of 
resources to a network slice. 
The remainder of this paper is structured as fol-

lows. The next section summarizes the fundamen-
tally related research work. The following section 
gives an overview of different slice mobility use 
cases, followed by an introduction of the key slice 
mobility triggers and the different methods for 
grouping users besides slice mobility patterns. We 
then focus more on the enabling technologies for 
the proposed solution and the primary evaluation 
setup for the proof of concept. Finally, the paper 
concludes in the final section. 

Related Work
The authors of [11] focused on extensions for 
NFV orchestration that provide tailored support 
for mobility and QoS/QoE for network slices 
while ensuring efficient utilization of the sub-
strate network resources. They presented several 
ways to classify and select mobility management 
(MM) schemes based on the context of the ser-
vice or type of a network slice. Terminal speed, 
session continuation requirements, and stability 
of the endpoint addresses are the main criteria 
for selecting a mobility scheme. The authors pro-
posed slice-specific MM schemes through the cre-
ation of context-dependent configurations of the 
instantiated network functions. Our envisioned 
approach differs from this one by focusing on 
moving slices along with their services based on 
mobility triggers and grouping of respective UEs. 

As previously discussed, the migration pro-
cess is one of the key enablers of the proposed 
slice mobility concept, whereby a running virtual 
instance (i.e., Virtual Machines (VMs) or contain-
ers) is migrated across different host machines 
(i.e., within the same IaaS platform or across mul-

tiple IaaS) without disrupting the service. Clark 
et al. [12] introduced the writable working set 
concept and used it to design a pre-copy based 
migration procedure that enables the live migra-
tion of VMs for the Xen Virtual Machine Manager 
(VMM). Mann et al. [13] presented a network 
architecture that provides a layer-agnostic and 
seamless live and off-line VM mobility across mul-
tiple data centers. They leveraged SDN and used 
the principle of location independence in order to 
handle the inter-data center limits. They obtained 
better results compared to the default layer 2 net-
works; in some tests, their solution outperformed 
the default approach by up to 30 percent. Tay 
et al. [14] evaluated the migration performance 
of containers and VMs showing that the use of 
system containers can achieve the same, or even 
better, capabilities than a VM without its high 
overhead. 

With respect to the first cited work, in this 
study, we introduce the slice mobility patterns, 
and jointly emphasize the key enabling triggers 
and the grouping methods of the end users, while 
the remaining listed related works are used as a 
basis for enabling the desired slice mobility. As 
the entrance of new 5G use-cases will beget a 
highly mobile environment, increase the core net-
work traffic and reduce the latency, this work is a 
must for achieving the 1 ms latency target for the 
upcoming 5G mobile systems and beyond. 

Slice Mobility Use Cases
Network slicing enables customization of network 
services and resources for the needs of different 
use cases. The same underlying infrastructure is 
shared among the different slices that add their 
own customized network functions and services 
to implement a dedicated service network. The 
services in a slice will have their own dedicated 
share of e.g. RAN resources, edge computing 
resources, and control plane resources that will 
be concatenated to form an end-to-end slice. 
Such a dedicated slice can be customized for a 
number of use cases, such as to support auton-
omously moving equipment (e.g. drones, robotic 
vehicles, or a fast-moving train carrying mobile 
users enjoying infotainment services) with mobil-
ity patterns and latency requirements that differ 
from a regular mobile phone. To ensure that the 
user mobility patterns match with the coverage 
and availability of the resources allocated to the 
slice, we introduce the concept of slice mobility 
that is implemented by carefully coordinated and 
organized live migrations of Virtual Network Func-
tions (VNFs). In this section, we discuss use cases 
that clearly show the need for the proposed slice 
mobility paradigm that 5G and beyond networks 
should adopt. The first two use cases form a new 
mobility pattern not perceived before in the pre-
vious generation. They also express the perfect 
need for a mobile slice to follow the users (cars, 
and UAVs), ensure specific resource availability 
and continuous delivery during the mobility time. 

Network slicing enables customization of network services and resources for the needs of different 
use cases. The same underlying infrastructure is shared among the different slices that add their own 

customized network functions and services to implement a dedicated service network.



The last use case is proposed to illustrate another 
aspect of the slice mobility patterns related to the 
partial mobility which will be detailed in the next 
section. 

