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Cascade LSTM Based Visual-Inertial Navigation for
Magnetic Levitation Haptic Interaction

Qiangian Tong, Xiaosa Li, Kai Lin, Caizi Li, Weixin Si, Zhiyong Yuan

Abstract—Haptic feedback is crucial to immersive experience
in virtual and augmented reality applications. The existing
promising magnetic levitation (maglev) haptic devices have ad-
vantages of none mechanical friction and low inertia. However,
their performance is limited by the navigation approach, which
mainly results from the challenge that it is difficult to obtain
high precision, high frequency and good stability with lightweight
design at the same time. In this study, we reformulate visual-
inertial navigation as a regression problem, and adopt deep
learning to perform fusion navigation for maglev haptic inter-
action. A cascade LSTM based 6-increment learning method is
first proposed to progressively learn the increments of target
variables. Two cascade LSTM networks are then constructed
to respectively estimate the increments of position and orien-
tation which are pipelined to accomplish visual-inertial fusion
navigation. Additionally, we set up a maglev haptic platform
as the system testbed. Experimental results show that our
cascade LSTM based visual-inertial fusion navigation approach
can reach 200Hz while maintaining high-precision (the mean
absolute error of the position and orientation is less than 1Imm
and 0.02°, respectively) navigation for a maglev haptic interactive
deformation application.

Index Terms—Visual-inertial navigation; Cascade LSTM net-
work; f-increment learning; Maglev haptic interaction.

I. INTRODUCTION

The recent development of virtual reality (VR) and aug-
mented reality (AR) has facilitated the advancement of related
applications, such as surgical procedures, teaching-learning
system, marketing research, and interactive recreation [1/], [2]].
In these applications, haptic sensation is an essential compo-
nent of users’ immersive interaction experience. Berkelman
et al. [3]], [4] developed a maglev haptic interface which
provided haptic feedback via a penhandle or fingertip probe.
Besides, a novel maglev haptic device with an adjustable coil
configuration was deployed, and it can provide haptic feedback
in a natural manner [5], [6]. For these maglev haptic devices,
the position and orientation of their magnetic stylus/probe are
firstly obtained to navigate users’ interaction actions. High-
precision and high-speed navigation helps to capture subtle
changes in users’ actions. Conversely, if users’ actions cannot
be acquired accurately and quickly, the haptic experience will
be distorted. Therefore, the navigation performance is crucial
to providing immersive haptic feedback.

In the study of Berkelman et al. [3], [4], an Optotrak Certus
6 degrees-of-freedom (DOF) optical motion tracker (Northern
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Digital Inc.) provided real-time position and orientation feed-
back for their maglev haptic platform. Infrared LEDs with
no wired connection were mounted on the back end of their
user’s probe. However, the infrared LEDs will be sheltered by
each other when the probe is tilted at a large angle, leading
to the loss of location information. Besides, the design of
their tracking module is somewhat cumbersome because of
the additional mass and bulk of the battery and electronics
required in wireless mode.

Tong et al. [3], [6] designed a magnetic stylus consisting
of several small rods and red markers were embedded in con-
nections between these small rods. A visual module with two
RGB cameras was utilized to track red markers in the magnetic
stylus for obtaining user’s interaction actions. Although this
visual module has advantages of high precision, light weight
and low cost, the positioning frequency is limited by cameras’
low acquisition frequency while maintaining high precision,
which will affect the resolution of haptic perception. Besides,
there also exists occlusion problem in this visual module.

From the above observations, three challenges should be
addressed for existing navigation methods to accomplish high
quality navigation for maglev haptic interaction. Firstly, how
to maintain high positioning frequency while providing high
precision. Secondly, how to improve the stability and ro-
bustness when the occlusion problem occurs, i.e., how to
tackle the possible occlusion problem when the probe is
tilted at a large angle or when users operate several probes
in the operation workspace at the same time. Thirdly, how
to design a lightweight and cost-effective navigation module
while addressing the above two challenges.

