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Abstract—Integrated terrestrial and non-terrestrial power in-
ternet of things (IPIoT) has emerged as a paradigm shift to
three-dimensional vertical communication networks for power
systems in the 6G era. Computation offloading plays key roles
in enabling real-time data processing and analysis for electric
services. However, computation offloading in IPIoT still faces
challenges of coupling between task offloading and computation
resource allocation, resource heterogeneity and dynamics, and
degraded model training caused by electromagnetic interference
(EMI). In this article, we propose an asynchronous federated deep
reinforcement learning (AFDRL)-based computation offloading
framework for IPIoT, where models are uploaded asynchronously
for federated averaging to relieve network congestion and im-
prove global model training. Then, we propose Asynchronous
fedeRated deep reinforcemenT learnIng-baSed low-laTency com-
putation offloading algorithm (ARTIST) to realize low-latency
computation offloading through joint optimization of task offload-
ing and computation resource allocation. Particularly, ARTIST
adopts EMI-aware federated set determination to remove aber-
rant local models from federated averaging and improve training
accuracy. Next, a case study is developed to validate the excellent
performance of ARTIST in reducing task offloading and total
queuing delays.

Index Terms—o6G, integrated terrestrial and non-terrestrial
power internet of things, computation offloading, asynchronous
federated deep reinforcement learning, electromagnetic interfer-
ence awareness

I. INTRODUCTION

Power internet of things (PIoT) provides comprehensive
interconnection among human, machine, and things through
all the aspects of power generation, transmission, distribution,
and consumption. PIoT requires low latency, flexible coverage,
and high security to support delay-sensitive power services
and connection of external devices into the grid. However, in
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some remote areas, the coverage of terrestrial networks such
as 5G is insufficient to meet the stringent requirements of
PIoT. Moreover, terrestrial networks cannot support emergency
communication in harsh environments and disasters [1], [2].

With the rapid development of 6G, non-terrestrial networks
based on satellites, high altitude platforms (HAPs), and un-
manned aerial vehicles (UAVs) have been applied in ocean
monitoring, emergency command, and deep space exploration.
Integrated terrestrial and non-terrestrial PIoT (IPIoT) provides
a new paradigm shift to three-dimensional vertical power com-
munication network, which possesses wide coverage, ubig-
uitous connection, flexible deployment, and high robustness
[3]. In IPIoT, computation offloading is a key technology to
realize real-time processing and analysis of massive data by
combining the powerful computation capacity of terrestrial
networks with the coverage and deployment advantages of
non-terrestrial networks. Resource-constrained PIoT devices
can offload computation-intensive tasks to edge and cloud
servers via terrestrial base station (BS) or non-terrestrial
UAV, HAP and satellite. To enable effective computation
offloading, the multi-dimensional heterogeneous resources of
terrestrial and non-terrestrial networks should be intelligently
allocated to satisfy the differentiated requirements of PloT
services through the joint optimization of task offloading
and computation resource allocation [4]. However, the joint
optimization problem is difficult to be solved by traditional
mathematical optimization tools due to dynamic connection,
network heterogeneity, large optimization space, and incom-
plete information. In the 6G era, artificial intelligence (AI)
provides an effective solution with powerful learning ability.
It is intuitive to explore Al-based intelligent methods to solve
the computation offloading problem of IPIoT [5].

Federated deep reinforcement learning (FDRL) combines
the capabilities of deep reinforcement learning (DRL) in
complex mapping relationship fitting and model-free decision
making as well as the advantages of federation learning (FL)
in device-side environment observation utilization and secure
model training [6]. FDRL has been utilized to address the
computation offloading problem [7].

In this paper, we improve FDRL by adding asynchronous
functionality to develop a new asynchronous FDRL (AFDRL)
framework for computation offloading optimization in IPIoT.
The proposed framework adapts to multi-dimensional resource
heterogeneity and dynamics through asynchronous model up-
loading. The total queuing delay is minimized through the
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joint optimization of task offloading and computation resource
allocation. The main contributions are summarized as follows.

o AFDRL-based computation offloading framework: The
proposed framework integrates heterogeneous resources
of terrestrial and non-terrestrial networks in IPIoT
through the joint optimization of device-side task of-
floading and server-side computation resource allocation.
PIoT devices asynchronously upload adequately trained
local models for federated averaging to relieve network
congestion and improve convergence of global model
training.