Drone Traffic Control
Unmanned aerial vehicles (UAVs) define the 
perfect example for predictable paths and high 
mobility, showcasing the slice mobility use case. 
As an initial scenario, let us assume that Jona-
than is a young researcher working on UAVs, and 
his mission is to perform a self-swarming control 
test over two university campuses. Jonathan has 
ordered a customized slice for his drone exper-
iment. In addition to offering the connectivity 
to the drones, the slice is hosting virtual flight 
controllers for all the involved drones. The virtu-
al flight controller is a software application that 
controls a corresponding drone and receives 
location information from the drone and radio 
usage information from the network. The virtual 
flight controller application is instantiated in a 
container. Each drone has its own instance of the 
controller and the controllers need to cooperate 
to group the drones into swarms in an orderly 
manner so they move as a group to the same 
direction. In his experiments, Jonathan noticed 
two possibilities: the first one is that the swarms 
of drones can have a synchronized mobility pat-
tern where the swarm moves as a tight group 
outside the current service area, or a second one 
where the drones move in smaller groups or one 
by one out from the initial service area depend-
ing on how tight the swarm is. In both situations, 
the containerized flight controller must follow its 
drone in order to provide the required low laten-
cy and accurate control of the drones. This use 
case leads to the notions of migrating the slice as 
a whole (i.e. full slice mobility) or the slice gets 
split over two service areas. 

Autonomous Vehicle Support
Autonomous vehicles are thought to be one 
of the key verticals that would benefit from the 
upcoming 5G systems. Autonomous vehicles are 
expected to be served by mobile operators or car 
manufacturer-operated network slices. Safety of 
the passengers and the other public on the road 
mandates high reliability and low-latency connec-
tivity to be an integral part of a slice for autono-
mous vehicles. A missed signal from the virtual 
data and processing analytics of a connected car 
(vDPACC) can cause an imminent dangerous situ-
ation that could result in physical damage or even 
a death. In addition to the support of low laten-
cy and high reliability, the slice must also have 
a redundancy that can be implemented at the 
VNF-and connection-levels inside a slice or by a 
backup slice. The latter approach would lead to 
simpler overall service orchestration and configu-
ration. When such a slice is relocated, the backup 
slice also needs to be modified or even moved as 

well. The slice mobility management mechanism 
must take into account the availability of back-
up connections, as well as the redundancy of the 
VNFs of the slice when migrating the slice and its 
services. The backup slice should not be relocat-
ed at the same time as the primary slice to ensure 
availability of the service. 

Rapidly Changing Video Streaming Need
In this use case, a city hall meeting is taking place 
in the form of a webinar. All the residents of the 
city have been invited due to the importance of 
the decisions to be made. The community has 
arranged its own slice for this mass meeting. 
The webinar is also attended by an audience on 
a train departing from the railway station of the 
city. The train leaves according to its schedule 
and enters soon to a neighboring area, or a tun-
nel, that has much less capacity to offer. The city 
hall videos’ streaming slice needs to be comple-
mented with a new and temporal slice in the new 
service area that the train is passing by. This new 
slice solves the bottleneck by accommodating a 
special Content Delivery Network (CDN) capacity 
with a video streamer that aggregates multiple 
separate unicast video streams into a limited num-
ber of shared streams that are distributed to the 
traveling audience of the webinar. Once the train 
enters into an area with better infrastructure, the 
purpose-built video CDN slice can be released 
and the original slice can continue to serve the 
audience. This use case shows the need for slice 
splitting and slice merging leading to the concept 
of slice breathing discussed in the following sec-
tions. 

Key Enabling Triggers, Grouping Attributes, 
and Slice Mobility Patterns

As was discussed in the use case section, slice 
mobility comes in a number of different variants 
or mobility patterns depending on how the slice 
is to be modified due to the changes in its service 
consumption. Thus, categorizing slice mobility 
patterns is a challenging issue. Based on what was 
introduced earlier, we identify the following slice 
mobility patterns: full slice mobility, slice splitting, 
slice merging, slice shrinking and slice breathing. 
Slice mobility actions are based on a number of 
triggers characterizing the slice dynamics and its 
service consumption. We start by introducing 
the slice mobility triggers that initiate slice mobil-
ity actions. The mobility triggers, as well as slice 
mobility actions, operate on a set of different 
groupings depending on a service or its resources. 
We elaborate the key grouping attributes offered 
by the 5G network specifications that provided 
the basis for slice mobility patterns and mobility 
triggers. 