In this work, we resort to the fusion navigation scheme
which is capable of taking advantages of different navigation
methods to overcome the aforementioned challenges. Consid-
ering that inertial navigation has advantages of high sampling
frequency and good stability, and these characteristics are
complementary to the high precision of visual navigation, we
adopt inertial measurement units (IMUs) to aid the visual
module thus to advance the navigation performance for maglev
haptic interaction.

Several researchers have explored many kinds of visual-
inertial (VI) navigation methods [7]], [8], [9], [LO]. These meth-
ods can be tightly-coupled or loosely-coupled according to the
condition whether image features are part of the state vector.
Although tightly-coupled fusion methods can provide long-
term, high-precision navigation, they usually involve filter
update based on a certain constraint or an optimization prob-
lem, leading to low positioning frequency. Loosely-coupled
methods maintain the integrity of visual module and IMUs,
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Fig. 1. An overall design for our maglev haptic interaction system.

which is convenient for their independent optimization.

Inspired by the recent success of deep learning techniques
[L1], [12]], especially the great advancement of the long
short-term memory (LSTM) architecture for recurrent neural
networks (RNNs) [13]], we regard visual-inertial navigation as
a regression problem and employ a deep learning approach
to perform visual-inertial navigation. In our work, visual
and inertial modules are calibrated with reference to the
fusion navigation coordinate system, respectively. To accom-
plish high-speed and robust navigation, we present a cascade
LSTM based 6-increment learning method and construct two
cascade LSTM networks to estimate increments of position
and orientation, respectively. The estimated increments are
then pipelined to calculate the position and orientation of the
moving object. Finally, this location information is used for
navigating maglev haptic interaction applications.

The main contributions of this paper are as follows:

e We reformulate visual-inertial navigation as a regression
problem and propose a novel visual-inertial fusion navigation
approach based on deep learning for maglev haptic interaction.
This approach is excellent in real-time performance while
maintaining high precision.

e We present cascade LSTM based #-increment learning
for accomplishing visual-inertial navigation, and two cascade
LSTM networks are constructed to estimate increments of
position and orientation. The accuracy of our cascade LSTM
based navigation approach is verified by experimental results.

e Our cascade LSTM based visual-inertial navigation ap-
proach is lightweight, cost-effective, as well as robust to the
occlusion problem. Furthermore, it can be extended to other
applications other than being utilized in the maglev haptic
interaction application mentioned in this work.

The remainder of this article is organized as follows: In
Section II, the problem statement and system architecture are
introduced. The proposed cascade LSTM based visual-inertial
navigation scheme is given in Section III. In Section IV, the
system testbed and experimental results are presented. Finally,
conclusions are given in Section V.

II. PROBLEM STATEMENT AND SYSTEM OVERVIEW

In this section, we first introduce the problem statement
about the navigation method in maglev haptic interaction

applications. Then, we provide the system overview, as shown
in Fig. [T}

A. Problem statement

Visual navigation is usually used to capture users’ actions
in maglev haptic interaction applications [3]], [4]], [6] because
of its high-precision. However, its output frequency of the
position and orientation is low and unstable due to its low
sampling frequency and environmental conditions of cameras.
Besides, the navigation performance will be affected if markers
are out of cameras’ field of view.

Inertial navigation system (INS) is all-weather, and it can
work in various environments and export in-motion data at
a high frequency. To obtain the position and orientation of
the moving object by INS, inertial navigation coordinates
should be selected firstly. IMU including an accelerometer
and a gyroscope is connected to the moving object to gather
a raw acceleration a and an angular rate w in the inertial
navigation coordinates. The orientation can be determined
by transforming the quaternion updated by Runge-Kutta Act
method particularly to orientation angles (pitch, roll, yaw).
The raw acceleration a should be converted to the motion
acceleration a,, in the inertial navigation coordinates before
the integration for the position. The position can be simply
obtained by the integration of acceleration. Note that the
integration operation is usually done in the frequency domain
through the fast Fourier transformation to reduce the error
caused by biases and high-frequency noises. Though some
measures are token to decrease the influence of biases and
noises, computational errors still can not be eliminated com-
pletely. What’s worse, the error will accumulate over time.

