
UC Santa Cruz
UC Santa Cruz Previously Published Works

Title
OWL: Towards Scalable Routing in MANETs Using Depth-First Search On Demand

Permalink
https://escholarship.org/uc/item/1pk3d690

Author
Garcia-Luna-Aceves, J.J.

Publication Date
2009-10-12

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/1pk3d690
https://escholarship.org
http://www.cdlib.org/

978-1-4244-5113-5/09/$25.00 c©2009 IEEE

OWL: Towards Scalable Routing in MANETs
Using Depth-First Search On Demand

Stephen Dabideen∗
∗Department of Computer Engineering

University of California, Santa Cruz
Santa Cruz, CA 95064

Email: dabideen@soe.ucsc.edu

J.J. Garcia-Luna-Aceves†∗
† Palo Alto Research Center

3333 Coyote Hill Road
Palo Alto, CA 94304

Email: jj@soe.ucsc.edu

Abstract—Most routing protocols designed for MANETs to
date employ breadth-first search (BFS), usually in the form
of flooding of route requests or updates, to establish and
maintain routes between source-destination pairs. This usually
incurs significant overhead, which degrades the performance of
the network. In this paper we present a new paradigm for
routing protocols operating in MANETs, such that flooding is
not required and paths from sources to destinations can be
established on demand with time complexity comparable to that
of flooding but with significantly less overhead. We introduce the
concept of ordered walk as a depth-first based search (DFS) that
does not rely on geographical or virtual coordinate information
and is more efficient than mere random walks. Using the Ordered
Walk Search Algorithm (OSA), we demonstrate the potential of
using DFS as the building block of the signaling of MANET
routing protocols. We introduce the OWL protocol (ordered walk
with learning) as an example of efficient DFS-based routing
in MANETs, and use simulation experiments to compare its
performance against that of three well-known MANET routing
protocols based on BFS (OLSR, DSR and AODV). The results
show that OWL can achieve comparable these protocols while
incurring up to ten times less overhead than AODV.

I. INTRODUCTION

The proliferation of cost-effective mobile networking tech-
nology has fueled enormous interest in mobile ad hoc networks
(MANETs), which in turn has lead to a very large number
of proposals for MANET routing protocols. As varied as the
routing proposals for MANETs are, none of the common
proactive or on-demand schemes are very efficient under all
traffic-load scenarios. We argue that, at least in part, this is
due to the way in which signaling packets are disseminated
in these protocols. In a proactive routing protocol, signaling
packets must find each network node in order to update the
node with the state of a link or destination, independently of
whether or not the node needs a route that either uses the
link or reaches the destination. Similarly, in an on-demand
routing protocol, a route request is flooded to reach nodes
that may or may not become part of the route sought by
the route request. Section II summarizes prior work aimed at
reducing the signaling overhead incurred in routing protocols
for MANETs. As our brief survey indicates, the prior work
has been aimed at reducing the number of nodes engaged in
signaling of routing algorithms based on breadth-first search
(BFS), reducing the amount of BFS signaling information that

must be disseminated, or establishing virtual topologies that
may be maintained more efficiently.

As an alternative, depth-first search (DFS) has been studied
extensively in the past and many distributed algorithms for
DFS have been reported (e.g., [1], [2], [3]). Surprisingly,
however, DFS has not been used much to support the signaling
of routing protocols in MANETs. To our knowledge, the only
efforts that have addressed DFS focus on random walks [4],
[5] or routing using location information (e.g., GPSR [6],
WSR [7]).

BFS schemes would flood the network, or at least a very
large number of nodes to find a destination that is far away. If
too many nodes are performing BFS simultaneously, the rout-
ing overhead can saturate the network making it impossible to
deliver any packets. Route computations based on DFS involve
a much smaller number of nodes and can incur significantly
lower overhead resulting in much less disruption than BFS and
therefore more efficient routing as the size of the network and
the number of flows increases. However, a DFS scheme may
incur much longer delays in finding the desired routes to the
destination.

The main contribution of this paper is to show that (a)
routing in MANETs using DFS is not only feasible but can
in fact be much more efficient than routing based on BFS
schemes, and (b) efficient DFS-based routing does not need
to rely on (geographical or virtual) coordinate information.
Section III motivates the use of DFS instead of BFS as the
basis for route signaling in MANETs in more detail.

Section IV presents the ordered walk search algorithm
(OSA) and analyzes its potential in terms of its time complex-
ity and the signaling involved. Instead of performing a search
in a completely random manner, or assuming knowledge of
the relative position of the destinations, OSA distributively
constructs an approximated minimum-depth spanning tree.
Then OSA searches this tree efficiently such that the number
of search messages is minimized and the resulting path is of
reasonable length. The only requirement of this search is two-
hop neighborhood information. We demonstrate that, given
some neighborhood information, a minimum-depth spanning
tree can be approximated, and that this approximation con-
verges to the actual minimum-depth spanning tree as the size
of the known neighborhood increases.

Section V introduces an example of efficient routing in
MANETs based on DFS without the need for location infor-
mation, which uses OSA to establish routes on demand based
on DFS and we call the Ordered Walk with Learning protocol
(OWL).

Section VI shows the results of simulation experiments
illustrating that OWL attains better performance than popular
on-demand and proactive routing protocols based on BFS, with
respect to the end-to-end delay of data packets and the signal-
ing overhead incurred. Concluding remarks are presented in
Section VII.