o Low-latency joint optimization of task offloading and
computation resource allocation: We propose the Asyn-
chronous fedeRated deep reinforcemenT learnIng-baSed
low-laTency computation offloading algorithm (ARTIST)
to solve the joint optimization problem of task offloading
and computation resource allocation. Lyapunov optimiza-
tion is leveraged to decompose the joint problem into
two stages. In the first-stage task offloading subprob-
lem, ARTIST utilizes asynchronous federated deep actor
critic (AFDAC) to learn the BS selection and computing
paradigm selection decisions. Then, ARTIST approxi-
mates the second-stage server-side computation resource
allocation problem into a convex one and solve it. Low-
latency computation offloading is achieved by reducing
queuing delay of task offloading and computation.

o EMI-aware federated set determination: ARTIST adopts
electromagnetic interference (EMI)-aware federated set
determination to avoid the adverse impacts of sudden
and strong EMI on learning optimality and convergence.
Specifically, a cost deviation function is defined to eval-
uate local models. If the cost deviation exceeds a certain
threshold, the detected aberrant model is removed from
the federated set to achieve EMI awareness and improve
training accuracy. The proposed mechanism can be ap-
plied in other industrial environments due to its scalability
and flexibility.

First, the application scenarios and research challenges of
computation offloading in IPIoT are introduced in Section II.
Then, the AFDRL-based computation offloading framework
and ARTIST are presented in Section III. Afterwards, a case
study is developed in Section IV. Finally, the conclution of the
article and future research directions are provided in Section
V.

II. IPIOT APPLICATION SCENARIOS AND RESEARCH
CHALLENGES

A. Application Scenarios of Computation Offloading in IPloT

Desert photovoltaic (PV) monitoring: Real-time moni-
toring of desert solar power stations is challenged by the
limited terrestrial communication infrastructure. The position-
ing, timing, and short message communication technologies of
satellites as well as the high-speed communication coverages
of UAVs and HAPs in IPIoT can meet the requirements of
positioning, synchronization, and long-distance data transmis-
sion in desert PV monitoring [8]. Data generated by PV-
side controllers, grid-connected inverters, anti-island devices,

environment sensors, and other state acquisition devices in
solar stations are aggregated and preprocessed locally by
terrestrial networks. Then, computation-intensive tasks such
as PV scheduling control and real-time output forecasting can
be offloaded to the cloud server with powerful computation
capabilities through non-terrestrial networks. Finally, through
global data processing and analysis, advanced functions such
as large-scale grid connection/off-grid of solar stations and
autonomous PV output scheduling are executed [9].

Transmission line inspection: Transmission lines are criss-
crossed and often distributed in hilly wilderness. Therefore, it
is extremely difficult to achieve the full coverage of trans-
mission line inspection. In IPIoT, UAVs are leveraged to
collect real-time data such as infrared image of transmission
lines insulators. Then, the image data are offloaded to edge
servers or cloud server for real-time processing and analysis
through terrestrial BSs, satellites, or other UAV relays. In
addition, PIoT devices deployed on transmission lines offload
monitoring data to servers through multi-mode terrestrial
networks including optical fiber composite overhead ground
wire (OPGW), wireless local area network (WLAN), and
micropower wireless networks. Finally, the collected data are
comprehensively analyzed to support real-time calculation of
transmission line capacity expansion, icing detection, and
electrical equipment fault positioning.

Electric emergency communication: Electric emergency
communication supports rapid response to crisis, emergencies,
and disasters. Based on the independent and disaster-resistant
non-terrestrial networks, the robustness of electric emergency
communication is enhanced greatly. In typical scenarios such
as damaged device detection and positioning, UAVs act as
relay nodes to construct communication links between ter-
restrial control station and PIoT devices for computation
offloading. In addition, in real-time transmission of audio,
video, and data information, UAVs and video subsystems
are integrated into the traditional vehicle emergency satellite
communication system to quickly build an independent private
network, which supports the establishment of lingkage and
consultation between the forward command and the remote
command center to achieve efficient emergency repair.

B. Research Challenges of Computation Offloading in IPIoT

Coupling between task offloading and computation
resource allocation: Task offloading reduces computation
delay but results in increased edge-side and cloud-side queue
backlogs and queuing delay, which imposes new challenge
for computation resource allocation optimization. On the other
hand, dynamically allocated computation resources cause the
fluctuation of queue backlog information and task offloading
reward, which in turn affects BS selection and computing
paradigm selection in task offloading optimization.