Considering that characteristics of visual and inertial naviga-
tion are complementary, cameras and IMUs are usually fused
to acquire state estimations. Weiss et al. [[7] coupled the visual
framework and IMU loosely. They treated the visual frame-
work as a black box, and showed how to detect failures and
estimated drifts in it. Mourikis ef al. [8] put forward a multi-
state constraint Kalman Filter (MSCKF) algorithm, which
performed an Extended Kalman Filter (EKF) update based on
geometric constraints. Apart from filter-based methods, there
are also optimization-based methods such as keyframe-based
visual-inertial SLAM (OKVIS) using nonlinear optimization



proposed by Leutenegger et al. [9]. Besides, VINS-Mono
presented by Qin et al. [10] is a nonlinear-optimization-based
sliding window estimator using pre-integrated IMU factors.
The aforementioned visual-inertial navigation methods have
been applied to state estimation problems in a variety of fields,
such as autonomous vehicles and flying robots [[14]. However,
these methods still have many drawbacks. Specifically, the
inertial and visual processing frequency of the method in
[7] are only 75Hz and 25Hz, respectively. Although MSCKF
[8] is robust and memory-efficient, its per-frame processing
time is also long and its accuracy is low. Moreover, the
accuracy of OKVIS [9] and VINS-Mono [10] is relatively
high, but this achievement greatly sacrifices computational
resources, leading low processing frequency. What’s worse,
the above methods can only achieve the accuracy of decimeter.
Therefore, these existing visual-inertial navigation methods
are not suitable for maglev haptic interaction which needs
high precision and high frequency for immersive interaction
experience. In our work, we takes advantages of visual and in-
ertial navigation by reformulating visual-inertial navigation as
a regression problem using deep leaning, aiming at improving
the navigation frequency while maintaining high precision.
Although VINet [15] similarly regarded the visual-inertial
odometry as a sequence-to-sequence regression problem, its
fusion navigation frequency is limited by the low-frequency
data stream, such as the visual or ground truth data stream.
In this work, we present a cascade LSTM based #-increment
learning method to progressively learn increments of position
and orientation at a small time step. Suppose that the time step
of the ground truth is 7, and the time step of our #-increment
learning method for navigation estimation is ¢. Note that ¢
can be small than 7" in our study. From this perspective, our
f-increment learning based visual-inertial fusion navigation
method can reach higher frequency than that of the ground
truth. The implementation details of the presented cascade
LSTM 6-increment learning method and our visual-inertial
fusion navigation approach will be introduced in Section

B. System overview

As shown in Fig. [T] the maglev haptic interaction system is
composed of a visual acquisition unit (stereo kit), two IMUs,
a visual controller, an inertial controller, a haptic feedback
interface, a current controller, an Al service and a visualization
module, etc. In this study, the East-North-Up coordinate sys-
tem is chosen as the fusion navigation coordinate system, and
the navigation task is to capture the position and orientation
of a moving object relative to the selected coordinate system.
IMUs are fixed on the back end of the magnetic stylus. The
visual and inertial controller are connected to a router by the
Ethernet connector and send data collected by sensors to the
Al service under the same LAN.

When an operator uses the magnetic stylus to interact with
virtual scenes, the stereo kit with two cameras acquires RGB
images and IMUs obtain acceleration and angular rate. Visual
controller is used to calculate the position of the magnetic
stylus and one inertial controller is used to calculate its
orientation. The calculated position and orientation, and the

collected acceleration and angular rate are used to estimate
the final position and orientation of the magnetic stylus with
high frequency through the AI service.

After the Al service calculates out the position and orienta-
tion of the magnetic stylus by using the proposed cascade
LSTM based visual-inertial navigation approach, it sends
the navigation information to the visualization module. The
visualization module performs collision detection between the
virtual stylus and virtual objects, and meanwhile computes
the feedback force to be exerted on the magnetic stylus. Then,
the current to be loaded for each coil in the coil array of
the maglev haptic interface is calculated according to the
calculated feedback force. The current controller intelligently
adjusts the current of each coil [6]], making the coil array gen-
erate effective magnetic field corresponding to the interactive
process. Finally, the magnetic stylus receives the same force
as the virtual stylus and transmits it to the operator.

