Content based multicast (CBM) in ad hoc
networks

Hu Zhou and Suresh Singh
Department of ECE
Oregon State University
Corvallis, OR 97331
Email: singh@ece.orst.edu

Abstract— This paper presents a radically new multi-
cast model for ad hoc wireless networks. In this model,
the content of the multicast data determines the receiver
set for the data and the receiver set changes dynami-
cally as the content of the multicast changes. Delivering
the multicast to intended receivers while minimizing the
message overhead and reducing battery consumption is
a challenge made harder because of node mobility. In
this paper we develop a novel multicast model that dis-
tributes this form of threat information in a message ef-
ficient manner. We present results from detailed simula-
tions that demonstrate the efficiency of our protocol and
discus the scalability of this model to larger networks.

I. INTRODUCTION

Ad Hoc networks are multi-hop wireless networks
consisting of 1000’s of radio-equipped nodes that may
be as simple as autonomous (mobile or stationary) sen-
sors to laptops mounted on vehicles or carried by peo-
ple. These types of networks are useful in any situation
where temporary network connectivity is needed, such
as in disaster relief or in the battlefield. In this paper we
present a novel multicast model relevant to these types
of networks. This model is distinct from existing mul-
ticast models in that the receiver set for information
changes dynamically based on the content of the in-
formation being multicast as well as on the mobility
of the receivers themselves.

In order to explain our multicast model better, let us
focus on the two obvious application areas. The first
application is in disaster relief networks set up in ar-
eas devastated by natural or manmade causes. Imagine
the effect of a severe earthquake in Southern Califor-
nia. It is likely that the affected area will contain a va-
riety of threats to disaster relief personnel such as gas
leaks, intense fires, toxic leaks, riots, etc. Disaster re-
lief personnel sent into these areas will need to be kept

appraised of the location and types of existing threats
to ensure their safety. They will also need to be kept
informed of the deployment of other relief personnel,
equipment and resources (such as, for example, nodes
that distribute public keys, or DHCP serversthat enable
new nodes to join the network, etc.) in the area who
they can call upon in an emergency or as needed. The
second application is in battlefield networks where sol-
diers in the field need to be constantly informed of im-
pending threats and information such as time-to-threat,
distance-to-threat and type-of-threat must be presented
to them in a timely manner. Similarly, information re-
garding the location and movement of nearby allies also
needs to be presented to the soldiers.

A person in the field is typically most interested in
obtaining information that will provide her with a com-
plete picture of her “immediate surroundings”. In other
words, people in the field need to know about immediate
threats (within, say, a ten minute time horizon) rather
than about more distant threats (that may be over an
hour away). Similarly, they may need to know about all
threats within a radius of one kilometer (this informa-
tion is useful, for example, in planning an escape route
in the event that a fire gets out of control). Likewise,
a person in the field may need to know the location of
other disaster relief people within 100 meters or about
the availability of specialized equipment within 1km. In
this case, the location and velocity of each disaster relief
person or resource in the neighborhood constitutes the
data of interest.

In both scenarios, threat information can be collected
by autonomous sensors dropped into the affected area.
Likewise, information regarding the movement, capa-
bility and location of other disaster relief personnel and
equipment (or allies, in the military model) is also easily
available. It is then the task of the network protocols to

deliver this information in a timely manner to personnel
in the field who really need the information (in addi-
tion to planners, such as FEMA). The multicast model
we discuss here is concerned with efficiently distribut-
ing this information from the sensors and other sources
to the personnel in the field on an as needed basis.

In the Content-Based Multicast model (also called
CBM in this paper), we assume that nodes are interested
in obtaining information about resources and threats
that are:

« ¢ time away from their current location (assuming a

non-zero relative velocity), and/or

« that are d distance away.