II. RELATED WORK

Reactive routing schemes were developed to reduce routing
overhead in mobile ad-hoc networks. Today, reactive (or on-
demand) routing protocols have become synonymous with
the flooding of route requests (RREQ) when a path needs
to be established. While this approach may be the fastest
solution in a network that is not bandwidth-limited, it leads
to the broadcast storm problem as identified by Ni et.al. [8],
especially in volatile routing environments. This inefficiency
has been identified by many in the past, and several opti-
mizations over this blind flooding have been proposed. These
approaches include the use of an expanding ring search [9],
the use of a connected dominating set heuristics to reduce
the number of nodes retransmitting the flood packet [10], the
use of geographical information to direct the flooding [6] and
probabilistically reducing the number of retransmissions [8].
While these schemes alleviate the broadcast-storm problem,
they do not address the need for flooding that is inherent in
any BFS approach.

The most common strategy to reducing the overhead of
route signaling in the past has been hierarchical routing, which
dates back to the design of the DARPA packet radio network
(PRNET), starting with the scheme proposed by Kleinrock
and Kamoun [11]. Since then, there have been many other
hierarchical routing schemes (e.g., [12], [13]). The limitation
with hierarchical and hybrid routing schemes is that they do
not address the inherent need for flooding and the need to
update the affiliation of nodes to clusters or zones when nodes
move away from their home clusters or clusters are partitioned
into two or more components due to mobility.

Broadcast backbone networks ([14], [15]) have been used
to mitigate the cost of flooding in the network. Instead of
having every node flood the network, a connected subset of
nodes which together dominate all the nodes in the network
are responsible for forwarding overhead packets. Once such an
infrastructure is in place, searching the network can potentially
be more efficient than having all nodes flood search packets.
The problem with this approach is in establishing and main-
taining the infrastructure, especially in the face of mobility,
where the cost can be comparable to flooding. Connected
dominating sets make most sense in dense networks where
there would otherwise be too much redundant broadcast of
control packets but sparse networks would see little benefit
from such infrastructure.

There have been only a few attempts to solve the problems
incurred with flooding by using DFS instead of BFS. These
approaches have focused on the use of random walks [4], [5]
in which a route request starts at the source and travels along
a single path found by consecutive random next-hop choices
in search for the destination. The limitation of this prior work
is that, as we discuss below, when packets traverse random
walks, the communication complexity incurred in reaching
destinations may be comparable to that of flooding, but with
much longer delays.

Approaches that have improved over random walks in the
past use location information for the routing of packets. (e.g.,
GPSR [6], WSR [7]). The many proposed schemes have made
strong cases on performance benefits that can be attained but
their limitations are that each node must know its location by
some external means (e.g., GPS), and that the sources need to
know the locations of their target destinations.

III. MOTIVATION FOR USING

DFS IN ROUTE SIGNALING

BFS has remained the most popular choice for route dis-
covery in MANETs because, at least in principle, a well
designed scheme based on BFS is the fastest approach to
establishing the desired routes requiring on average O(logkN)
time, where k is the average network connectivity. However,
the price paid for this search speed is the signaling overhead
incurred, which is O(N). In practice, given that MANETs
are bandwidth limited, this large communication complexity
means that BFS may not succeed at establishing routes quickly,
because signaling packets may suffer long queuing delays or
even losses.

DFS may be a viable option to avoid the problems in-
troduced by the broadcast storm associated with flooding.
However, applying a DFS strategy to on-demand routing
means that route requests are propagated from one node to a
single successor and thus travel a single path from the source
to the destination. Accordingly, using DFS in a complete graph
in which each step is completely random would mean that
the time required to find a path to a given destination is
O(N), which is the case of the destination being the last node
searched, and the average complexity would be O(N/2) for
both time and number of messages. Hence, compared to BFS,
DFS offers only a constant factor improvement but with a very
large penalty in the time complexity it incurs. Clearly, DFS
schemes based on random walks make sense only in networks
where bandwidth is at a premium and delays in finding paths
are not too important, which may be the case of some sensor
networks with static topologies.

We advocate a new approach to DFS applied to on-demand
routing in MANETs that takes advantage of two important
characteristics of MANETs. Firstly, some local topology in-
formation is readily available to nodes due to the broadcast
nature of radio links. In particular, a node can hear over
time about the presence of neighboring nodes, and even the
presence of its neighbors’ neighbors. Secondly, MANETs

Fig. 1. DFS pruning in OSA

are not completely random and, more importantly, source-
destination dialogues follow patterns of interest, which means
that, over time, sources will be able to find destinations more
effectively than by random walking if their searches choose
“children” in the DFS tree based on this prior knowledge that
incorporates information gathered from past searches, some
of which may have even failed. Accordingly, our approach
to using DFS in on-demand routing is based on the concept
of “ordered walks,” which we describe in the next section,
and complement this DFS approach with learning gained from
prior walks.

IV. ORDERED WALK:
A HYBRID DISTRIBUTED SEARCH ALGORITHM

With the ordered walk search algorithm (OSA), we aim to
take advantage of the smaller time complexity of BFS and
combine it with the low communication complexity of DFS
to further improve the efficiency of the search through the use
of known topology (i.e., path) information. The basic idea is
to approximate the construction of a minimum-depth spanning
tree rooted at the source (as in BFS) and then performing DFS
on this tree. If there is information about the past location of
the destination, then this can be used to guide the search. We
call this an informed search, and while such information can
help the search, it not necessary for the OSA.