Slice Mobility Triggers
In this step, we will identify, discuss and present 
several key triggers to enable different slice mobil-
ity patterns. Triggers broadly relate to the users’ 
mobility, the availability of physical resources and 
network resources at the hosting edge cloud or 
federated cloud, resource efficiency utilization, 
service reliability, and security. 

Group Mobility Trigger: This trigger can be 
considered as the main catalyst for slice mobil-

Autonomous vehicles are thought to be one of the key verticals that would benefit from the upcoming 
5G systems. Autonomous vehicles are expected to be served by mobile operators or car manufactur-
er-operated network slices. Safety of the passengers and the other public on the road mandates high 

reliability and low-latency connectivity to be an integral part of a slice for autonomous vehicles.



ity in a real-life environment. The group mobili-
ty trigger could be applied to all use cases cited 
above (i.e., drone, autonomous cars, and video 
streaming). In this trigger, a group of users simul-
taneously move from one location to another. 
For example, passengers on board a metro or 
train move simultaneously from one location to 
another (as in the use case of video streaming in 
a highly moving entity), which requires full slice 
mobility. The signal strength can be measured by 
the users and reported back to the access points. 
These measurements can be correlated and acted 
upon already on the access points or deeper in 
the network, such as at the mobility management 
entity in the evolved packet system, access man-
agement function in the 5G core, or at the life 
cycle manager controlling the slice. The entity in 
charge of correlating these measurement reports 
will pull the group mobility trigger that will, in turn, 
launch the process of slice mobility to follow the 
mobility of that particular group of users, using 
the same slice and its services that were reported 
by the measurements. 

Resource Availability Trigger: Edge clouds 
tend to always have fewer resources, i.e. net-
work, processing, and storage capacity, than the 
centralized cloud. Due to the limited resources 
at the edge, the system level resource consump-
tion must be monitored carefully. Once the upper 
limit of allowed total used capacity is reached, 
a “limited resources availability” trigger will be 
generated with a parameter indicating that the 
highest allowed resource consumption level of a 
certain type of system resources is reached. This 
trigger is sent to the slice life-cycle management 
to initiate migration of services from the high-
ly-loaded edge cloud(s) toward the centralized 
cloud while keeping at the edge only delay-sen-
sitive services. Alternatively, the services of the 
highly-loaded edge cloud could be migrated 
toward neighboring edge clouds if they have 
the necessary system-level resources available. 
Once the resource consumption level decreases 
below a given parametrized threshold, the edge 
cloud should send a “resource availability” trigger 
to indicate that there is room to accommodate 
more users and services for that particular type of 
resources. 

Let us consider that the users are static and 
the network resources are exhausted by the 
requested data from a given group of users. In 
this situation, a scale-out operation needs to be 
considered. However, the slice is limited by the 
available physical resources of the edge cloud 
and the number of different slice migration strat-
egies that need to be considered with potential 
impacts on the service QoE. One possible trade-
off is to migrate some users or services to other 
edges or to the centralized cloud that is further 
away even if that may reduce their QoE. 

Reliability Trigger: The reliability trigger would 
be typically generated by the operation and main-
tenance protocols and supporting operations, 
administration and maintenance (OAM) systems 
of the access point or the edge cloud that moni-
tors the healthiness of the connectivity. In case of 
a major disaster, there would be an abrupt inter-
ruption of connectivity toward the users or neigh-
boring edge nodes or even to the centralized 
cloud. The services should be therefore simultane-

ously evacuated from one location to another as 
long as there is still some capacity left for that. All 
unnecessary actions should be deferred until the 
system snapshot has been replicated. This trigger 
will cause full slice mobility where all slices, served 
by this access point or edge cloud node, need to 
be migrated elsewhere to ensure the integrity of 
all valuable data. 

Security Trigger: Security is of vital importance 
for the networks since a compromised entity or 
service may result in considerable damage to the 
whole infrastructure. For instance, in case a denial 
of service (DoS) attack occurs in a specific loca-
tion “A”, the services should be then shifted from 
that location to a more secure one. An intrusion 
detection system (IDS) could send a security trig-
ger to start a slice mobility for the compromised 
slice. When the IDS detects an anomaly in a slice, 
this trigger is sent to the orchestrator that initiates 
the migration process for that slice. 