Sensors and other nodes generate information about the
movement, intensity and, location of threats and re-
sources. They then need to get this information to those
nodes that need it (based on each node’s individual ¢
and d specifications). However, this needs to be done
in a way that minimizes message cost (and hence en-
ergy consumed). The problem is, since nodes, threats
and resources move, senders have no way of identify-
ing their receiver set and similarly, receivers have no
way of knowing which sender’s information is of inter-
est to them! How then can this information be dissem-
inated? In the remainder of this section we discuss the
challenges in conducting the multicast in a decentral-
ized way that can incorporate the ¢/d specifications of
all receivers.

A. Example of CBM Multicast

In order to describe the problem of CBM multicast, it
is helpful to consider a simple example. Figure 1 illus-
trates two views of the neighborhood that we would like
to present to a disaster relief person. The view on the
left indicates the distance to different types of threats
(the gas cloud), problems (the burning house) and re-
sources (the ambulance and the helicopter to ferry out
endangered personnel) and the view on the right indi-
cates the time to these threats and resources. Thus, the
gas cloud is three miles away but, due to the wind di-
rection and speed, it is less than one minute from the
person in the field. Likewise, the helicopter is over five
miles away but, because of its speed, it will be in the
neighborhood in between one and five minutes. On the
other hand, there is an aeroplane within three miles, but
because of its direction of travel, it will be far away soon
(and thus unable to forward messages from the ground
personnel to FEMA, say). Thus, we see that information

1 mile

R e
3miles %

5 miles

(a) Distance to threats and resources

1 minute
' 5 minutes

" '10 minutes

(b) Time to threats and resources

Fig. 1. Two views of the neighborhood.

most relevant to a person in the field includes,

« the location of all resources, threats and problems
that are within ¢ seconds of the person’s current po-
sition, and

« the location of all resources, threats and problems
that are no more than d meters away.

It is noteworthy that different relief personnel will dy-
namically change the ¢ and d specifications depending
on field conditions and, furthermore, different person-
nel will typically have different ¢ and d specifications.
Thus, delivering information to relief personnel in a way

that satisfies everyones ¢ and d specifications is a non-
trivial problem.

B. Effect of Mobility on the Relevance of Information

For the sake of clarity, let us initially assume that the ¢
and d specifications for all personnel is the same. Con-
sider Figure 2 where a sensor detects a gas cloud in the
area and determines that the wind is blowing from the
east. In this case, the sensor needs to multicast this in-
formation in the westerly direction only. If the wind
changes direction and begins blowing from the south
west, however, the sensor will need to multicast its in-
formation to receivers located in a north easterly direc-
tion. Thus, the direction of movement the threat influ-
ences the conduct of the multicast. A second consider-
ation here is how far should this information be propa-
gated in the network? In Figure 2, everyone in region
A needs to be warned (if we assume ¢ = 10 minutes)
but region B is not in immediate (i.e., ten minutes) dan-
ger so there is no need to extend the multicast to nodes
here. If we now relax the assumption that the ¢ and
d specifications are identical for all personnel, we see
that the question of how far the multicast needs to be
extended becomes complicated. This is because there
may be nodes in region B with large ¢ values (these may
be people on foot) who will need to be included in the
multicast and there may be other nodes in region A with
small ¢ values (people in automobiles) who need not re-
ceive the multicast.

Let us consider another situation, illustrated in Fig-
ure 2, where an automobile is travelling towards the gas
cloud at speed. Here it is necessary to ensure that the
multicast reaches the car because it will be in danger
within 10 minutes. Unfortunately, however, the sensor
does not know about the existence of the car and cannot
include it in its multicast. Thus, there is a need to extend
the multicast from the sensors so that mobile personnel,
such as the car, also receive the information even though
they are initially far away.