Adverse impacts on synchronous FDRL due to hetero-
geneity and dynamics of IPIoT: The resource heterogeneity
and dynamics in IPIoT cause differentiated training rates of
local models. Synchronous FDRL-based federated averaging
results in large training latency and poor convergence, caused
by waiting for the model with the slowest training rate.
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Fig. 1. Comparison of DRL, synchronous FDRL, and AFDRL.

Degraded training performance due to EMI: The sudden
and strong EMI caused by partial discharge of high-voltage
equipment such as transformers and switchboards deteriorates
data transmission and makes local model training aberrant.
Specifically, EMI causes errors in training data, resulting in
aberrant fitting weights and inaccurate local models. Federated
averaging based on aberrant local models leads to divergent
global model and degraded training performance.

III. AFDRL-BASED COMPUTATION OFFLOADING
FRAMEWORK

In this section, the fundamentals of AFDRL are firstly
introduced. Then, the AFDRL-based computation offloading
framework for IPIoT is elaborated. Afterwards, we explain the
specific implementation procedure of computation offloading.
Finally, the proposed ARTIST algorithm is illustrated.

A. Fundamentals of AFDRL

The comparisons among DRL, FDRL, and AFDRL are
shown in Fig. 1, which are introduced as follows.

DRL: DRL combines the advantages of deep learning in
approximating complex mapping relationships and reinforce-
ment leaning in model-free decision making [10], [11]. DRL
can be implemented in either centralized or distributed fashion.
However, the centralized implementation faces the challenge
of large communication overheads and security threats due
to raw data exchange, whereas distributed one suffers from
poor learning performance due to underutilization of adjacent
environment observations [12].

FDRL: FDRL integrates FL and DRL to reduce commu-
nication overheads, relieve security threats, and exploit envi-
ronment observations. However, FDRL requires synchronous
local models uploading, which leads to large waiting delay
for federated averaging under differentiated local model train-
ing rates. Moreover, synchronous FDRL inevitably reduces
information freshness due to network congestion caused by
simutaneous massive data uploading.

AFDRL: AFDRL is introduced to overcome the shortcom-
ings of synchronous FDRL [13]. AFDRL allows devices to
defer the uploading of inadequately trained local models, and
only converged models are uploaded and utilized to train
the global model, which reduces the waiting delay and total
queuing delay. Three common AFDRL algorithms, i.e., asyn-
chronous federated deep Q network (AFDQN), asynchronous
federated deep actor critic (AFDAC), and asynchronous fed-
erated deep deterministic policy gradient (AFDDPG), are
introduced.

o« AFDQON: AFDQN integrates the potentials of deep neural
network (DNN) in learning and Q-learning in intelligent
decision making [14]. Each device maintains a local
evaluation network to learn the mapping relationship
between state-action pair and estimated Q value, and a
local target network to assist in evaluation network train-
ing. AFDQN employs experience replay to relieve the
negative impact of correlation and non-stationary distri-
bution of historical data on network training. The trained
weights of local networks are uploaded asynchronously
to a central controller. The central controller maintains a
global evaluation network and a global target network to
perform federated averaging and update local networks
of corresponding devices through global network weight
delivering.

e AFDAC: In AFDAC, each device maintains a local actor
network to draw actions and optimize policy based on
policy-based DRL, and a local critic network to criticize
and guide policy updating based on value-based DRL.
The trained weights of local networks are uploaded
asynchronously. The central controller maintains a global
actor network and a global critic network, which perform
similar functions as those of AFDQN.

o AFDDPG: AFDDPG integrates experience replay and
target networks of AFDQN with AFDAC. Specifically,
each device maintains four local DNNs, i.e., an actor
network, a target actor network, a critic network, and
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Fig. 2. AFDRL-based computation offloading framework for IPIoT.

a target critic network. The target actor network and
target critic network assist in training of the actor network
and the critic network, respectively. Similarly, the central
controller maintains four global DNNs corresponding to
the four local networks. After the training of the four local
networks, devices upload the weights asynchronously to
the central controller, which acts similarly as AFDQN
and AFDAC.

B. AFDRL-based Computation Offloading Framework for IP-
loT

The proposed AFDRL-based computation offloading frame-
work for IPIoT is shown in Fig. 2. It consists of terrestrial and
non-terrestrial networks.