Request Overload Trigger: Service request 
trigger is based on the number of simultaneous 
service requests stemming from groups of users 
requesting the services available in an existing 
slice. As a potential number of requests is likely to 
overload the requested service and eventually to 
cause a trigger for limited availability of resourc-
es, this overload trigger is sent prior to any hard 
resource limitations and to initiate smooth over-
load control and potential redistribution of the 
service across neighboring nodes. 

Service Consumption Trigger: The resource 
consumption of individual services needs to be 
monitored. Based on the type of service and its 
resource consumption, a trigger is generated if 
the service consumption is under or above pre-
determined levels. Note that the previously-dis-
cussed resource availability trigger deals with the 
aggregate system level resources whereas this 
trigger copes with the performance of a single 
service. 

Grouping Attributes
The key mobility triggers for slice mobility are not 
alone sufficient to efficiently manage the slice 
mobility patterns. In addition to triggers, we need 
means to group various relevant objects (e.g. ser-
vices, users, and network functions) so the mobil-
ity of the slices of resources consumed by those 
groups can be separately and efficiently man-
aged. Next, we will investigate various grouping 
attributes to support slice mobility patterns. 

Grouping by User Subscription Type: Group-
ing users by using their distinctive subscription 
types are one of the simplest grouping attributes. 
In 5G, this identifier is called the subscription per-
manent identifier (SUPI) and it is globally unique 
throughout the 3GPP system [15]. Another useful 
identifier in 5G is the generic public subscription 
identifier (GPSI) that identifies a 3GPP subscrip-
tion for different data networks. With these sub-
scription identifiers, we can separate, for example, 
IoT users of a given service provider from mobile 

The key mobility triggers for slice mobility are not alone sufficient to efficiently manage the slice mobil-
ity patterns. In addition to triggers, we need means to group various relevant objects so the mobility of 
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broadband users of the same or different pro-
viders, or prepaid users from enterprise users. 
Because this grouping is very coarse, it will be 
performed in combination with other types of 
groupings. 

Grouping by Access Type: Users can be 
grouped by the access type they use. Access 
types could be 3GGP (e.g. 4G, 5G, 5G small cell) 
or non-3GPP (e.g. WiFi and Wi-Max) accesses 
or multi-access. This grouping attribute is coarse 
and often needs to be complemented with other 
grouping attributes. 

Grouping by Network Slice Type: 3GPP 
defines three standard types of slices: 
• eMBB (enhanced Mobile Broadband) slice
• URLLC (ultra-reliable low latency communi-

cations) slice
•MIoT (massive IoT) slice. 
A UE can be connected at the same time to 
multiple slices. A slice is associated with a slice 
identifier, called network slice selection assistance 
information (NSSAI) that contains information 
about the slice type [15]. When a UE connects 
to the 5G network, it will use this identifier to 
express which slice it wants to join. NSSAI is also 
used in binding services and 5G network func-
tions to a particular slice. It is very critical for slice 
mobility to identify that particular slice that will be 
modified or moved as it impacts multiple bindings 
between multiple entities. Unfortunately, NSSAI 
is unique only within one operator domain which 
introduces additional complexity when a slice is 
moving across operator boundaries. 

Grouping by Service Area: Grouping of the 
consumed resources only is not enough because 
service area and service availability limitations 
may exist. A trivial example would be the case of 
a user “A” that is consuming an ultra-low latency 

service. If user “A” is a static user or his mobility 
pattern is restricted to a single service area, this 
user cannot be grouped with other users that are 
allowed to use the low latency service in other 
service areas. 

Grouping by Access Characteristics: Group-
ing users by their experienced access character-
istics constitutes one of the essential groupings 
attributes to identify a slice mobility pattern. 
Access characteristics take into account the radio 
metrics of the access, throughput, and frequency 
of handovers. For example, in our third use case 
where passengers are traveling in a high-speed 
train and receive video service over a network 
slice, one useful grouping of the users would be 
based on users experiencing same radio charac-
teristics, same radio frequencies, same handover 
frequency and using same access points in addi-
tion to receiving the same service. 