C. Effect of the Nature of the Threat/Resource on the
Multicast

The type of threat and its reach are also relevant in
determining the conduct of the multicast. For example,
a disaster relief team equipped with gas masks would
not be concerned with gas leaks while people with no
gas masks need to know about the progress of the cloud
to get out of the way. Similarly, in a battlefield, a tank

Wind Direction

(Gas cloud)

Sensor

Multicast from sensor |
only needs to reach region
A and the car

Within 10 minutes
(warn everyone)

No immediate
danger

Fig. 2. Multicast coverage of information generated by a
sensor.

is not necessarily threatened by soldiers on foot while
it would be concerned if there were any enemy tanks in
the area. In other words, the type of threat/resource is
a factor in determining the receiver set for a multicast.
The second feature of a threat is its reach. For instance,
a fire can be threatening up to distances as great as one
hundred meters away (because of the heat and the possi-
bility of freak explosions that spout flames). Similarly,
in a battlefield, an aeroplane poses a threat tens of miles
away because of the type of weapons it carries. Thus,
a receiver only needs to obtain information about those
threats that do indeed pose a danger within its ¢ and d
specifications or about useful resources it will have ac-
cess to within ¢ time or that are d distance away.

Receiver

=

Wind Direction
(Gas cloud)

Sensor

Within 10 minutes
(warn everyone)

No immediate
danger

Fig. 3. Multicast data collected by a receiver via receiver-
pull.

D. Our Approach

Based on the above discussion we can summarize the
problem as follows. A person needs to have information
about threats/resources that are within time ¢ seconds or
within distance d. This information is affected by two
factors:

» The relative velocity of each threat/resource w.r.t.

the node and,

« The reach of the threat.

The information regarding threats/resources is collected
by sensors and then needs to be multicast to all those
who need it (based on ¢ and d specifications). This prob-
lem of multicast is made difficult because:

« The sensors do not know the composition of their
multicast groups since group membership is based
on the ¢ and d specifications of individual receivers.

« Changes in the resource/threat deployment changes
the ¢ and s specifications.

Our approach for developing a solution to the CBM
problem discussed above is to use a sensor-push
receiver-pull approach. Here, sensors push the infor-
mation out into the network to some distance and re-
ceivers then pull relevant information from the network
satisfying their time-space mandates. In Figure 3, for
instance, the sensor pushes out the information about
the gas cloud into region A. The car sends a request for
information ahead of it to nodes within distance vt me-
ters (the node’s speed is v meters/sec). In Figure 3 this
is represented by region C. All multicast information
available to nodes in region C is forwarded to the car.
Thus, if there is any node in the intersection of regions
A and C, information about the gas cloud will get for-
warded to the car. We will expand this idea in section
I"i.

E. Overview of the paper

In section 11 we describe other multicast protocols for
ad hoc networks and describe how our time-space model
differs from them. Section Il describes our multicast
protocol in detail. We present results of simulations in
section IV. The work reported in this paper is ongoing
and we describe our current research focus in section V.

Il. RELATED WORK

Recently several authors have begun developing mul-
ticast protocols for ad hoc networks. The primary chal-
lenge they have attempted to solve has been to construct
and maintain multicast trees or flows (see [6]) despite

topology changes. Some examples of these protocols
include:

1. AMRoute (Adhoc Multicast Routing) [1]. In this
protocol, a shared multicast tree is built for multi-
cast group members to forward packets. The tree
construction is completed in two steps: mesh con-
struction and tree construction. In this model, the
receivers know the group they want to join, thus
the identity of the senders. It is the senders’ re-
sponsibility to start building the multicast tree. The
senders do not know about the receivers’ identity.

2. ODMRP (On-Demand Multicast Routing Proto-
col) [7], [8]. This is an on-demand protocol, in
which a mesh structure is build to flood packets
from the source node to the group members. Like
the AMRoute, receivers know about the senders’
identity.

3. AMRIS (Ad hoc Multicast Routing protocol uti-
lizing Increasing id-numberS) [13], which again,
uses a shared tree to forward multicast packets.
The tree is built through the broadcasting of NEW-
SESSION messages, and is maintained by group
members with the help of a beacon mechanism.
A group member can dynamically join a multicast
session in the multicast group. Similarly in this
model, the receivers know about the senders’ iden-
tity, but not vice versa. The creation of shared trees
is initiated from one special node, and then the tree
is maintained by all group members.