Terrestrial network includes terrestrial BSs, edge servers,
cloud servers, and PIoT devices. PIoT devices are deployed on
electrical equipment such as PVs, wind turbines, and charging
piles to collect different kinds of data, e.g., infrared image,
voltage, current, temperature, and humidity information. De-
vices make task offloading decisions and offload generated
computation tasks to edge servers or cloud server via terrestrial
BSs or non-terrestrial networks. Devices train local models
of task offloading optimization based on local information,
and upload them to the cloud server asynchronously. BSs
are co-located with edge servers to provide communication
coverage and task computation. BSs also connect with the
cloud server via terrestrial backhaul network. The cloud server
performs federated averaging, and global model training. The
computation resources of edge servers and cloud server are
dynamically allocated according to data backlog and service
requirements. The terrestrial network provides consistent cov-
erage and powerful computation resources in areas with dense

populations, but has the drawbacks of high deployment cost,
poor flexibility, weak disaster resistance, and limited coverage
in sparsely populated areas.

Non-terrestrial network is composed of aerial network and
space network. The aerial network includes UAVs, HAPs, and
balloons with miniature edge servers. They provide flexible
computing services in isolated areas, but have the drawbacks
of intermittent connectivity due to limited battery and uncoor-
dinated trajectory. The space network includes geostationary
(GEO), middle Earth orbit (MEO), and low Earth orbit (LEO)
satellites. Devices upload and download models from the cloud
server via satellites when terrestial and aerial networks are
unavailable. The space network has larger latency due to the
extremely long transmission distance between satellites and
devices.

In order to implement computation offloading in IPIoT, the
proposed architecture considers the fusion of terrestrial and
non-terrestrial networks from two perspectives, i.e., task of-
floading and resource management. For task offloading, PIoT
devices offload tasks to edge servers and cloud servers via
terrestrial BSs and non-terrestrial UAVs and satellites by lever-
aging converged network protocol and compatible interface.
For resource management, based on different geographical
distribution characteristics of PIoT devices and differentiated
service requirements, the multi-dimensional heterogeneous re-
sources of communication, computing, and energy in IPIoT
are aggregated into a unified resource pool and allocated
collaboratively.

C. Implementation Procedure of Computation Offloading

The implementation procedure of computation offloading in
IPIoT is shown in Fig. 3. We mainly elaborate task offloading
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Fig. 3. Implementation procedure of computation offloading in IPIoT.

and computation resource allocation.

Task Offloading: PIoT devices collect data, generate vari-
ous tasks, and store them in local buffers modeled as device-
side data queues. Task offloading consists of BS selection
and computing paradigm selection, where each device selects
either terrestrial BS, UAV, or LEO satellite for data transmis-
sion, and selects edge computing or cloud computing for data
processing. Three cases of task offloading are shown in Fig. 3.
In Case 1, the device selects terrestrial BS and edge computing
paradigm. Data are offloaded to the corresponding edge-side
data queue maintained by the edge server. In Case 2 and Case
3, the device selects the cloud computing paradigm. Data
are offloaded to the corresponding cloud-side data queues,
mantained by cloud server via satellite and UAV, respectively.

Computation Resource Allocation: Edge and cloud
servers allocate the available computation resources, i.e., CPU-
cycle frequency, to process the offloaded data stored in the
edge-side and cloud-side data queues. Computation resource
allocation is dynamically adjusted according to internal and
external factors such as available resources, data backlogs, and
queuing delay requirements. Two cases are shown in Fig. 3.
In Case 1, compared with UAV, terrestrial BS with abundant
computation resources is selected to allocate more resources
for task computation. In Case 3, the larger data backlog en-
forces the cloud server to allocate more computation resources
to reduce queuing delay.

D. ARTIST

We propose the novel ARTIST algorithm to address the
problem of low-latency computation offloading in IPIoT

Computation resource allocation

through joint optimization of task offloading and computation
resource allocation. A slot model is adopted where network
status, such as the location of UAVs and channel state infor-
mation, remains constant within one slot. In each slot, PIoT
devices make task offloading decisions including BS selection
and computing paradigm selection, and edge servers and
cloud server make computation resource allocation decisions.
The task offloading and computation resource allocation is
optimized based on the assumption of achieving time syn-
chronization among all terrestrial and non-terrestrial entities.
The specific time synchronization scheme will be investigated
in future work.