Grouping by Geographical Location: Geo-
graphical location is an obvious grouping attri-
bute that is applicable to all above-mentioned use 
cases. Geographical location-based grouping is 
often combined with the other grouping methods, 
particularly with the mobility pattern grouping. In 
Geographical location-based grouping, users, ser-
vices or slices are classified based on their current 
location. 

slIce MobIlIty pAtterns
We classify slice mobility patterns into the fol-
lowing categories: i) full slice mobility; ii) partial 
slice mobility which includes slice breathing, slice 
splitting, and slice merging; and iii) slice mobility 
optimizer which contains slice shrinking pattern. 
In the remainder of this section, each slice mobil-
ity pattern is described, highlighting its respec-
tive triggers. As discussed earlier, slice mobility 

FIGURE 1. Full slice mobility pattern.



events are generally triggered by the mobility of a 
group of end-users, the availability of the needed 
resources in the cloud or by the security aspects 
of the requested services. 

Full Slice Mobility: In this use case, we consid-
er a group of users moving to a diff erent location; 
e.g., a swarm of UAVs moving from the service 
area of an edge cloud 1 to the service area of 
another edge cloud 3 (Fig. 1). This group mobil-
ity will trigger a service migration process of the 
entire services and associated resources used by 
this group. This leads to the notion of full slice 
mobility as all resources and the services of a slice 
are impacted by the mobility and are migrated 
from the original resource location to a new one. 
Several triggers may be used to indicate the need 
for this type of mobility. The most important ones 
are group mobility, limited resource availability, 
and reliability triggers. 

Partial Slice Mobility: Full slice mobility is an 
expensive operation but some of the mobility pat-
terns can be supported with less tedious oper-
ations. In partial mobility, only some identified 
resources of a slice are to be migrated. Thus, 
there are two possible scenarios: either the net-
work slice will be extended to allow more cover-
age (Slice Breathing) or a diff erent network slice 
will be considered in the destination. For the lat-
ter, we consider two cases: i) either existing slices; 
or ii) newly-created slices. Both of these divergent 

cases yield two types of slice mobility, namely 
Slice Splitting and Slice Merging. 

Slice Breathing: Another use case, depicted in 
Fig. 2(a), refers to when the group of users “C” 
attached to the existing slice (slice 1) causing 
skewed resource consumption, over-consuming 
a subset of the offered services of the slice 1. A 
slice breathing operation will be triggered, caus-
ing replication of the content of highly-loaded 
micro-services (e.g. containers), followed imme-
diately by user redirection to this newly-created 
(sub-)slice to guarantee seamless continuity of the 
services. 

The slice breathing operation can be based 
on several triggers. Clearly, the group mobility 
trigger, the resource availability trigger, the service 
overload trigger, and the service consumption 
trigger can be used to initiate a slice breath-
ing mobility pattern. To summarize, in the slice 
breathing operation, a slice is temporarily expand-
ed by combining service replication and service 
migration processes with redirection of users to 
another slice to match a sudden need for scaling 
a slice. In the case of unfeasibility of slice breath-
ing operations, slice splitting and slice merging are 
adopted depending on the situations. 

Slice Splitting: In the slice splitting case, we opt 
to create a new slice for the upcoming group of 
users as shown in Fig. 2(b). This action will be per-
mitted by doing an inter-slice service mobility to 

FIGURE 2. Partial slice mobility patterns. 

(a) Slice Breathing (b) Slice Splitting

(c) Slice Merging



ensure the availability of the service in the new-
ly-added slices by exploiting the ability of inter-da-
ta-center multiple migrations. 

The group mobility trigger, the resource avail-
ability trigger, the security trigger, the service 
overload trigger, and the request overload trig-
ger will be part of the envisaged triggers for the 
slice splitting use case. However, for these slice 
mobility patterns, the system should consider the 
service consumption behavior of end-users as a 
trigger to choose between slice splitting or slice 
merging. Eff ectively, if the requested service is not 
a delay-sensitive service, the system may opt for a 
slice splitting action, wait until the creation of the 
new slice, and start the mobility process by per-
forming migration and replication actions. 

Slice Merging: On the other hand, considering 
the availability of interoperability between two 
slice providers (i.e., two IaaS), the system may 
optimize the distribution of the new containers 
forming a set of slices and allowing an inter-slice 
connectivity. This kind of slice mobility could be 
very useful in case of no network coverage from 
the initial slice provider. A multiple migrations 
process added to a replication process should be 
envisaged to enable this use case. 