A. Efficient Uninformed Searches

It is often the case in the establishment of new paths that
no information about the destination is available at the node
making a search decision. To make the search efficient, nodes
can take advantage of topology information they have about
their neighborhood. In particular, the number of nodes covered
(in the known neighborhood) needs to be maximized while the
number of nodes relaying the query needs to be minimized
by the choice of next hop in the search. To achieve this,
successive nodes in the search should have as few neighbors in
common as possible. This is possible if two-hop neighborhood
topology information is known by performing set comparisons
between the current search node and its neighbors. This would
usually favor choosing nodes physically far apart, rather than
close together, and consequently results in shorter paths than
a random walk, where a near node and a far node have the
same probability of being the successor in the search. While
set comparisons can be computationally intensive, it should
not be an issue with modern technology.

At times it would be desirable to direct the search in a
physical direction without knowing the relative positions of
the nodes. A notion of direction can also be attained using
two-hop neighborhood information. To guide the search away
from a node, the neighbors of that node should not be allowed
to be a successor in the search tree. To guide the search along
the current trajectory, the neighbors of all previously searched
nodes should be pruned from the search tree.

B. Approximating a Minimum-Depth Spanning Tree

Given global topology information, any node can construct
a minimum-depth spanning tree in a connected network. The
source becomes the root for the search. Nodes connected to
the source are then at depth 1, their neighbors not yet included
are at depth 2, and this process continues until all nodes are
added.

Performing the search on a minimum-depth spanning tree
results in paths with a shorter expected length than those
obtained with a random walk search. Fortunately, such a tree
can be approximated and constructed distributively requiring
only two hop neighborhood information.

At each step in the search, a node must choose a successor
that is at a greater depth in the search tree than itself. The
neighbors of nodes which are already in the search path cannot
be at a greater depth than the current node, and therefore such
nodes should not be chosen as successors.

Figure 1 shows two executions of OSA. In the first case,
global information is known and in the second case, only
two-hop information is known. The difference between these
two cases is that the search is guided away from the source
with more information, which is the nature of DFS. With less
information, fewer neighbors are pruned from the search tree,
because they are not identified as being closer to the source.

C. The Ordered Walk Search Algorithm

The pseudocode for the ordered-walk search algorithm
(OSA) is provided in Algorithm 1. It takes as input a graph
G, a source node s, and the destination node d that is
being searched, and delivers a path P from the source to the
destination, should one exist. It also assumes that any node
knows its n-hop neighborhood in the network, where n ≥ 1.

OSA proceeds as DFS, using the approximated minimum-
depth spanning tree. At each step in the ordered walk, a node
must choose its successor in the search tree. An informed

search would be prioritized if the relevant topology informa-
tion were available, but if this is not the case, an efficient
uninformed choice is made along the current trajectory of the
search.

OSA uses a function Nk(x) that returns the set of nodes
within k hops of node x, including node x itself and all of
these nodes are precluded from the search tree at the current
point of the search. Firstly, this prevents loops in the search as
a node will never be able to choose a node already visited in
the search. Secondly, all nodes in Nk(x) will be at a depth less
than or equal to node x and therefore cannot be children of x
in a DFS tree. In the algorithm ”j” represents the current depth
of the search and ”n” is the span of the known neighborhood.

Algorithm 1 : OSA(G, s, d)
1: Q ← φ
2: P ← s
3: T ← N1(s)
4: SORT (T)
5: Q ← T
6: while Q #= φ do
7: x ← first member of Q
8: if x = d then
9: return P

10: end if
11: T ← N1(x)
12: for all xi ∈ P do
13: j ← number of hops of x from xi in P
14: if j > n then
15: k ← n
16: else
17: k ← (n − j)
18: end if
19: T ← T − Nk(xi)
20: end for
21: SORT (T)
22: Add T to front of Q in order
23: Add x to end of P
24: end while
25: return φ

OSA also uses the SORT() function, which takes as input
a set of nodes and places them in ascending order of distance
to d, such that the node closest to d are searched first.
The notion of proximity to the destination is based on past
known locations of the destination. Nodes that are viewed as
equidistant are placed in random order.

D. OSA Correctness

The following proofs show that OSA obtains finite paths
from sources to destinations, if they exist, using only local
information regarding a node’s neighborhood and path infor-
mation accumulated over time.

Theorem 4.1: OSA terminates for any finite graph with N
nodes.

Proof: Once a node is visited in the search, it is added to
P . For any node, N0(x) = x, and thus any node in the path
is never added to the queue Q, because it is never added to
T in line 18 of Algorithm 1. Given that the number of nodes
is finite and each node can only be searched at most once,

the algorithm terminates when d is found or when there are
no more nodes in the queue Q, which happens in at most N
steps.

Theorem 4.2: For a finite graph G, OSA returns a path from
the source s to destination d, if one exists.

Proof: It can be seen from Algorithm 1 that a node is
not added to the search tree T at a particular instant if and
only if it is either already in the search tree or in the known
neighborhood Nk(x) of a node already in the search tree.

