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Abstract—Internet-of-Vehicles (IoV), an important part of
Intelligent Transportation Systems, is one of the most strategic
applications in smart cities initiatives. The mMTC and URLLC
functions of 5G are especially crucial for ensuring the connec-
tivity and communication needs of rapidly moving IoVs. In this
backdrop, network virtualization, cognitive computing along with
smart spectrum resource management to the virtual networks
will play a key role in solving the spectrum resource challenge.
In this article, we propose a dynamic carrier resource allocation
scheme for supporting IoV systems in smart cities enabled
by cloud radio access networks (CRAN)-based 5G carriers. In
CRAN-based 5G networks, the carrier resource allocated to the
virtual networks can be centrally managed and shared to meetthe
dynamic demand of cell capacities caused by the rapid movement
of IoVs, and the response to this dynamic allocation will become
more time critical. The proposed cognitive carrier resource opti-
mization is achieved by enhancing the ability to predict movement
of IoVs, hence the dynamically changing demand for carrier
resources. As an enhancement of the traditional Markov Model,
our prediction model introduces vehicles’ mobility analysis in
order to allow the construction of a more precise flow transition
matrix to improve the prediction result. Numerical results are
provided to show the performance improvement of the proposed
method.

Index Terms—Carrier allocation, Internet of Vehicles, smart
city, mobility prediction

I. I NTRODUCTION

W ITH its complex computing and sensing capabilities
and is highly dynamic and mobile, Internet-of-Vehicles

(IoV), an important part of Intelligent Transportation Systems,
is one of the most strategic applications in smart cities initia-
tives. IoV, which may exist in the form of a semi-autonomous
vehicle or even an autonomous vehicle, can be modelled as
an IoT device with integrated sensing and control components
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for automated navigation and enhanced safety [1][2]. These
IoT applications typically involve a massive number of IoT
devices being deployed in field environment, which access
some cloud platforms for big data analytics or intelligent
decision making via a variety of wired and wireless networks.
Such IoT devices can be deployed with high mobility when the
Internet connectivity is available through the wireless channels
[3][4].

Being a highly mobile IoT, IoV is a complex system
to implement vehicular and intelligent transportation system.
Typically, IoV is wirelessly connected to some road-side in-
frastructure, which in turn is connected to the backend control
centre through broadband cables, for exchanging vehicularand
traffic control information. Through constant communications
with the roadside infrastructure, IoV also helps in efficient traf-
fic management and enable intelligent transportation systems,
and can potentially be used as an infrastructure platform for
supporting other smart cities applications. Many remarkable
research results on IoV have emerged. In [5], a new network
architecture named IDT-SDVNs to extend the computation
resources was proposed to address the limitations of current
IoV. This architecture can help realize the iterative update
of the networking schemes in an adaptive way. In [6], the
authors proposed an efficient online sequential learning-based
adaptive routing scheme for hybrid software-defined vehicular
networks. This scheme can help fully utilize the computational
power of edge servers and dynamically select a routing strat-
egy for a specific traffic scenario.

Due to the very nature of vehicular systems, IoV is heavily
dependent on network connectivity and bandwidth availability.
In recent years, research advancement in cognitive radio
network also allowed the massive deployment of bandwidth-
hungry IoT devices in urban areas. In order for IoV to achieve
its intended functionalities of enhanced navigation, safety and
enabling efficient traffic management, IoV requires anytime
anywhere connectivity which cannot be effectively satisfied
by traditional networking technologies.

5G networks are widely believed to be the enabler of a
broad range of smart city technologies [7]. To large-scale
cyber system operators such as smart cities, the mMTC and
URLLC functions of 5G are especially crucial to ensuring
the connectivity and communication needs of rapidly moving
IoVs. In technical terms, a 5G cellular mobile network must
satisfy the three main, but distinct, use scenarios defined by
the International Telecommunication Union (ITU). They are

• Enhanced Mobile Broadband (eMBB) i.e. to provide
much higher transmission speed than 4G.
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• Ultra Reliable Low Latency Communications (URLLC)
i.e. to support much lower air interface latency, which
is to meet the requirements of using the network for
mission critical applications that requires uninterrupted,
real-time and robust data exchange. In IoV, the high-speed
movement of terminals leads to stricter requirements for
real-time response and information processing. URLLC
is expected to meet the low latency requirements of
cooperative communication among people, vehicles and
roads.