III. CASCADE LSTM BASED VI NAVIGATION

In this section, we first give an overview of the presented
cascade LSTM based #-increment learning method. Then, we
construct two cascade LSTM networks using the #-increment
learning method to estimate increments of position and orien-
tation. Finally, our visual-inertial navigation approach based
on cascade LSTM is described.

A. Cascade LSTM based 0-Increment Learning

Due to different sampling frequencies of visual and inertial
sensors, data streams used for navigation are multi-rate, and
the frequency of visual data is lower than that of inertial data.
It is challenging to realize visual-inertial navigation with high
frequency using these multi-rate data for deep learning models.
To tackle this issue, we present a f-increment learning method
by constructing a cascade LSTM network unit to progressively
learn increments of target variables, as shown in Fig. [J[a).

Giving an input X = (x1,T2, - ,xy) and 1 : N are
timesteps of the sequence for our cascade LSTM network.
Suppose that the corresponding label of X is AY. Note that
AY denotes the total increment of n timesteps. In a certain
practical application, if the time step of the ground truth is 7',
the time step of fusion navigation could be ¢t = T'/n(n > 1).
To achieve high frequency navigation, the prediction for each
time step ¢ should be produced. We cascade n LSTMs to
simulate incremental changes of n timesteps, and each LSTM
is used to estimate the increment for one time step. In
this study, his method is called #-increment learning which
learns increments of variables using the constructed cascade
LSTM network for obtaining high frequency estimation, and
# denotes the target variable to be estimated.

Given that n LSTMs aim at learning the same relationship
between their inputs and outputs, we let all these n LSTMs
share parameters to be learned. This shared mode facilitates the
training of the entire cascade LSTM network, and each LSTM
is called a shared LSTM (S_LSTM) cell. We assume the input
of the i*" S_LLSTM is X; = (@i, T(i4+1), " s T(m+i—1)) and
its output is AY;, where 1 : m represent timesteps of each
S_LSTM and N = m + n — 1. The final estimation of the
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Fig. 2. The architecture of cascade LSTM network for visual-inertial navigation.

cascade LSTM network is AY = Af’l + A}A’g 4t A)A’n,
and & in Fig. [ denotes the summation operation. The entire
cascade LSTM network is trained using the Adam optimizer
according to the mse loss between the label AY and the
predicted result AY'.

Thanks to the adaptive characteristics of LSTM, the cascade
LSTM based 6-increment learning method does not need end-
to-end training data and the shared parameters are updated
every n timesteps in our study. Moreover, benefiting from
these adaptive characteristics, the shared LSTM cell is capable
to accurately predict the increment of one small time step.
Therefore, the trained shared LSTM cell can obtain predictions
with high frequency and high precision which could be higher
than that of the training data. Note that I in Fig. 2] denotes
the initialization operation. The usage of I' depends on the
relationship between the target variable and time, which will
be described in detail below.

B. Cascade LSTM based Orientation and Position Estimation

In the maglev haptic system, 6DOF navigation information
(3DOF position and 3DOF orientation) of the magnetic stylus
should be acquired for capturing users’ interaction operation.
In this work, visual-inertial navigation is implemented by
using the presented cascade LSTM based #-increment learn-
ing method. Specifically, two cascade LSTM networks are
separately trained for estimating the position and orientation
of moving objects. Considering that IMUs are capable to
obtain high-frequency sampling and the visual module can
acquire high-precision positioning information [6]], the inertial
data with high frequency is utilized as the input of our deep
learning model and the ground truth of position is obtained
by adopting the visual navigation method described in [6].
Note that the ground truth of orientation is calculated by using

one inertial controller with a high-precision on board Digital
Motion Processor (DMP).

1) Cascade LSTM based orientation estimation: The cas-
cade LSTM network used for orientation estimation is called
OCasLSTM. For the orientation estimation, the accelera-
tion and angular rate I acquired by IMUs are the input
of OCasLSTM, and the total increment AQ of n shared
LSTM cells for the orientation is the output of OCasLSTM,
as shown in Fig. 2(b). Because the input is the first-order
derivative of orientation, the output of each shared LSTM
cell in OCasLSTM exactly corresponds to the increment of
orientation. Therefore, the orientation estimation does not need
the initialization operation.