4. CAMP (Core-Assisted Mesh Protocol) [5], [9]
which, like the ODMRP, builds a mesh to forward
multicast packets. Some core nodes are respon-
sible for accepting initialization requests. Nodes
can dynamically join the multicast group and help
maintain the multicast mesh. Group members use
a packet cache to monitor their connectivity and re-
build connections. Also, in this model, receivers
know the senders’ identity but not vise versa.

It is easy to see that the CBM model proposed in this
paper is very different from any of the above models.
This is because the multicast receivers of a data stream
are determined based on the data contents (recall that
a receiver only wants to receive data that informs it of
impending threats defined in time or space). As the data
content from a sender changes, so does the multicast
group! This feature of our model makes it unique as
well as extremely powerful in the military context where
the goal is to maximize message efficiency while ensur-

ing that the sensor-to-shooter distance is minimized.

I1l. DESCRIPTION OF THE CBM MULTICAST
ProTOCOL

Our multicast protocol is based on the idea of sensor-
push and receiver-pull. Essentially, sensors detecting
threats send a limited broadcast message into a small
region that lies in the path of the threat and individ-
ual receivers then pull threat warnings from nodes that
lie in the direction of their travel. This push-pull strat-
egy works efficiently because we reduce the number of
unnecessary threat warning messages by ensuring that
the only nodes that need to receive the warning receive
them.

For an efficient implementation of the push-pull ap-
proach, we view the playground as being divided into
geographic regions as shown in Figure 4. These regions
are virtual and are only used for improving the message
efficiency of our protocol. It is important to note that
the regions do not need to be of the same shape or even
size. The specific form of regions will be based on the
density of nodes within the region, terrain characteris-
tics, and node mobility constraints. We assume that all
nodes are GPS equipped.

River

=

One node in each
region is the designated

; ‘‘leader’’ who maintains
Regfffc push’ed threat information
or Blegks

—

Terrain and node density
dictate the shape of these
regions. In this example
the river forms a natural
boundary for adjacent
regions.

Disaster Site

Fig. 4. The battlefield is viewed as being made up of regions.

Within each block one node is chosen to be the
“leader”. This node maintains a list of all threat warn-
ings and resource updates received via push messages
and is responsible for responding to pull requests as
well. We will discuss these two parts of the protocol in
sections I11-A and 111-B. When a leader leaves a block,
however, the responsibility for maintaining threat warn-
ings relevant to that old block passes on to a new leader.
We describe the leader maintenance portion of the pro-
tocol in section I11-C. Finally, we note that that routing
protocol used here is MFR (Most Forward with Fixed
Radius) described in [11].

A. Push Protocol

Warning messages regarding threats are generated by
sensors as and when a new threat is detected or the dis-
position of a known threat changes (e.g., it changes di-
rection). Thus, when a sensor or a collection of sensors
detects the presence of a threat, the sensor generates a
limited broadcast message for nodes that will lie in the
projected path of the threat. Consider Figure 5 where,
for the sake of clarity, we assume that the blocks are all
identical rectangles. When a tank threat is detected, the
sensor(s) that detected the threat need to inform nodes
that lie in the path of the tank of a possibly imminent
attack by the tank. In the figure we indicate that the ex-
tent of this warning push message extends out to blocks
that lie within distance s(7, + A7). Here s is the speed
of the tank, 7, is a constant and denotes the time spec-
ification that is used by tank sensors to determine the
extent of the push. In our simulations we use a value
of 7, = 300 seconds and the interpretation is that the
push informs nodes that are no more than 5 minutes
away from encountering the tank threat. The At fac-
tor is an error factor (and is also a constant) that ensures
that more rather than fewer nodes get informed of the
threat.

Direction

of travel
f Threat

*
Push Region Speed of threat * (t & A1)

Strike
zone of
threat

Fig. 5. A pushis generated ahead of the tank.

We can now state the push algorithm as follows:
Algorithm : Push

« When a sensor detects a threat it determines the pro-
jected velocity vector for the threat k. Let s denote
the speed of the threat.

« Let 7 represent the time specification used by the
sensor to push information for the threat. The value
7, Might be different for different types of threats.