Assume for contradiction that s and d are in the same
connected component of the graph G and OSA terminates
without returning a path from s to d. Then it must be the case
that d was never added to the search tree T . If there was a path,
it would have been found when d was searched. If d was never
added to the search tree, then none of its neighbors could have
been added to T , because then d would have been added when
its first neighbor was searched. This same argument can be
applied to the neighbors of d and can be repeated. Accordingly,
it must be that the connected component containing d cannot
contain any member of the search tree T and therefore cannot
contain s, which contradicts the initial hypothesis. Therefore,
the theorem is true.

E. OSA Complexity

For the sake of discussion, consider a network G with node
degree k. If a path from a source s to the destination d is
known, then the complexity of OSA is O(logk(N)). This
corresponds to the depth of a k-ary tree, and is in fact the best
upper bound on the run time of any search algorithm; however,
it is not really a search if a path is already known. It is well-
known that the complexity of a centralized DFS algorithm is
O(V + E), which in this case is reduced to O(N + k ∗ N),
which is O(N).

The accuracy of the ordering determines how far the actual
search deviates from this worse-case value and how close it
approaches the optimal value of O(logk(N)).

We note that the search space in OSA is reduced by a
factor of k for every step that is known to be correct. This is
illustrated in Figure 2, which shows OSA being executed on a
binary tree. The direction of the arrows shows known paths. It
is clear that, with every step taken towards the destination, the
number of nodes in the search tree is halved. For pure DFS or
pure BFS only one node is removed from the search tree in
any give step. In real MANETs, the situation is not as simple
as in Figure 2, because nodes would form a mesh instead of a
tree and the nodal degree is likely to be variable and greater
than two. However, the reduction in the search space at each
step will still be significant.

V. OWL: DFS WITH LEARNING

OSA relies on topology information to enhance the per-
formance of the depth first search. To demonstrate the effec-
tiveness of OSA, we present the ordered walk with learning
(OWL) routing protocol, which uses DFS to establish and
repair paths from the source to the destination with minimal

Fig. 2. An ordered walk example

signaling overhead and fast convergence. OWL is an on-
demand routing protocol, which means that paths are estab-
lished only when needed. However, there is a proactive compo-
nent that is used to maintain up-to-date two-hop neighborhood
information.

A. Routing Information

OWL relies on two-hop neighborhood information and this
is achieved using periodic Hello packets. Hello packets contain
the one hop neighbors of a node and are sent periodically
with the frequency being dependent on the mobility of the
nodes. The default hello packet interval in OWL was set to
thirty seconds and is then additively increased and decreased
based on the number of changes in the neighborhood. If the
neighborhood is stable, then there is less need to update the
information.

OWL uses two structures to store the information necessary
for route discovery and routing data packets. The first is a
neighbor table which stores each of the node’s neighbors and
keeps a list of each of their one-hop neighbors (as advertised
in Hello Messages).

The second structure is a destination table. It stores the
latest sequence number and corresponding distance to that
destination. The information in the destination table is updated
using path information carried in route requests and route
replies. Each node also maintains a preferred neighbor to each
active destination it knows. This preferred neighbor is the first
neighbor from which the node receives the latest route reply
for the given destination, and therefore the closest neighbor
to that destination. Associated with each preferred neighbor
is the number of times that neighbor has been used as the
preferred neighbor in a DFS since the last successful search
(we call this variable PNUse).

B. Route Establishment and Maintenance

Route requests (RREQs), route replies (RREPs), route errors
(RERRs) and hello messages are the basic building blocks of
OWL. These packets are used in the same way as many on-
demand routing protocols.

RREQs are initiated by a source node with the intention
of finding a destination. These packets carry the destination
address, the source address, the current sequence number of
the source, the distance to the source and the path traversed
by the RREQ. These packets are relayed (as long as the TTL

is greater than zero) to a single node determined using OSA.
The precise manner in which route requests are handled are
given in Algorithm 2. The basic idea is to forward the route
request to a valid preferred neighbor if one exists, else use
known topology information to select a successor which is at
greater depth in the search tree and has the most unexplored
neighbors.

RREPs can only be issued by the destination upon reception
of a RREQ. The RREPs are sent along the reverse path to
the source and carry the destination address, source address,
current destination sequence number and the path traveled by
the RREP. Nodes store the distance and sequence number
carried in the RREQs and RREPs in their routing table. This
distance information is useful in ordering the nodes for future
searches in the event of link failures.

This ordering information can be used for up to two future
searches (as determined by the variable PNUse), after which
it expires and is removed from the routing table. This value
can be changed depending on the mobility of the network.
Whenever a node receives a RREP with a higher sequence
number, it refreshes PNUse, so the preferred neighbor can be
used two more times, regardless or prior use.

An ordered walk would fail if the TTL expires or a leaf
node is reached. A RERR is sent back to the source in both
cases, and the source then initiates an ordered walk in a
different direction, with the notion of relative direction being
derived from two-hop neighborhood information as perviously
discussed. This would result in a different branch of the
approximated minimum depth spanning tree being searched
in a DFS manner and increases the probability of discovering
the destination since it maximizes the number of new nodes
being searched.

In a mobile environment, link failures will be inevitable
and if the path being used no longer exists, the last node
before the point of path failure can make up to two attempts
to repair the path using neighbors with a known route to the
destination. If no such neighbor exists, or the path using the
selected neighbor(s) fail, a RERR is sent to the source, which
then starts a new ordered walk. This time, there will be some
ordering of the nodes with respect to the destination from the
previous search and this information will be used in the OSA
algorithm to make the DFS more efficient. The further from the
source the failure occurs, the easier it will be repaired, because
the search tree is significantly pruned with each successful
step.