The task offloading queuing delay is defined as the ratio
of the device-side data backlog to the average data arrival
rate. The edge-side and cloud-side queuing delays are defined
similarly. Since a device’s tasks may be offloaded to more
than one edge server and even to, the cloud server, the
task computation queuing delay is determined by the largest
queuing delay among edge-side and cloud-side data queues.
The low-latency computation offloading problem is formulated
as follows.

Objective: The objective is to minimize the total queuing
delay, which is defined as the sum of the task offloading
queuing delay and task computation queuing delay, by jointly
optimizing task offloading and computation resource alloca-
tion.

Task offloading constraint: Only one BS and one com-
puting paradigm can be selected by each PIoT device in each
slot.

Computation resource allocation constraint: The total
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allocated computation resources of each server cannot exceed
its upper bounds.

Queue stability constraint: The device-side and server-side
data queues should remain mean rate stable.

Lyapunov optimization is leveraged to decouple the short-
term optimization and the long-term queue stability constraint.
Specifically, the joint optimization problem is converted into
the device-side task offloading subproblem and server-side
computation resource allocation subproblem through the min-
imization of the upper bound of the drift-plus-penalty. The
drift-plus-penalty is calculated as the weighted sum of the
total queuing delay and the one-step conditional Lyapunov
drift, which is defined as the difference between the Lyapunov
functions in adjacent slots.

The task offloading subproblem and the computation re-
source allocation subproblem are solved in two stages. The
first-stage subproblem is modeled as a Markov decision pro-
cess (MDP).

State: The state space consists of the data backlogs, task-
related information such as empirical data arrival amount, and
empirical network performance such as throughput, i.e., the
amount of offloaded task data.

Action: The action space is the set of BS selection and
computing paradigm selection strategies.

Reward: The reward is the negative of the upper bound of
the drift-plus-penalty.

The devices asynchronously upload the converged local
model for federated averaging, which avoids network conges-
tion, ensures adequate training of local models and reduces
waiting delay for global averaging. Moreover, cost deviation
is adopted to detect aberrant local models caused by sudden

and strong EMI. If the cost deviation exceeds a certain upper
threshold, the corresponding local model is detected as an
aberrant model, and is eliminated from federated averaging to
increase training accuracy, improve convergence, and achieve
EMI awareness.

The framework of ARTIST is shown in Fig. 4, and the im-
plementation process is shown in Fig. 5. Details are explained
as follows.

Initialization: Initialize the global critic network, global
actor network, local critic network, and local actor network
with random weights. The reward is initialized as zero.

First-stage task offloading optimization:

e Model downloading: At the beginning of each slot, de-
vices download the global model from the cloud server
and set it as local models.

e Action drawing: Each device draws the task offloading
action according to the policy provided by the local
actor network and the current state. Then, the device
executes the action, updates the device-side data queue,
and calculates the reward.

o Local model updating: Each device calculates the
temporal-difference (TD) error based on the reward,
discount factor, and state-action value. Then, based on
the gradient descent method, the parameters of local
actor model is updated based on the TD error, actor
network learning rate, and policy score function, and the
parameters of local critic model is updated based on TD
error and critic network learning rate.

o Asynchronous local model uploading: A device requires
a certain training period to achieve local model conver-
gence. Each device determines whether the local model
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has been adequately trained and asynchronously uploads
the converged local model to the cloud server.

e Federated set determination: Determine the federated set
by removing aberrant local models whose cost deviations
exceed upper thresholds to improve convergence and
accuracy of global models.

o Federated averaging: The cloud server executes federated
averaging based on the determined federated set and
converged local models to update parameters of the global
actor network and global critic network.

Second-stage computation resource allocation optimiza-
tion: Based on the first-stage task offloading decision, each
device offloads its task data to the corresponding edge server
or cloud server. Servers observe the offloaded data backlogs
and optimize computation resource allocation. The objective
of the computation resource allocation subproblem is defined
as the weighted sum of data backlogs and the minimum instan-
taneous queuing delay on the server side. Due to the existence
of a minimization term, the computation resource allocation
subproblem is non-convex. Therefore, we leverage a smooth
function to approximate the minimization term and transform
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the original subproblem into a convex one. The transformed
subproblem is solved by Lagrange dual decomposition. Each
server processes the task data based on allocated computation
resources. The resulted task computation queuing delay and
the server-side data backlogs are utilized to calculate the
reward and update the state, which in turn affect next-slot
local model training and task offloading decisions.