During the training, the mse loss is utilized to update
OCasLSTM, and AQ is the summation of m increments
(Aq1,Aqs, -+, Ag,) obtained from n shared LSTM cells. In
practical applications, only one shared LSTM cell is needed
to predict the increment of orientation for one time step, and
the current estimated orientation is the sum of the predicted
increment and the orientation of the previous moment.

2) Cascade LSTM based position estimation: The cas-
cade LSTM network used for position estimation is called
PCasLSTM. Different from the orientation, the position is
the double integration of the acceleration and angular rate.
According to the kinematics theory, an initial velocity except
for the acceleration and angular rate should be provided for
calculating the increment of position. To tackle this issue, we
introduce the initialization operation I' into PCasLSTM, as
shown in Fig. [J[c).

For the initialization operation I, the increment of position
and its corresponding time are known. To obtain the initial
velocity, the motion is assumed to be a certain state which can
be uniform velocity, uniform acceleration, etc. In order to alle-



viate the impact of such an initialization operation, PCasLSTM
is constructed by cascading & CasLSTM units, and these units
are trained simultaneously. For the first unit, the increment
of each timestep obtained using the initialization operation I'
and the inertial data sequence I, I, ..., Iy are contacted as
its input. For each following unit, the estimated position from
the previous CasLSTM unit and the corresponding inertial data
sequence are contacted as its input.

The output of the i*» CasLSTM unit A P; is the summation
of m increments (i.e. Apy, Apo,---,Ap,) obtained from
n shared LSTM cells. Note that n shared LSTM cells of
each CasLSTM share parameters, while k£ CasLSTM units of
PCasLSTM have separate parameter configurations. During
the training, multiple losses are used to update the entire
PCasLSTM. In practical applications, we firstly perform the
initialization operation using the trained PCasLSTM, and then
the shared LSTM cell of the last cascade LSTM unit in
PCasLSTM is used to predict the increment of position for
one time step. The current estimated position is the sum of the
predicted increment and the position of the previous moment.

C. Cascade LSTM based Visual-Inertial Fusion Navigation

After finishing the offline training of cascade LSTM based
orientation and position estimation models, we use the trained
models to provide accurate and real-time navigation for the
maglev haptic interaction system. The concrete steps for
accomplishing visual-inertial fusion navigation are as follows:

e Preprocessing: After receiving the visual and inertial data
of the magnetic stylus, the Al service firstly preprocesses these
data, such as formatting and normalization.

e Initialization: As described in Section the shared
LSTM cell of the last CasLSTM unit in PCasLSTM is used for
position estimation. We firstly perform the entire PCasLSTM
to obtain an accurate initial state for the shared LSTM cell.

e Estimation: This step can be divided into three cases:

a) If only raw acceleration and angular rate data I are
received, predict increments of position and orientation. b) If
position data is received except from I, predict the increment
of orientation. c¢) If orientation data is received except from I,
predict the increment of position.

e Update: If position and orientation data are received
except from I, update the location information (position and
orientation) of the magnetic stylus. Otherwise, perform the
“Estimation” step and update the location information of
the magnetic stylus by adding estimated increments and the
location information of the previous moment together.

IV. EXPERIMENTATION RESULTS
A. System Tested

In this section, to verify the cascade LSTM based visual-
inertial navigation approach proposed by this article, we set
up a system testbed in view of a maglev haptic interaction
application. The maglev haptic interaction system is composed
of a visual-inertial navigation module, a maglev haptic inter-
face [3], [6], an Al service and a visualization module. The
visual-inertial navigation module is used to obtain visual and
inertial data. The maglev haptic interface [5], [6] includes
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Fig. 3. The system tested.

a magnetic stylus, a coil array and a coil driver module,
and it provides haptic feedback in the haptic interaction
application. The Al service performs visual-inertial navigation
using deep learning models. Besides, the visualization module
is utilized to show virtual scenes. In summary, the specific
haptic interaction process is as follows. When users move
the magnetic stylus in the operation workspace of the maglev
haptic interface, visual and inertial data collected or calculated
by the visual-inertial module are sent to the Al service which
performs cascade LSTM based visual-inertial navigation for
haptic interaction. The visualization module displays the vir-
tual heart deformation model in real time according to the
navigation information, and meanwhile, the maglev haptic
interface provides the corresponding haptic feedback to users.