« The sensor (or Sensors) send

one THREAT_WARNING message to each of the
leaders of the blocks (the routing protocol used is
MFR [11]) that lie within the rectangular area with
length s(7 + A7) and width equal to the reach of
the threat. The rectangle is oriented in the direction
of motion of the threat.

« Each leader receiving the THREAT_WARNING
message broadcasts it within their groups. The
THREAT WARNING message includes the nature
of the threat, velocity, and any other information
(e.g., confidence level of the sensor in projecting
the threat’s motion).

« Whenever the threat changes direction or moves a
distance such that the furthest block warned is less
than s7 distance away from the threat, a new push
message is sent to blocks that are within s(7,+ A7)
distance of the threat. In Figure 5, after the fire
spreads through one (or two) blocks in the indicated
direction, a new push is generated to cover blocks
a and b.

B. Pull Protocol

The push protocol as described above succeeds in
sending threat warnings to nodes that are within 7, of
the threat. However, nodes that are moving towards the
threat (and are further away than s(7, + Ar) of the
threat’s position) or nodes that are far away but have
a large time/space specification need to pull the threat
information in order to be appropriately warned. For
the sake of clarity we will use the example illustrated in
Figure 6. Here, the node on the bottom left is moving
at some speed s,, and in time ¢, it will be in block A.
Assume that threats located anywhere within the dotted
box can pose danger to nodes located in block A. The
algorithm we use for generating pulls is as follows:

Algorithm: Pull
« Letanode’s timespecification be ¢, (the same algo-
rithm works if we use a node’s distance specifica-
tion). In other words, the node needs to be warned
of all threats it considers threatening that it could
encounter within time ¢,.
« Let the node’s speed be s,. Therefore in time ¢, it
will be located in a block that is s,,t,, distance away
(in Figure 6 this corresponds to block A).

o The node sends a PULL_REQUEST to the leader
of the block it expects to be in after time ¢,.
In Figure 6 this corresponds to block A. The
PULL_REQUEST contains the node’s velocity

vector as well a specification of threats the node
needs to be warned about (for example the pull re-
guest may only indicate gas as potential threats).

o The leader from block A sends back all the infor-
mation it has about threats that will lie within the
dotted region of Figure 6 at time ¢, hence. It is,
however, likely that the leader may only have in-
complete knowledge about threats that are ¢, time
away. In this case it needs to initiate additional
pulls as follows:

— Let s7*** represent the maximum speed of threats
of type k.

— The leader sends a pull request to leaders of blocks
that are located distance s;**“,, away (as shown
in Figure 6).

— Leaders of these blocks determine if threats they
are aware of will lie in the dotted area (Figure
6) t, time hence. If so they respond with that
information to the leader of block A. The leader
of block A then forwards this information to the
requesting node.

« Finally, all pull requests are sticky with a TTL field
(Time To Live). This means that once a leader gets
a pull request, it holds on to it until the TTL field
expires. Meanwhile, if there is any new threat in-
formation, it forwards that to the node that gener-
ated the sticky pull request. This mechanism en-
sures that pull requests only need to be sent infre-
quently.

A threat anywhere within
the dotted square will pose a
threat to nodes within the
shaded block A

Node will be in block
Ain time t

| -

The leader of block A sends
a pull request to blockstn s’l?ax

distance away

\

Fig. 6. A pull is generated ahead of the node.

C. Leader Maintenance

In order for our protocol to work, we need a leader
maintenance protocol as well. This protocol does the
following:

« A departing leader selects a new leader in the old
block and passes on all the collected threat infor-
mation to that leader. The identity of the new leader
is also broadcast within that block.

« When any node leaves a block, it informs the leader
of the old block as well as the leader of the new
block.

« If the leader is the last node remaining in a block,
when it leaves the block it transmits a message to
leaders of all neighboring blocks informing them
of all its gathered threat information as well as in-
forming them that the block is now empty. Thus,
any pull requests for the empty block will be replied
to by one of the neighboring block’s leaders (note
that pull messages have to traverse a neighboring
block to get to the empty block, thus the leader of
the neighboring block can respond).