The slice merging mechanism presented in Fig. 
2(c) is a quite similar mechanism to slice splitting 
with the exception of the creation phase of the 
slice because in this case ultra short latency ser-
vices will be considered, which means that we 
cannot tolerate the extra time for the slice cre-
ation. Due to this constraint, a slice merging 
mechanism is employed. In case of diff erent slice 
providers, an interoperability contract is intuitively 
assumed to be established between these diff er-
ent providers. 

Slice Mobility Optimizer: The Slice Mobility 
Optimizer mechanisms aim for avoiding the waste 

of unused resources as a result of the mobility of 
users, a reduced usage of services, and/or the 
end of the service usage. 

Slice Shrinking: In Fig. 3, we illustrate the case 
of a group of users that moved and are served 
by a diff erent slice (i.e., either an existing one or 
newly created) in their new location (i.e. Edge 
Cloud 3 & 4). The remaining users are served by 
Edge Cloud 2, and resources originally used in 
Edge Cloud 1 will be released, resulting in the 
shrinkage of the original slice. Slice shrinking is 
a cleaning mechanism that should take place to 
release all previously used resources that became 
obsolete during the migration process. 

After deciding which slice mobility pattern to 
execute, the system should run a control algo-
rithm that determines the optimal number of vir-
tualization instances and sets the rules for slice 
shrinking. For instance, in Fig. 3, we have two 
containers serving the groups of users A & B. The 
system can use the number of requests that con-
tainer 1 or 2 is able to handle. If either of them is 
able to provide the required service with respect 
to the SLA terms negotiated before, it can take 
over the services provided by the other one, that 
will be ultimately turned off . 

Table I summarizes the relationships between 
the slice mobility patterns and the different 
mobility triggers. The slice shrinking pattern is 
not included in the table as it is supposed to be 
an automatic process activated after each slice 
mobility pattern to free resources that become 
unused after resource migration.

enAblIng technologIes And eVAluAtIon setup
This section presents our preliminary evaluation of 
two key enabling technologies for Slice Mobility: 
system virtualization with containers and SDN. 
These technologies allow a fast and seamless allo-

FIGURE 3. Slice shrinking.



cation of resources to a network slice, while a 
complete evaluation of the behavior of the migra-
tion procedure under different physical setups 
and user mobility patterns are outside the scope 
of this work. In the performance evaluation, we 
consider parallel migrations to better understand 
the limits of the envisioned system. Our focus on 
the parallel migration arises from our perceived 
need to support multiple simultaneous migrations 
during a slice reconfiguration caused by user 
mobility across domains. Figure 4 portrays the 
testbed environment envisioned to emulate the 
slice mobility patterns, targeting the third use case 
discussed previously. In this use case, a slice con-
sists of a set of streaming functions that are used 
for streaming video services. The testbed consists 
of two physical servers (i.e., two administrative 
IaaS domains) as depicted in Fig. 4. 

Both servers run Ubuntu version server and 
have KVM as a hypervisor. Server 1 hosts two 
VMs; one acts as the source cloud for the slice 
mobility while the other VM acts as an SDN con-
troller that manages the communications between 
the diff erent servers and their clients. As the SDN 
controller, we used ONOS (Open Network Oper-
ating System). However, any other SDN control-
ler could be used as well. The second physical 
server, server 2, hosts only one VM that plays the 
role of the destination cloud. Both servers and 
all VMs are running Ubuntu 16.04 LTS with the 
4.4.0-64-generic kernel with four CPU cores and 
4 GB of memory. The connection between the 
servers is 1Gbps. An additional host is used for 
accessing the testbed from an external network. 

As previously explained, the container technol-
ogy off ers better overall performance compared 

to VMs. The use of a system level container, i.e., 
Linux Container (LXC), technology allows us to 
support a wider range of applications with the 
proposed framework. In our environment setup, 
we therefore use the container technology LXC 
2.8 and CRIU 2.6. We created three containers; 
each of them is running an NGINX server to 
stream videos to three diff erent clients. 

In the performance evaluation, we chose the 
full slice mobility pattern as it is the most com-
plicated and computation-heavy scenario. The 
migration process triggers the migration of run-
ning instances in parallel from the source cloud to 
the destination cloud. To automate the orchestra-
tion process, we built a framework to handle the 
parallel container migrations. We considered the 
resource availability trigger to enable the parallel 
migrations. We used a mix between the grouping 
by service area method, and the grouping by geo-
graphical location method since our clients are 

FIGURE 4. Testbed setup.