Enter the next slot and repeat the two-stage optimization
until the total optimization time ends.

IV. CASE STUDY

The performance improvement of ARTIST is verified in a
case study. We consider a 400 m x 400 m area that contains
4 terrestrial BSs, 2 UAVs, 1 LEO satellite, and 12 PIoT
devices. Devices are divided into three levels according to
the descending order of local model training rates, i.e., first
level, second level, and third level. The first-level devices have
the fastest training rate. The numbers of first-level, second-
level, and third-level devices are 3, 4, and 5, respectively.
The coverage radii of terrestrial BSs and UAVs are 300 m
and 100 m, respectively. The UAVs fly along a circle with
a radius of 100 m, and the flight altitude is 90 m. The
simulation parameter setting is based on [1], [4]. There are
100 slots with equal length 100 ms. The available computation
resources of edge servers and cloud server are randomly
distributed within [16, 36] GHz and [36, 56] GHz. EMI is
modeled based on the symmetric a-stable (SaS) distribution,
where the related parameters such as characteristic factor,
skew parameter, scale parameter, and location parameter are
set based on the electromagnetic environment. To verify EMI
awareness, the power of EMI is increased suddenly during [30,
50] slots. Two comparison algorithms are adopted. The first
one is the synchronous FDAC-based task offloading algorithm
(FDTO) [15], which adopts a fixed computation resource
allocation ratio. The second one is synchronous FDAC-based
computation offloading algorithm (SFDAC) with EMI-aware
federated set determination developed in this paper. Training-
testing splitting is not considered in the three algorithms,
which will be investigated in future work.

Fig. 6 (a) and (b) show the task offloading queuing delay and
total queuing delay, respectively. Compared with FDTO and
SFDAC, ARTIST reduces the task offloading queuing delay by
47.90% and 35.17%, and the total queuing delay by 54.91%
and 46.25%, respectively. Due to the sudden and strong EMI,
the device-side queuing delay of three algorithms increases
during [30, 50] slots. Nevertheless, ARTIST has the lowest
peak increment by discarding aberrant local models to mitigate
the adverse impacts of EMI. Moreover, ARTIST outperforms
SFDAC with EMI awareness due to asynchronous local model
uploading, as shown in Fig. 6 (c).

Fig. 6 (c) shows the total times of local model uploading.
Compared with FDTO and SFDAC, ARTIST improves the
total times of first-level local model uploading by 78.30% and
77.82%, and the total times of second-level local model up-
loading by 25.87% and 25.49%, respectively. ARTIST allows
devices to upload models asychronously. Federated averaging
is performed only based on uploaded models without waiting
for inadequately trained models.

V. CONCLUSION AND FUTURE RESEARCH

In this article, we addressed the low-latency computation
offloading problem in IPIoT. An AFDRL-based computation
offloading framework was proposed to improve the utilization
of heterogeneous resources and promote optimal computation
offloading decision making. Moreover, we proposed ARTIST
to minimize the total queuing delay through the two-stage joint
optimization of task offloading and computation resource allo-
cation. Compared with FDTO and SFDAC, ARTIST reduces
the task offloading queuing delay by 47.90% and 35.17%, and
the total queuing delay by 54.91% and 46.25%. Finally, we
identify some open research challenges and potential solutions.

Adverse impact of age of information (Aol) on model
training and information freshness: Aol is an effective
indicator to measure the freshness of key information. It rep-
resents the delay experienced by information from generation
to being utilized for model training. A large Aol indicates a
poor timeliness of information, resulting in high TD error and
poor learning performance. A small Aol indicates a fresher
information, which makes the model training more accurate.
An effective solution is to jointly optimize Aol with other
quality of service (QoS) metrics through multi-dimensional
resource allocation and task offloading coordination.

Trust and security threats of computation offloading in
IPIoT: The task data are exposed in an untrusted and opaque
environment due to the complex affiliations of IPIoT devices.
Some eavesdroppers may hack into servers for data tampering
and theft, which seriously endangers the security of power
systems. Blockchain provides a solution to ensure the trust and
security concern in computation offloading optimization based
on the distributed ledger, digital signature, and consensus
mechanism. However, when the computation capacity of a
consensus node is powerful enough to control the blockchain
system, trust and security are difficult to be guaranteed. A
potential research direction is to combine blockchain with ad-
vanced security trust technologies such as trusted computing,
white list, multi-layered encryption, and access authentication
mechanisms based on horizontal isolation and vertical authen-
tication to ensure mutual trust and improve data integrity.