« When a node enters a empty block, it collects threat
information from the neighboring blocks and de-
clares itself the leader.

There is a special case that we do not consider in the
current version of the protocol — the neighboring blocks
may also be empty. We do not consider this case for
now because the probability of this happening is very
small. However, we will develop a solution for this case
in the next version of the protocol.

V. PERFORMANCE EVALUATION

We evaluated the performance of our CBM multicast
protocol via extensive simulations. In order to quan-
tify the performance of our protocol, we concentrated
on two metrics:

1. Message overhead: The metric here is the num-
ber of messages/second/node that are exchanged in
the course of the simulation run. This includes all
push/pull messages as well as control messages ex-
changed in order to maintain the blocks.

2. Coverage: It is possible that some nodes do not
receive threat warnings (or resource availability in-
formation) in time. Thus, we measured the percent-
age of nodes not receiving this information. Ideally
we would like this number to be zero. However, pe-
riodic network partition and fluctuations of routes
make it difficult to achieve this value.

For comparison, we ran the same set of experiments us-
ing a smart flooding algorithm. Here, each node trans-
mits any new information it receives to each of its neigh-
bors (except the one it received the information) exactly
once. Clearly this protocol will maximize the coverage
but will have a high overhead.

The remainder of this section is organized as follows.
We first describe the experimental set up and then de-
scribe our experimental results.

A. Smulation Parameters

For the simulation we assume that the playground
is a 50km by 50km square region. The scenario we
simulate is a battlefield where threats consist of en-
emy tanks, soldiers and gas. The friendly nodes are
either tanks or soldiers. Thus, the goal of the CBM
protocol here is to deliver threat information quickly to
the friendly tanks/soldiers. Tanks move at an average
speed of 72kmph, soldiers move at an average speed of
9.6kmph and wind speed is constant at 18kmph. The
battlefield has sensors capable of detecting tank and gas
threats. In the simulations we use 64 gas sensors and
64 tank sensors evenly distributed throughout the batle-
field. A gas sensor can detect a gas threat within 1km
and a tank sensor can detect tank threats within 1km
as well. Soldier threats can only be detected by other
(friendly) soldiers. Thus, it is possible that a soldier
threat may go undetected because of human error. We
use a probability of 0.2 that a soldier threat will not be
detected. Finally, we assume that tanks, soldiers and
sensors have radio capability. The transmission radius
of the sensors is assumed to be 2km, tanks have a trans-
mission radius of 5km and a soldier can transmit to a
distance of 1km. The data rate available is 1Mbps.

The time-space parameters we use were the follow-
ing. Tanks needed to know about tank threats within
6km and soldiers needed to know about tank and sol-
dier threats within 900m. Each simulation is run for 300
seconds of real-time (a couple hours of simulation time)
and the simulation time step is 5 msec of real-time. We
run each case ten times and compute 95% confidence
values. In each case the, the confidence intervals were
very tight (less than 5% of the point values).

B. Discussion of Results

In all of the following plots we use a constant number
of enemy threats. Specifically, we use 10 tank, 10 gas
and 30 soldier threats. In Figure 7 we plot the total mes-

sage overhead as a function of the number of friendly
tanks (no soldiers) and in Figure 8 we plot the mes-
sage overhead as a function of the number of soldiers
(no tanks). First, it is noteworthy that smaller block
sizes result in greater message overhead. This is be-
cause the number of responses to a pull are greater (one
per block) and the overhead of maintaining blocks is
also greater (since the time a node spends in a smaller
block is smaller). The second interesting observation is
that the message overhead increases sub-linearly with
increasing numbers of friendly nodes. This indicates
that our CBM protocol is scalable to large networks. In-
tutively this makes sense since the extent of a sensor’s
multicast is geographically limited to nodes in immedi-
ate danger. Thus, even if the network size grows, the
message overhead ought to remain the same.