• Massive Machine Type Communications (mMTC) i.e. to
support much higher connection density than 4G in order
to connect to a large number of devices in a small area.

This means that, at a first glance, given a fixed spectrum
resource, 5G networks are expected to satisfy a number of
seemingly conflicting requirements; that is, being able to
connect a larger number of devices, with each connection
supporting a much higher transmission speed and much lower
communication latency. 5G network technology satisfies the
aforementioned ITU requirements by making use of higher
frequency spectrum ranges and achieving substantial improve-
ment in spectrum management. Other techniques such as
beaming and multiple antennae also contribute to the signifi-
cantly enhanced capabilities of 5G.

In this backdrop, network virtualization, cognitive comput-
ing along with smart spectrum resource management to the
virtual networks will play a key role in solving the spectrum
resource challenge [8]-[10]. 5G technology adopts an architec-
tural approach called slicing in order to meet the communica-
tion needs of specific 5G applications. To cater for a variety
of mobile applications with differing communication require-
ments, 5G embraces the notion of network virtualization, with
the extensive use of Software Defined Network (SDN) and
Network Function Virtualization (NFV) techniques. Based on
NFV technology, communication networks can realize the
decoupling of software and hardware by introducing the cloud-
based mode, and reducing the network operator’s equipment
cost while enhancing the utility efficiency of computation
and wireless resources. Similar to NFV, the SND technology
is designed to improve the system flexibility by decoupling
the control plane and forwarding plane. These are key tech-
nologies to enable intelligent 5G communications. Slicing
allows the same physical network infrastructure to implement
different logical networks of various priorities in Quality of
Services (QoS) in terms of transmission bit rates, connection
density and air interface latency.

The trend of cognitive carrier resource optimization and
edge computing will play a critical role in implementing the
spectrum management capabilities of 5G carriers [11]-[13].
More recently, the adoption of cloud radio access networks
(CRAN) architecture, which aims is to split the base stations
into radio and baseband parts and pool the Baseband Units
(BBUs) from multiple base stations into a centralized and vir-
tualized BBU Pool, further enables mobile carriers to optimize
their spectrum resources across multiple cells.

In CRAN-based 5G networks, the carrier resource allocated
to the virtual networks can be centrally managed and shared
to meet the dynamic demand of cell capacities caused by

movement of mobile users. The response to this dynamic
allocation will become more time critical in the case of IoV
systems due to the rapid movement of mobile users. One of the
key challenges caused by IoV’s mobility is the fast-changing
topology which easily leads to tidal effect in individual cell
areas and difficulty for carrier resource allocation of core
networks. In 5G-based smart city, CRAN-based architecture
has shown its huge advantages and will be widely deployed to
address the tidal effect and improve energy efficiency [14][15].
As such, the task of intelligently allocating carrier spectrum
resource to various cells in the core network layer is a critical
issue which requires the gathering of whole users’ mobile
information. Thus, in IoV, how to precisely predict the cells’
flow change so as to optimize the wireless carrier resource
deserves extensive investigations in 5G-oriented smart cities.

In this article, we propose a dynamic carrier resource alloca-
tion scheme for supporting IoV systems in smart cities enabled
by CRAN-based 5G carriers. In smart cities, massive mobile
users always exhibit certain regular mobility patterns, such as
moving to CBD in daytime and to residence community in
the evening, called tidal migration. To meet the peak capacity
requirement in every cell, huge network resources need to
be allocated to each cell area, even though the number of
mobile users in CBD at the midnight could be very small. In
such circumstances, the task of dynamically allocating network
resource to match the users’ regular movement patterns in
smart cities has become a critical issue. In CRAN-based
smart cities, where virtual spectrum resource can be centrally
allocated in the cloud server, the tidal migration effect can be
addressed.

The proposed cognitive carrier resource optimization is
achieved by enhancing the ability to predict movement of
IoVs, hence the dynamically changing demand for carrier re-
sources. As an enhancement of the traditional Markov Model,
our prediction model introduces vehicles’ mobility analysis
in order to allow the construction of a more precise flow
transition matrix to improve the prediction result. In this
connection, we investigate the behavior patterns of mobile
vehicles based on their historical movement information, and
then predict the flow change across various cells. The flow
prediction serves as the basis for carrier resource allocation in
the 5G network. Numerical results are provided to show the
performance improvement of the proposed method.