ACKNOWLEDGMENTS

This work was supported by National Key R&D Program of
China under Grant Number 2020YFB0905900, the National
Natural Science Foundation of China under Grant Number
61971189, the open research fund of National Mobile Com-
munications Research Laboratory, Southeast University (No.
2021D12), State Key Laboratory of Alternate Electrical Power
System with Renewable Energy Sources under Grant Number
LAPS2021-25, and 6G-XR project has received funding from
the Smart Networks and Services Joint Undertaking (SNS JU)
under the European Union’s Horizon Europe research and
innovation programme under Grant Agreement No 101096838.
(Corresponding author: Zhenyu Zhou)

REFERENCES

[1]1 H. Liao, et al., “Cloud-Edge-End Collaboration in Air-Ground Integrated
Power IoT: A Semi-Distributed Learning Approach,” IEEE Trans Ind.
Informat., vol. 18, no. 11, Apr. 2022, pp. 8047-8057.



IEEE NETWORK, MAY 2022

[2] B. Shang, et al., “Computing over Space-Air-Ground Integrated Net-
works: Challenges and Opportunities,” IEEE Network., vol. 35, no. 4,
Aug. 2021, pp. 302-309.

[3] L. Bariah, et al., “A Prospective Look: Key Enabling Technologies,
Applications and Open Research Topics in 6G Networks,” IEEE Access,
vol. 8, no. 99, Aug. 2020, pp. 174792-174820.

[4] H. Liao, et al, “Blockchain and Semi-Distributed Learning-Based
Secure and Low-Latency Computation Offloading in Space-Air-Ground-
Integrated Power 10T,” IEEE J. Sel. Top. Signal Process., vol. 16, no. 3,
Apr. 2022, pp. 381-394.

[5] B. Mao, et al., “Optimizing Computation Offloading in Satellite-UAV-
Served 6G IoT: A Deep Learning Approach,” IEEE Network, vol. 35,
no. 4, Aug. 2021, pp. 102-108.

[6] L. Bariah, et al., “Toward Federated-Learning-Enabled Visible Light
Communication in 6G Systems,” IEEE Wireless Commun., vol. 29, no. 1,
Feb. 2022, pp. 48-56.

[7]1 F. Liu, et al., “Device Association for RAN Slicing based on Hybrid
Federated Deep Reinforcement Learning,” IEEE Trans. Veh. Technol.,
vol. 69, no. 12, Dec. 2020, pp. 15731-15745.

[8] F. Pereira, et al., “IoT Network and Sensor Signal Conditioning for
Meteorological Data and Photovoltaic Module Temperature Monitoring,”
IEEE Lat. Am. Trans., vol. 17, no. 6, Jun. 2019, pp. 937-944.

[9] F. Yang, et al., “ A Review on State-of-the-Art Power Line Inspection

Techniques,” IEEE Trans. Instrum. Meas., vol. 69, no. 12, Dec. 2020,

pp- 9350-9365.

F. Rahman, ef al., “Deep Reinforcement Learning based Computation

Offloading and Resource Allocation for Low-Latency Fog Radio Access

Networks,” Intell. Converged Networks, vol. 1, no. 3, Dec. 2020, pp.

243-257.

M. Min, et al., “Learning-Based Computation Offloading for IoT De-

vices With Energy Harvesting,” IEEE Trans. Veh. Technol., vol. 68, no. 2,

Feb. 2019, pp. 1930-1941.

F. Lu, et al., “Edge QoE: Computation Offloading With Deep Reinforce-

ment Learning for Internet of Things,” IEEE Internet Things J., vol. 7,

no. 10, Oct. 2020, pp. 9255-9265.

B. Shi, et al., “DARES: An Asynchronous Distributed Recommender

System using Deep Reinforcement Learning,” IEEE Access, vol. 9,

no. 99, Jun. 2021, pp. 83340-83354.

C. Pan, et al., “Asynchronous Federated Deep Reinforcement Learning-

based URLLC-Aware Computation Offloading in Space-Assisted Vehic-

ular Networks,” IEEE Trans. Intell. Transp. Syst. , vol. PP, no. 99, Feb.