As shown in Fig. E} the visual-inertial module, Al service,
maglev haptic interface and visualization module communicate
under the same LAN in real time. Two IMUs (MPU6050) are
fixed on the back end of the magnetic stylus. One is used
to gather the raw acceleration and angular rate data, and the
other one is used for providing orientation angles. Cameras
capture the position information of the magnetic stylus by
tracking red markers. Our cascade LSTM based visual-inertial
navigation approach can export the position and orientation of
the magnetic stylus at a frequency of 200 Hz in the heart
deformation haptic interaction application.

The specific experimental process is as follows: First, we
performed interactive heart deformation simulation on the
system tested and collected 30,000 data. The collected data
included acceleration and angular rate, and the corresponding
position and orientation data, and their sampling frequency
were 200Hz, 20Hz and 100Hz, respectively. Then, we divided
the collected data into training set, validation set and testing
set with the ratio of 8:1:1. Cascade LSTM based position and
orientation estimation models were trained on the training set.
After that, trained models were evaluated on the testing set.

B. Experimental Results and Analysis

In order to verify the performance of our cascade
LSTM based f-increment learning method, we trained five
OCasLSTM models, and the increase ratio of the frequency
were 2, 4, 6, 8, and 10, respectively. To make sure fairness,
the testing data were not used to train these models. Table [
demonstrates the mean absolute error (MAE) between the
predicted and actual orientation angles (pitch, roll and yaw).



TABLE I
THE MAE BETWEEN THE PREDICTED AND ACTUAL ORIENTATION DATA.

Orientation | ratio=2 ratio=4 ratio=6 ratio=8 ratio=10
Pitch (°) 0.0086 0.0115 0.0136 0.0166 0.0198
Roll (°) 0.0092 0.0113 0.0143 0.0173 0.0200
Yaw (°) 0.0050 0.0060 0.0072 0.0080 0.0105
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Fig. 4. Comparison between the predicted and actual orientation angular.

From Table [l we can see although the MAE value between
the predicted and actual orientation data becomes higher as
the ratio increases, the max MAE value is less than 0.02°.
Besides, Fig. [d] shows the comparison between the predicted
orientation data of the OCasLSTM with the increase ratio of
10 and the actual orientation data, and the predicted results are
very close to the actual ones. From Table [ and Fig. ] it can
be seen that the presented cascade LSTM based #-increment
learning method is promising.

Then, we trained three PCasLSTM models with ten
CasLSTM units by using three different initialization methods
(uniform velocity—u, uniform acceleration—ua and random-r).
Fig. 5] shows the mean absolute error between the predicted
and the actual position data of these ten CasLSTM units for
three initialization methods. The mean absolute error of three
initialization methods is very close, demonstrating the robust
of PCasLSTM. Furthermore, the mean absolute error of ten
cascade LSTM units for three initialization methods is less
than Imm, showing high accuracy of our approach.

V. CONCLUSION

In this work, we focus on the problem of how to improve
the navigation frequency and stability while maintaining high-
precision and the lightweight design for maglev haptic in-
teraction. To achieve this goal, we present a cascade LSTM
based #-increment learning method which is utilized to con-
struct two separate cascade LSTM networks for accomplishing
position and orientation estimation. This proposed cascade
LSTM based visual-inertial navigation approach can yield
position and orientation estimation of moving objects for a
small time step, thus it can achieve high frequency navigation.
Furthermore, the accuracy of our approach was verified by
building a testbed. In future studies, we will research high-
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Fig. 5. The MAE between the predicted and actual data of ten CasLSTM
units for three initialization methods.

precision haptic rendering methods based on the proposed
visual-inertial navigation approach, and extend the navigation
approach to other applications.
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