The key contribution of this paper is to enhance the tradi-
tional Markov Model with a precise flow transition matrix. To
achieve this, we introduce vehicles’ mobility analysis to allow
the construction of a more precise flow transition matrix to
improve the prediction result. The main contributions of this
paper can be highlighted as follows

• We propose a wireless carrier resource allocation scheme
in CRAN-based 5G carriers. This carrier resource alloca-
tion optimization is based on the prediction of cell flows
and adopt a Markov-based model to predict the cell flow
change. Unlike to the classical flow prediction solutions,
we introduce the IoV users’ movement analyses to ensure
the prediction accuracy.

• The movement analysis model is built for IoV terminals
in smart city according to users’ historical position in-
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formation and QoS demands. To improve the accuracy
of IoV user’s position predicting at subsequent slots,
vehicular terminal’s behavior habit, service type along
with QoS demand are considered in system model.

• Comparison simulated tests are performed to evaluate
the performances of our proposed method in blocking
probability and spectrum efficiency.

The rest of this article is organized as follows. A cloud-
based IoV framework which can address the tidal effect and
enhance spectrum efficiency is presented. Then, we propose
a cognitive carrier optimization scheme for IoV in smart city
on the basis of cell flow prediction. Unlike traditional flow
prediction method, we improve the prediction accuracy by
introducing the position analysis for IoV terminals which can
refine the generation of flow transition matrix. Numerical re-
sults are then provided to show the performance improvement
of the proposed method.

II. CLOUD-ACCESS-BASED IOV FRAMEWORK IN SMART

CITY

In this article, we consider IoV in smart cities enabled by
CRAN-based 5G carriers as shown in Fig. 1. In this scenario,
the cloud access mode is applied to enhance energy efficiency
and spectrum usage for 5G networks, in which the manage-
ment of network carrier resource is performed in the cloud
layer. In addition, edge computing is supposed to be performed
to guarantee real-time performance, as well as various kinds of
task-hubs along the small cells serve. To address challenges
in the complicated urban circumstances, fog computing and
dynamic spectrum access have been considered to ensure
user’s Quality of Experience (QoE).

In the face of growing number of IoV connections in a
massive scale, 5G carriers need to address many critical issues
in order to ensure the high-quality transmissions in smart
cities. These include:

1) The complex and dynamically changing traffic scenes
due to the rapid movement of a massive number of vehicles
will lead to frequent changes in the topology structure of IoV,
hence the task of describing the impact of dynamic traffic
flow topology on network performance has become one of the
challenging issues in IoV.

2) The task of coordinating and scheduling key wireless
resources, such as spectrum and computation resource, in order
to cope with the impact of large-scale vehicle movement on
existing wireless networks, and to meet the demand of large-
scale data services, is a key problem to be addressed.

3) When using road beacon to improve the information
collection and transmission, the route construction basedon
routing table of IoV transmission protocol usually has high
transmission cost and slow convergence speed. However, the
non-beacon transmission is easy to generate competitive re-
quests, and the information interaction is disordered, which
will weaken the system stability. How to establish an efficient
and stable transmission routing mechanism for IoV is another
key challenge.

4) In dynamic vehicle topology environment of IoV, how
to assure the high-reliability information processing in vehicle

emergency situation and large-capacity information transmis-
sion demand in common status still deserves deep investiga-
tions.

In this scenario, we consider to adopt CRAN technology
in 5G-enabled smart cities to address the impact of massive
IoV terminals’ mobilities which bring huge challenges to
resource management and energy efficiency for traditional
cellular networks. As shown in Fig. 2, the cloud-access-based
5G networks are centralized framework, only antenna array
is reserved at base stations, and the traditional control units
in base station are canceled. All computation resources are
centralized in the cloud and connected through optical fiber.
The new architecture can greatly reduce the equipments in
base stations, cut energy consumption and operating cost.
In addition, CRAN-based 5G networks adopt collaborative
and virtualization technology to achieve resource sharingand
dynamic scheduling which effectively cope with the tide effect
and improve spectrum utilization.