C. Path Reinforcement

Hello packets are also used to advertise ordering to destina-
tions for which the node or one of its immediate neighbors is
on the path to the destination. When a path to the destination
is set up, the nodes along that path and their neighbors that
overhear the route reply designate themselves as active for that
path for up to two hello intervals after first overhearing the
route reply. This reinforces the ordering to the destination and
provides alternate routes for routing data and future searches.

D. Learning

We have shown how to make efficient uninformed DFS
decisions, but it is even better to make informed search
decisions when possible. To accomplish this, nodes need to
learn about the topology, but this must be done with little
cost.

OWL uses a couple of mechanisms to gain topology in-
formation. Periodic ”Hello” messages, which contain a list
of one-hop neighbors and destinations for which it is active
are broadcasted by all nodes in the network and this is
used to provide two-hop neighborhood information as in the
Neighborhood Aware Source Routing (NSR) [16]. Also, once
a node finds the destination once it uses the past location
information to guide future searches.

In a mobile environment, past position of the destination
will become outdated (more so as the search approaches the
destination). Nonetheless, some of the information may be
useful.

Algorithm 2 : HandleRREQ(RREQ)
1: P ← RREQ(Path)
2: PN ← PreferredNeighbor
3: ProcessPath(P)
4: if (Node = Destination) then
5: InitiateRREP ()
6: return
7: end if
8: if (TTL = 0 or hasNoNewNeighbors) then
9: InitiateRERR()

10: return
11: end if
12: if PN and PNUse > 0 and PN /∈ P) then
13: PNUse = PNUse − 1
14: RelayRREQ(PN)
15: end if
16: O ← BestOrderedHop(P)
17: RelayRREQ(O)
18: return

At the start, most nodes may have no ordering for an
intended of destination. After each search some nodes are or-
dered with respect to other nodes, be it the desired destinations
or not. This ordering is important to the success of OWL.
Promiscuous listening allows for ordering of nodes near the
paths set up. Due to mobility, distance information is assumed
to be valid for up to two searches per sequence number.

Over time, the ordering in the network can become robust,
thus reducing the search time. This claim is substantiated by
the simulation results presented in Section VI.

E. Learning and Mobility

WIth ordered walks, the search is directed towards the last
known position of the destination. This is beneficial as long
as the destination is in the same position or at least very close
to that position. In a mobile environment, this is not always
the case and, for this reason, a known ordering with respect to
the destination is valid only for a few (set to three in OWL),
searches. Such an event indicates substantial movement of the

destination and an ordered walk is initiated and preformed
using uninformed routing decisions.

However, in most of today’s MANETs, nodes do not move
very quickly and are likely to gradually move from one
neighborhood to another. Once the known path is broken, it
is likely to find an alternate route that contains most of the
nodes as the original route and a few new nodes. The results
indicates that OWL performs well in the face of mobility.

F. OWL versus Random Walk

We argue that Ordered Walks are better than Random Walks
in the context of MANETs.

The expected path that results from an ordered walk should
be shorter than that of a random walk. The TTL used in
OSA forces an upper bound on the resulting path length. The
fact that the OSA is performed on an approximated minimum
depth spanning tree ensures that the TTL is sufficiently large
to find a path without allowing the path to be excessively long.
Furthermore, successive nodes in the ordered walk would be,
on average, physically further apart than that of random walks.
In a random walk all neighbors have an equal probability of
being the successor in the search, but ordered walks favor
successors that are further apart since these nodes would have
neighbors in common. Because the average distance between
successive nodes is larger, the average number of hops will be
smaller for ordered walks than for random walks.

The expected number of search messages in ordered walks
should be smaller than that of random walks. Each successive
node in an ordered walk is chosen so as to maximize the
number of nodes not yet covered by the search. For any
given number of search messages, a random walk would
cover at most, as many nodes as covered by an ordered
walk. If the destination is randomly chosen, then each node is
equally likely to be the destination. Therefore, the more nodes
covered by a search, the greater the probability of finding the
destination. Hence, for the same number of search messages,
an ordered walk would have a greater than or equal to that of
a random walk.

Furthermore, because the OSA operates on a minimum-
depth spanning tree, the search is guaranteed to venture into
to new neighborhoods of nodes as it is forced to move away
from the source with each step. In a random walk however,
there is no such restriction and the search can move through
all the nodes in a same neighborhood, and therefore proceed
much slower.

G. A Simple Example

Consider the simple network in Figure 3, where node S
needs to send data to node node D and there is no previous
routing information about D in the neighborhood of S. Node S
chooses a neighbor with the fewest neighbors in common with
itself. In this example, it first chooses A, which in turn selects
B as its successor because they have they fewest neighbors in
common. Node B does not have any neighbor that is not a
child of a node already in the search path because nodes X
and Y are neighbors of node A. Node B cannot proceed to a

Fig. 3. An OWL example

greater depth of the search tree so it must sent a route error
to node S.