When we compare the cost of smart flooding with the
cost of the CBM protocol we observe that CBM with
a block size of 500m has a higher message overhead
than flooding in the case when there are only 25 tanks
(Figure 7). This is due to the high cost of leader main-
tenance in this case (frequent arrivals and departures
from blocks have a message cost but the greater cost
results from the fact that many blocks are empty and
this causes the neighboring blocks to take over the re-
sponsibility of responding to pull requests for the empty
blocks). Furthermore, as the number of tanks grows,
the message cost comes down because the cost of leader
maintenance increases relatively slowly (the playground
size remains constant even though the number of tanks
has increased) with an increase in the number of nodes.
In the case when we only have soldiers (Figure 8), the
flooding cost is much higher. This is because soldiers
move at a slow speed and thus the leader maintenance
cost is very small which results in a small overall CBM
cost. The cost of flooding, on the other hand, increases
with an increase in the number of nodes.

Figure 9 plots the success rate as a function of the
number of tanks. It is noteworthy that with small block
sizes the percentage of nodes warned in time is only
about 80% for the case when there are 25 tanks. This
number changes to 96% with a block size of 2.5km.
Thus, using larger block sizes is good because the mes-
sage cost is lower and the percentage of nodes warned is
higher. Interestingly, the success rate does not appear to
vary much with block size in the event that we only have
soldiers (Figure 10). The explanation for this is that
pull messages do not always reach the desired blocks

Message overhead, Threats (10, 10, 30), Tanks only
15 T T T T

X—X
A—A
sk

CBM (500m block)
CBM (2500m block)
Flooding

Messages/Unit/Sec

Il Il Il Il
40 60 80 100
Number of Tanks

Fig. 7. Message overhead — Tanks only.

Message overhead, Threats (10, 10, 30), Soldiers on foot only
30 T T T

x—X
A—A
sk

CBM (500m)
CBM (2500m)
Flooding

251

IN)
=]

Messages/Unit/Sec
=
al

10

200

250
Number of Soldiers

300

Fig. 8. Message overhead — Soldiers only.

because the network does not have a geographically di-
rect path (we use geographical routing to send messages
so if there is no next hop in the direction of the destina-
tion, the packet is dropped). However, as the number
of soldiers increases, the probability of finding a path
increases and hence the percentage of nodes warned in
time also increases. This is also the reason that with
fewer soldiers the success rate is so small (65%). In the
case of tanks, their high speed and greater transmission
radius ensures that there is a greater probability of find-
ing routes.

Figures 11, 12 plot the relative contribution of pulls

Percentage of nodes warned, Threats (10, 10, 30), Tanks only
100 T T T T T

Message overhead due to PULL, Threats (10, 10, 30), Tanks only

95

90

% warned
~ ~ o] ©
o ul o a
T T T

=2}
a
T

Xx—x
A A

CBM (500m)
CBM (2500m)

@
=]
T

55—

50 I I I I I

Pull Messages (as a % of the total)
N w B o (=2} ~ e] © 8
o o o o o o '\O o o
T T T

=
o
T

$———X
A—A

CBM (500m)
CBM (2500m)

Il
80 100 120 140
Number of Tanks

40 60

Fig. 9. Success Rate — Tanks only.

Percentage of nodes warned, Threats (10, 10, 30), Soldiers only
100 T T T T

95+

85~

80

% warned
~
ol
T

70

65 *——x
i & A

CBM (500m)
CBM (2500m)

55—

Il Il
250 350
Number of Soldiers

50 L
100 150 200 300

Fig. 10. Success Rate — Soldiers only.

400

to the overall cost of CBM. As we can see, increasing

numbers of nodes result in a greater number of pulls.

V. FUTURE WORK

The work reported in this paper is ongoing and we are
making the following enhancements to our simulation to

better understand the CBM model.

« We are extending our simulation to take into con-
sideration the path loss models of the terrain as this

affects connectivity and hence the success rates.

« Threat mobility is unpredictable. Thus we are in-
cluding a parameter in our model that denotes the

o

40 60 80 100 120 140
Number of Tanks

Fig. 11. Pull contribution — Tanks only.