III. M OBILITY ANALYSIS BASED ON IOV USERS’
HISTORICAL POSITION INFORMATION

Driven by the explosive growth in user demands, wire-
less networks have been evolving continuously. Optimized
management of network resource, such as optimize wireless
resource allocation, network planning, spectrum access and
handoff, typically attempt to recognize and cater for the
behavior characteristics of the majority users’ mobile. For ex-
ample, most classical schemes on wireless resource allocation
are typically based on user QoS requirements, interference
suppression, system profit and so on; whereas, thorough in-
vestigations of the mobility characteristics of mobile users
are not carried out. For supporting IoV in smart cities, the
strong mobility of IoV users makes the related research more
important.

To address the tidal migration effect in smart cities, how
to efficiently and dynamically manage the network resource
among the various cells is a key challenge. Thanks to the
CRAN networks, the framework of virtual spectrum pool
realizes the goal of managing the spectrum resource centrally
among cellular radio systems. In order to ensure a rational
spectrum management in CRAN networks, knowledge about
the users’ mobility pattern is essential. In such circumstances,
performing mobility analysis and establishing IoV users’ mo-
bility patterns are very significant to the task of efficient
spectrum optimization in IoV.

Fortunately, in an actual communication process, there is
a strong regularity in users’ mobility. For instance, many
users often commute within few places in a city. The tidal
migration of massive users often occurs, such as gathering in
several hot spots during daytime hours and the other places
in resting time. Thus, the user’s movement is usually highly
purposeful and easy to show cyclical characteristics. These
characteristics provide the possibility for mobility prediction
which will benefit the spectrum optimization.

IoV user’s every movement can be described as one hop,
and there are two potential behavior modes for the next hop as:
1. The user moves to a new position; 2. The user moves back
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Fig. 1. CRAN-based VoI in smart city

to a previous position. The probability isPre(i) = µJ(i) −
k and Pnew(i) = 1 − {µJ(i) − k. Wherein,J(i) denotes
the number of the positions visited,i is the hop number. In
addition, before the user transfers to another position, itwill
stay at current position for a while. In (1), the probability
of IoV user’s visiting to previous position will rise when the
visited positions increase. According to the visiting frequency
to previous positions, we classify the IoV users into regular
user or explore user. The radius for the mostk popular visiting
positions can be expressed as

~rg =

√

√

√

√

1

n

n
∑

n1=1

n1
∑

n2=1

|~rn1 − ~rn2|2 (1)

wheren denotes the overall hop number and~rg denotes the
step number atg hop. The importance ranking for the visiting
positions can be expressed asRank(L0) = afn0

+(1−α)4t0.
Wherein,L0 denotes theo important position for the IoV user,
α ∈ [0, 1] is the impact factor,fn0

is the visit frequency,
4t0 is the stay time. In the process of user’s behavior
prediction, its future position and service type can be judged

mainly by historic information on movement radius, important
stop positions and used services. The probability of user’s
movement to next position is related to the key factors above.

IV. CARRIER RESOURCEALLOCATION WITH CELL FLOW

PREDICTION

The dynamic baseband pool technology of CRAN in 5G-
based smart cities can optimize the whole baseband resource
according to the traffic and data flow of the whole networks,
dynamically allocating the carrier resources to base stations,
which can address the effects of tidal coverage. In this process,
how to accurately estimate the data flow characteristics for
each base station area is the key for providing efficient
resource scheduling solution.

As shown in Fig. 4, a CRAN-based 5G network with
multiple cells is given. The service flow of each cell can be
considered as a time sequence expressed byQi(t). Further-
more, when using the time sequence, the user number, service
overhead and cell number should also be taken into account.
Furthermore, we need to describe the network flow condition
in uniform time interval.
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Fig. 3. Movement prediction model

For two adjacent moment, the flow status change for a cell in
CRAN has the following relation asQ(n+1) = P (n)×Q(n).
Wherein,P denotes the transition matrix of network flow at
n moment. The transition matrix can be expressed as

P (n) =











P11(n) P12(n) · · · P1M (n)
P21(n) P22(n) · · · P2M (n)

...
...

. . .
...