Upon receiving this route error, node S must choose a new
successor with as few neighbors in common with both itself
and node A (in an attempt to guide the search in a different
direction). In this example, node S chooses node C which then
chooses node E. Once the RREQ arrives at node E, a path to
the destination is found because the destination, node D, is
in node E’s two-hop neighborhood. Node E will forward the
RREQ along the known path to verify that it still exists. Node
D then initiates a route reply in response to the route request
and this route reply travels along the same path as the route
request. Nodes close to this path, such as nodes G and H,
overhear the route replies and become active for destination
D. Accordingly, they record their preferred neighbor (which is
E for the case of node G) and set the number of future searches
for which the information is useable to 2. Node H becomes
active for destination D and therefore includes the current
distance and sequence number for D in its Hello Messages
which will provide node C with an alternate (and in this case
a shorter) route to node D though node H.

VI. EXPERIMENTAL RESULTS

We compared the performance of OWL with that of rep-
resentative protocols for on-demand and proactive routing
based on BFS in MANETs. OLSR was used as an example
of proactive routing, and AODV and DSR were used as
examples of on-demand routing. Routing in AODV and OLSR
is incremental, meaning routing decisions are taken on a
hop by hop basis, and DSR uses source routing. There are
more recent protocols that outperforms OLSR, AODV and
DSR; however, the unavailability of standardized code of
such protocols prevents meaningful comparisons with OWL.
Furthermore, our comparison highlights the ability to attain
on-demand routing using a DFS approach without relying
on location information, and illustrates the fact that such an
approach can render comparable results to those attained with
the traditional BFS scheme used in OLSR, AODV and DSR,
but with only a fraction of the signaling overhead.

A. Simulation Environment

Three scenarios were used in the simulations. Scenario A,
was designed to rigorously test the performance of the pro-
tocols in a dynamic environment with volatile links. Scenario
B, uses a greater radio range to add more stability to the links
and create more multi-path opportunities. Scenario C, tests the
performance in larger networks under heavy loads.

Scenario A is consists of 100 nodes uniformly distributed in
a grid of size 1000m x 1000m with the transmission range of
the radios set to 150m. This choice of parameters satisfies the
minimum standards for rigorous MANET protocol evaluation
as prescribed by Kurkowski, et al [17] as it results in an
average shortest path hop count [17] of 4.03 and average
network partitioning [17] of 3.9%. Other relevant simulation
parameters are summarized in Table I and Table II. This
scenario ensures that packets travel several hops from source
to the destination and thus tests the robustness of the protocols.
The mobility model chosen was that of random waypoint with
minimum speed of 1m/s and maximum speed of 10m/s with
a pause time of 30s. Each experiment lasted for 900s.

Parameter Value

Simulation time 900s
Node Placement Uniform
Mobility Model Random Waypoint
Min-Max Speed 1-10m/s
Pause time 30s
Propagation model Two-ray
Physical layer 802.11
Antenna model Omnidirectional
MAC Protocol 802.11 DCF
Data Source constant bit rate (CBR)
Number of packets per flow 400
Packet rate 4 packets per second

TABLE I
CONSTANT SIMULATION PARAMETERS

Parameter Scenario A Scenario B Scenario C

Number of Nodes 100 100 400
Number of Flows 10 10 100
Network diameter 9.4 hops 7.07 14.14

neighbor count 7.06 nodes 12.56 nodes 12.56 nodes
Transmission range 150 m 200m 200m

Simulation Area 1000m x1000m 2000m x 2000m

TABLE II
VARIED SIMULATION PARAMETERS

Ten nodes were chosen at random to be sources of CBR
flows and ten nodes were chosen at random to be destination
of these flows. Care was taken to avoid the case where a node
was both the source and destination of any particular flow.
There were no restrictions on nodes being multiple sources,
multiple destinations or a source of one flow and a destination
of another. Each source would send a maximum of 400 packets
of size 512 Bytes at a rate of 4 packets per second. The start
time of each flow was randomly determined using a uniform
distribution and was within the duration of the experiment.

TABLE III
SIMULATION RESULTS

Scenario A

Delivery Ratio Latency Net Load R/R Avg. Path Length

AODV 0.62±0.09 0.048±0.014 48.4±4.7 33.86 3.74
DSR 0.20±0.08 0.62±0.52 5.8±0.6 0.64 6.1

OLSR 0.32±0.08 0.07±0.02 238.6±2.3 NA 3.6
OWL 0.68±0.12 0.076±0.031 3.6± 0.4 11.1 4.5

Scenario B

Delivery Ratio Latency Net Load R/R Avg. Path Length
AODV 0.85 ± 0.07 0.041 ± 0.010 25.5 ± 1.4 21.61 3.2
DSR 0.42± 0.20 0.50 ± 0.55 4.3 ± 2.83 0.56 5.6

OLSR 0.56 ± 0.07 0.044 ± 0.01 131.2 ± 1.79 NA 3.2
OWL 0.91±0.06 0.051±0.020 1.81±0.12 8.0 4.1

Scenario C

Delivery Ratio Latency Net Load R/R Avg. Path Length
AODV 0.42 ± 0.03 0.14 ± 0.02 67.1± 6.04 130.6 4.8
DSR 0.02 ± 0.01 1.5 ± 0.1 18.5 ± 1.2 0.68 9.3

OLSR 0.09 ± 0.02 0.12 ± 0.01 180.3± 1.3 NA 4.9
OWL 0.49±0.05 0.17±0.04 6.5±0.32 61.5 5.2

Using a time-based seed, 20 random scenarios were gener-
ated with the above specifications and the results were used to
compare the performance of the protocols. The large number
of randomly generated scenarios were used to avoid bias in the
results. Each series of random numbers was generated using
the lrand48 command in C and using the current time as a
seed for the random number generator.