TABLE 1. Relationship between key enabler triggers and slice mobility patterns.

Triggers/slice mobility
Full slice 
mobility

Slice 
splitting

Slice 
merging

Slice 
breathing

Group mobility Yes Yes Yes Yes

Resource availability Yes Yes Yes Yes

Reliability Yes No No No

Security No Yes Yes No

Service overload No Yes Yes Yes

Service consumption No Yes Yes Yes



static and are served from their respective video 
streaming servers. By leveraging the SDN para-
digm, we created an overlay networking on top 
of the physical network. Such an action allowed 
us to design an isolated network topology over 
multiple physical data centers, and at the same 
time, carrying out inter-datacenter (i.e., inter-IaaS) 
parallel migrations. 

For enabling the full slice mobility, the test is 
performed using the iterative migration approach 
[16]. We adopt the pre-copy logic to perform the 
whole operations of live migration starting with 
the copy of the disk until the memory copy. Then, 
the SDN controller handles the path redirection 
phase and finally the container is restored to that 
target node. 

Fig. 5 respectively shows the duration of two, 
three and four subsequent migrations vs the same 
number of parallel migrations. The test is per-
formed with identical sizes of containers in order 
to carry out fair tests while comparing the par-
allel migrations to the subsequent one. In Fig. 5, 
the X-axis represents the number of LXC migrated 
containers while the Y-axis represents the migra-
tion time in seconds. For each bar (i.e., parallel 
and sequential migration), we plotted the 95 per-
cent confidence interval of the mean. 

The mean total migration time for two subse-
quent migrations was 40.7123s and the 95 per-
cent confidence interval for this experiment was 
2.0007s. For the parallel migrations, we obtained 
a mean total migration time of 24.3023s and 
1.9764s as its 95 percent confidence interval. 
Regarding the migration of three instances, we 
achieved a mean total migration time of 60.1735s 
and 27.3984s, respectively, for both sequential 
and parallel migrations. Finally, on the subject 
of four instances migrations scenario, the mean 
total migration time is 81.9131s for the sequential 
migrations with 95 percent confidence interval 
of 2.6310s, while these values are 43.4268s and 
9.0867s, respectively, for the parallel migrations. 
The results obtained through this evaluation reveal 
that the parallel migrations for enabling a prompt 

slice mobility are more efficient when compared 
to the legacy sequential migration strategy. 

conclusIon And reMArks
The network slicing paradigm unquestionably 
offers a powerful apparatus to support verticals’ 
services. According to this paradigm, a group 
of users is associated with dedicated comput-
ing, storage, and network resources tailored for 
a given vertical use case. The use of specialized 
resources in a slice implies that such resourc-
es are not available everywhere in the network 
but require careful resource allocation policies 
and control. Therefore, there is a strong need to 
extend the notion of mobility that is traditionally 
limited to user devices or services without much 
concern of combined resource availability need-
ed for network slicing. With network slicing, the 
mobility events of users and services become 
more correlated leading to new mobility patterns. 
In this article, we introduced slice mobility pat-
terns with corresponding grouping methods and 
relevant mobility triggers. 

The proposed mobility patterns leverage 
MEC to offer ultra-short latency communication 
infrastructure, SDN for fast flow resumption, live 
migration to ensure the high-availability of ser-
vices and the Follow me Edge concept to sup-
port end-users’ mobility. The proposed framework 
is validated using a realistic testbed. Interesting 
results were obtained, implying total time migra-
tion evaluation depends on the used video 
streaming delivery content. The obtained results 
also demonstrate the dominance of the proposed 
parallel migrations when compared to the lega-
cy sequential migrations strategy. Based on the 
achieved results and the presented key enabling 
triggers in addition to the grouping methods, it 
can be concluded that a mechanism to select 
the right combination of techniques to be used 
for efficiently supporting a slice mobility pattern 
action is indispensable. For the authors, a future 
research direction would be to investigate Artifi-
cial Intelligence techniques for smart and cost-
efficient triggering and grouping methods for slice 
mobility patterns, as well as the migration of sev-
eral coordinated and dependent services, known 
as service function chain (SFC). 
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