PM1(n) PM2(n) PMM (n)











(2)

In this scenario, by carrying out movement prediction for
IoV users, we can obtain more precise transition matrixP

to guarantee the cells’ flow status estimation. On this basis,

Fig. 4. Dense distribution of multi-cells

we optimize the carrier resource allocation for CRAN-based
5G networks in smart cities.

V. PERFORMANCEEVALUATION

In this section, we give the performance evaluation for
our proposed carrier allocation method in the environment
of 5G-enabled smart city where CRAN is deployed. In this
case, we compare the performance of our proposal with the
other two traditional flow prediction solutions, includingAuto
Regressive (AR) method and Markov method. For AR flow
prediction, it estimate the flow change in near future according
to mathematical model upon the pastn time of flow status.
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Markov method assumes the flow change is steady, then
ascertain the flow transition matrix which is similar to our
proposal. Yet, our proposal adopt movement-predicting-based
method to obtain more precise flow transition matrix in the
cost of more computation consumption. The related computing
task can be completed in edge nodes or cloud servers. In the
following tests, the user number changes from 100 to 800
and the visiting position number is set to be 50. The access
location is fixed in a10×10(km) area. The total moving time
is 100 slot and each slot equals 10s. We suppose there are 80
channels to be allocated among various cells. Furthermore,we
set the QoS requirements for all the terminals to be uniform
value10dB and the user distribution is stochastic.

In Fig. 5, we give the performances of blocking probability
for IoV users in this cloud-access-based networks. As shown
in Fig. 5, with the increase of user number in a given cell, the
blocking probability rises. In this scenario, we consider the
massive users’ movements are random. When the network load
grows up. Fig. 5 shows that our proposal has better network
capacity compared with the methods of Auto Regressive and
Markov flow predictions. It can be envisioned that a precise
carrier optimization solution is called for especially when the
cell load changes sharply.

In Fig. 6, we give the performances of spectrum efficiency
for the three methods in cloud-access-based networks. As
shown in Fig. 6, with the increase of IoV user number, the
spectrum efficiency in a given cell becomes better. Yet, when
the user number exceeds 500, the spectrum efficiency changes
slowly. In general, the difference between the three methods is
not very obvious. When the carrier allocation scheme can be
further optimized, the spectrum efficiency will be enhanced.

VI. CONCLUDING REMARKS AND FUTURE WORKS

In this article, we proposed a dynamic carrier resource
allocation scheme for supporting IoV systems in smart cities
enabled by CRAN-based 5G carriers. The proposed cognitive
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carrier resource optimization is achieved by enhancing the
ability to predict movement of IoVs, hence the dynamically
changing demand for carrier resources. As an enhancement of
the traditional Markov Model, our prediction model introduces
vehicles’ mobility analysis in order to allow the construction of
a more precise flow transition matrix to improve the prediction
result. In this connection, we investigated the behavior patterns
of mobile vehicles based on their historical movement infor-
mation, and then predict the flow change across various cells.
The flow prediction serves as the basis for carrier resource
allocation in the 5G network. Numerical results are provided to
show the performance improvement of the proposed method.
The key contribution of this paper is to enhance the traditional
Markov Model with a precise flow transition matrix. To
achieve this, we introduce vehicles’ mobility analysis to allow
the construction of a more precise flow transition matrix to
improve the prediction result.

The main contributions of this paper include, firstly, we
proposed a wireless carrier resource allocation scheme for
CRAN-based 5G carriers which, with the introduction of
IoV users’ movement analyses, is based on the prediction
of cell flows by adopting a Markov-based model to predict
the cell flow change; secondly, the movement analysis model
is built for IoV terminals in smart cities according to users’
historical position information and QoS demands. To improve
the accuracy of IoV user’s position predicting at subsequent
slots, vehicular terminal’s behavior habit, service type along
with QoS demand are considered in system model.

In our future research, we aim to extend the scope of our
efforts to more complicated scenario and take into account
more critical factors for spectrum optimization in IoV. In
particular, towards upcoming 6G, we consider the mobile
scenario of integrating with satellite systems for continuous
connectivity of IoV. Wherein, we plan to adopt federated
learning (for cognitive carrier resource optimization) between
mobile terrestrial networks and satellite systems to distribute
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the computation tasks and maintain good data governance by
avoiding sending user mobility data across network operators.
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