Scenario B is similar to A, except that the transmission
range is increased to 200m. The purpose of this was to increase
the average neighbor count from 7.06 to 12.6 nodes. Also, the
increased range makes some of the links more stable as nodes
take longer to move out of range of each other. The value of
the average shortest path would certainly be less than 4 nodes
while the average network partition would be less than 5%.

Scenario C is similar to Scenario B with the main difference
being that the area is four times larger and there are 100
CBR flows, each of which beginning at a random time. The
objective of this scenario is to demonstrate the performance of
the protocols in larger networks. Each flow in Scenario C has
200 packets and sends them at a rate of 2 packets per second.

The differences between the three scenarios are summarized
in Table II.

Five metrics were used to evaluate and compare the perfor-
mance of the protocols and they are discussed below. The hello
interval in OWL was set to 30 seconds and for comparability,
the TC interval in OLSR was set to 30 seconds and the hello
interval in OLSR was set to 15 seconds.

The mean and a 95% confidence interval were obtained.
The simulation results for the four routing protocols are
summarized in Table III.

B. Delivery Ratio

Delivery ratio is the fraction of packets that arrive at the
corresponding destination by the end of the simulation. The
reasons packets are not delivered to the destination is depen-
dent on the specific protocol. Data packets can be dropped at
the source if they cannot find a route to the destination. Data

packets in transit can be dropped upon link failure, especially
if the protocol does not perform local route repair. In OWL,
when a link fails, a node can try up to two different paths to
send the data packet along if such information is available. If
no alternate routes are available the packet is dropped.

For Scenario A, the performance in terms of delivery ratio
is poor for all protocols. This is due to the dynamic nature of
the network, and the possibility of network partitions. OWL
performs marginally better than AODV, and these two perform
significant better than OLSR and DSR. In Scenario B, where
the likelihood of nodes being unreachable is much smaller
than in Scenario A due to the increased radio range, all the
protocols delivered a greater number of packets. In Scenario
C, all protocols experience much smaller delivery ratio as
is expected. As the average length of the path increases the
frequency at which the path breaks increase and more packets
are lost. This performance reflects the need for protocols which
scale better as the size of the network increases. OLSR and
DSR experience relatively poor performance. This can be due
to the dynamic nature of the network and source routes and
topology information quickly becoming invalid. When this
happens packets will be dropped due to a lack of a path to the
destination and this is reflected in the results.

An important result is that the DFS approach discovers paths
from the source to the destination and deliver comparable,
if not more, packets. The length of the paths the packets
travel from sources to the destinations and slightly larger than
those obtained from BFS schemes, but this is mitigated by the
overall performance.

C. Network Load

D. Latency

Latency is the average end-to-end delay experienced by a
data packet. The main factor that affects latency is the time
taken to find a path from the source to the destination. For a
proactive protocol like OLSR, this time is expected to be very
small, because there is no delay involved in setting up a path

0 100 300 600 900
0

0.2

0.4

0.6

0.8

1

Pause Time/s

D
el

iv
er

y
R

at
io

0 100 300 600 900
0

0.1

0.2

0.3

0.4

Pause Time/seconds

A
ve

ra
ge

 D
el

ay
/s

ec
on

ds

0 100 300 600 900
0

0.5

1

1.5

2

2.5

Pause Time/seconds

Lo
g(

N
et

 L
oa

d)

AODV DSR OWL OLSR

Fig. 4. Performance variation with Pause Time

when a data packet arrives at a node, given that one is already
known. The time it takes to repair links also affects latency. In
mobile networks, link failures are inevitable. Protocols should
be able to repair links with minimal delay to ensure the
timely delivery of packets. This is usually done with local
route repair, but local route repairs may not always succeed in
obtaining new routes, and a failed local route repair incurs a
greater delay penalty compared to sending an immediate route
error (RERR) to the source upon link failure.

BFS would, at least according to intuition, lead to faster
route discovery and faster route repair than depth first search.
However, in networks with multiple flows the flooding of
search packets can result in the broadcast storm problem and
this results in lost packets which can lead to fail attempts
of route discovery. If there are too many nodes flooding the
network, it may be possible to saturate the network which
will lead to all packets being dropped. With DFS on the other
hand, only a small fraction of the network is involved in route
computations at any given time which significantly reduces
the load in the network and fewer packets are lost.

OWL makes up to two attempts of local route repair. When
a local repair is successful, a RERR is not sent to the source.
If the intermediate node does not already know an alternate
paths, or the alternate paths are broken, it sends a RERR to
the source. Only nodes along the path of the RERR and those
within radio range learn of the link failure encoded in the
RERR. Therefore, the topology information stored in nodes
is not uniform in OWL. However, for the purposes of routing
RREQs, absolute accuracy is not necessary. A node is still
likely to be in the same vicinity of its last known location,
and this is sufficient for the purposes of guiding RREQs.

In terms of latency, the relative performance of the four
protocols is the same in all scenarios, with AODV enjoying the
lowest latency and DSR incurring significantly greater delays.
Flooding the network is guaranteed to quickly find a path if
one exists. OWL may require several ordered walks before
a route to the destination is found. OLSR also incurs lower
latencies than OWL, because paths are available when data
packets arrive at sources and relays.