Message overhead due to PULL, Threats (10, 10, 30), Soldiers only

Pull Messages (as a % of the total)

20

Xx—x
A A

CBM (500m)
CBM (2500m)

[9)
100

Il
250
Number of Soldiers

1 1
150 200 300 350 400

Fig. 12. Pull contribution — Shooters only.

sensor’s confidence level in predicting the threats
future velocity.

« Thus far our protocol only deals with threats. In the

next iteration we will implement the same push-
pull idea to allow nodes to collect information
about allies and resources. Unlike the threat case,
allies and resources can be queried directly for in-
formation about their location.

In the case of gas threats, the gas cloud disperses
over time. This means that the cloud expands its
reach and later becomes benign. We will include
diffusion models for gas into our simulation to have

a more realistic understanding of how the cloud af-
fects the multicast.

Finally, we are developing analytical models
that will allow us to better understand the en-
ergy/message efficiency tradeoffs in this domain.

Acknowledgment

This work was supported by NSF grant ANIR-
9902714 and ONR grant N000149910499.

(1]

(2]

(3]

(4]

(5]

(6]

[7]

(8]

[9]

[10]

[11]

[12]

[13]

REFERENCES

E. Bommaiah, M. Liu, A. McAuley and R. Talpade, “AM-
Route: Ad Hoc Multicast Routing Protocol”, Internet-Draft,
draft-talpade-manet-amroute.txt, Aug. 1998, Work in progres.
C-C. Chiang and M. Gerla, “On-demand multicast in mobile
wireless networks”, Proc. IEEE ICNP’ 98.

C-C. Chiang and M. Gerla, “Adaptive shared tree multicast in
mobile wireless networks”, Proc. [EEE GLOBECOM' 98.
C-C. Chiang, M. Gerla and L. Zhang, “Forward group mul-
ticast protocol (FGMP) for multihop, mobile wireless net-
works”, ACM-Baltzer J. Cluster Computing: SPecial Issue on
Mobile Computing, Vol. 1(2), 1998.

J.J. Garcia-Luna-Aceves and E.L. Madruga, “A multicast rout-
ing protocol for ad hoc networks”, Proc. IEEE Infocom’ 99,
New York, NY, Mar. 1999, pp. 784-792.

Chalermek Intanagonwiwat, Ramesh Govindan and Deborah
Estrin, “Directed Diffusion: A Scalable and Robust Commu-
nication Paradigm for Sensor Networks”, IEEE/ACM Mobi-
com' 00.

S.-J. Lee, M. Gerla and C.-C. Chiang, “On-Demand Multicast
Routing Protocol”, Proc. IEEE WCNC'’ 99, New Orleans, LA,
Sept. 1999, pp. 1298-1304.

S.-J. Lee, W. SU and M. Gerla, “Ad hoc wireles multicast with
mobility prediction”, Proc. IEEE ICCCN’99, Boston, MA,
Oct. 1999, pp. 4-9.

E.L. Madruga and J.J. Garcia-Luna-Aceves, “Multicasting
along meshes in ad hoc networks”, Proc. IEEE ICC’' 99, Van-
couver, Canada,Jun. 1999, pp. 314-318.

E. Pagani and G. P. Rossi, “Reliable broadcast in mobile mul-
tihop packet networks”, Proc. ACM MOBICOM’ 97, 1997, pp.
34-42.

H. Takagi and L.Kleinrock, “Optimal transmission ranges
for randomly distributed packet radio network”, |IEEE Trans.
Comm. Vol. COM-32, pp. 246-257, March 1984.

C. L. Willamson, T. G. Harrison, W. L. Mackrell and R. B.
Bunt, “Performance evaluation of the MoM mobile multicast
protocol”, Mobile Networks and Applications, Vol. 3(2), 1998,
pp. 189-202.

C.W. Wu, Y.C. Tay and C.-K. Toh, “Ad hoc Multicast Rout-
ing protocol utilizing Increasing id-numberS (AMRIS) Func-
tional Specification”, Internet-Draft, draft-ietf-manet-amris-
spec-00.txt, Nov. 1998, Work in progress.