2022, pp. 1-13.

F. Zhu, et al., “Federated Multiagent Actor-Critic Learning for Age

Sensitive Mobile-Edge Computing,” IEEE Internet Things J., vol. 9,

no. 2, Jan. 2022, pp. 1053-1067.

(10]

[11]
(12]
[13]

[14]

[15]

BIOGRAPHIES

Sifeng Li (sifeng_li@ncepu.edu.cn) is currently working
toward the M.S. degree at the State Key Laboratory of Alter-
nate Electrical Power System with Renewable Energy Sources,
School of Electrical and Electronic Engineering, North China
Electric Power University. His research interests include power
internet of things, resource allocation, and space-air-ground
integrated network.

Sunxuan Zhang (sunxuan_zhang@ncepu.edu.cn) is cur-
rently working toward the Ph.D. degree at the State Key
Laboratory of Alternate Electrical Power System with Re-
newable Energy Sources, School of Electrical and Electronic
Engineering, North China Electric Power University. His re-
search interests include power internet of things, cloud-edge-
end collaboration, and network security.

Zhao Wang (zhao_w@ncepu.edu.cn) is currently working
toward the Ph.D. degree at the State Key Laboratory of
Alternate Electrical Power System with Renewable Energy
Sources, School of Electrical and Electronic Engineering,
North China Electric Power University. Her research interests
include power internet of things, cloud-edge-end collaboration,
and resource allocation.

Zhenyu Zhou (zhenyu_zhou@ncepu.edu.cn) received the
Ph.D. degree from Waseda University, Japan in 2011. Since
April 2019, he is a full professor at State Key Laboratory
of Alternate Electrical Power System with Renewable Energy
Sources, School of Electrical and Electronic Engineering,
North China Electric Power University, China. His research
interests mainly focus on power internet of things, smart
grid communication, and cloud-edge-end collaboration. He is
a senior member of IEEE, Chinese Institute of Electronics
(CIE), and China Institute of Communications (CIC). He is
an Associate Editor for IEEE Internet of Things Journal and
IEEE Access. (He is the corresponding author.)

Xiaoyan Wang (Senior Member, IEEE) received the B.E.
degree from Beihang University, China, and the M.E. and
Ph.D. degrees from the University of Tsukuba, Japan. From
2013 to 2016, he worked as an Assistant Professor (by special
appointment) with the National Institute of Informatics (NII),
Japan. He is currently working as an Associate Professor
with the Graduate School of Science and Engineering, Ibaraki
University, Japan. His research interests include intelligent
networking, wireless communications, cloud computing, big
data systems, and security and privacy.

Shahid Mumtaz (dr.shahid.mumtaz@ieee.org) received the
M.Sc. degree from the Blekinge Institute of Technology,
Sweden, and the Ph.D. degree from the University of Aveiro,
Portugal. He is currently with the Department of Applied
Informatics, Silesian University of Technology, Akademicka,
Gliwice, Poland, and the Department of Engineering, Notting-
ham Trent University. His research interests include MIMO
techniques, multihop relaying communication, cooperative
techniques, cognitive radios, game theory, and energy-efficient
frameworks for 5G.

Mohsen Guizani (mguizani@ieee.org) received the M.S.
and the Ph.D. degrees in Electrical and Computer engineering
from Syracuse University, Syracuse, NY, USA. He is currently
a professor and the associate provost at Mohamed Bin Zayed
University of Artificial Intelligence (MBZUAI), Abu Dhabi,
UAE. His research interests include applied machine learning,
smart city, wireless communications/networking, cloud com-
puting, security and its application to healthcare systems. He
was elevated to the IEEE Fellow in 2009. He is currently
serving on the Editorial Boards of many IEEE Transactions
and Magazines.

Valerio Frascolla (Member, IEEE) received the M.Sc. and
the Ph.D. degrees in electronic engineering. He is currently
the Director of research and innovation with Intel. He is
the author of over 70 peer-reviewed publications. His main
research interests include being 5G system design, with fo-
cus on machine learning algorithms, spectrum management,
mmWaves, and edge technologies. He serves as a reviewer
for several magazines and journals, as consortium lead for
business, standardization, innovation, and exploitation matters
in international research projects. He has a track record as an
organizer of special sessions, workshops, and panels at flagship
IEEE conferences.