Net load is the number of overhead packets (RREQs,
RREPs, RERRs, Hellos, etc.) which were initiated or for-

warded divided by the number of data packets sent. This takes
into account packets that were sent into the network and were
dropped or did not make it to the destination for any reason.
Net load gives an indication of the average number of overhead
packets needed to send a single data packet from the source to
the destination. The number of overhead packets needed would
depend on the volatility of the network. The more frequently
links are broken, the more control packets would be needed
to establish new paths.

The advantage of ordered walks become quite clear when
this metric is considered. OWL requires significantly fewer
overhead packets than the other protocols, because it efficiently
searches the network without flooding and therefore sources
find their destinations without having to search every node.
Even in the large network of 400 nodes, OWL incurs ten times
less overhead than AODV which vouches for its scalability.
DSR also appears to incur relatively small overhead; however,
this is due to the fact that DSR drops many data packets due
to stale source routes stored in nodes, and those packets do
not cause RREQs to be sent, even though they should have
been issued.

E. Mobility

We now show OWL’s performance as the mobility of the
network is varied. Using the parameters from Scenario A,
which is more taxing on all protocols, we vary the pause
time of the nodes from 0 seconds to 900 seconds. The results
are illustrated in Figure 4. The results are as expected, the
protocols performs better as mobility decreases. In the graph
showing the average end to end delay, the line for DSR does
not appear because it was beyond the range of the axis. It is
important to note that the learning mechanisms in OWL still
work effectively with shorter pause times.

F. Towards Scalability

OWL requires far fewer route requests and route replies to
deliver a comparable number of packets than routing protocols
based on traditional BFS searches. While the route discovery
process may take marginally longer, the DFS approach used
in OWL avoids the broadcast storm problem and causes
fewer disruptions to other flows in the network. This becomes

particularly important in larger networks as the number of
flows increases. Considering all the results together, it becomes
clear than ordered walks can be used to replace the flooding
mechanism of reactive routing.

VII. CONCLUSION

We argued that most routing schemes designed for
MANETs rely on some form of BFS, and presented the
ordered walk search algorithm as a replacement for flooding.
An ordered walk is a distributed approximation of DFS that
is aided by known topology information to reduce the search
tree. We introduced the OWL routing protocol as an example
of the great potential for using DFS in route signaling for
MANETs. We presented the results of simulation experiments
illustrating that OWL provides comparable or better delivery
and end-to-end delay than AODV, DSR and OLSR, but with
significantly less signaling overhead. The use of ordered walks,
as presented in this paper, is a promising tool in achieving
minimum-signaling routing in MANETs. While OWL is a
step towards achieving this goal, more work is needed to fully
exploit the advantages of ordered walks in routing protocols.

VIII. ACKNOWLEDGEMENTS

Work partially sponsored by the U.S. Army Research Office
(ARO) under grant W911NF-05-1-0246, by the National Sci-
ence Foundation under grant CNS-0435522, and by the Baskin
Chair of Computer Engineering.

REFERENCES

[1] B. Awerbuch, “A new distributed depth-first-search algorithm,” Informa-
tion Processing Letters, Vol. 20, No. 3, pp. 147–150, 1985.

[2] I. Cidon, “Yet another distributed depth-first-search algorithm,” Infor-
mation Processing Letters, Vol. 26, No. 6, pp. 301–305, 1988.

[3] S. Makki and G. Havas, “Optimal distributed algorithms for constructing
a depth first search tree,” Proc. ICPP, 1994.

[4] H. Tian, H. Shen, and T. Matsuzawa, “Randomwalk routing for wireless
sensor networks,” Proc. PDCAT, 2005.

[5] S. D. Servetto and G. Barrenechea, “Constrained random walks on
random graphs: Routing algorithms for large scale wireless sensor
networks,” Proc. WSNA, 2002.

[6] B. Karp and H. Kung, “Greedy perimeter stateless routing for wireless
networks,” Proceedings of the Sixth Annual ACM/IEEE International
Conference on Mobile Computing and Networking, pp. 243–254, August
2000.

[7] U. Acer, S. Kalyanaraman, and A. A. Abouzeid, “Weak State Routing
for Large Dynamic Networks,” Proc. MobiCom, September 2007.

[8] S.-Y. Ni, Y.-C. Tseng, Y. S. V. Hen, and J.-P. Sheu, “The boradcast
storm problem in mobile ad-hoc networks,” Proc. MobiCom, 2001.

[9] A. Segall, “Distributed network protocols,” IEEE Transactions on Infor-
mation Theory, 1983.

[10] M. A. Spohn, “Domination in graphs in the context of mobile ad
hoc networks,” Ph.D. dissertation, University of California, Santa Cruz,
2005.

[11] L. Kleinrock and F. Kamoun, “Hierarchical Routing for Large Networks:
Performance Evaluation and Optimization,” Computer Networks, Vol. 1,
No. 3, pp. 155-174, January 1977.

[12] M. G. Guangyu Pei and T.-W. Chen, “Fisheye state routing in mobile
ad hoc networks,” ICDCS Workshop in Wireless Networks and Mobile
Computing, 2000.

[13] R. Ramanathan and C. Santivanez, “Hazy sighted link state (hsls)
routing: A scalable link state algorithm,” BBM Technical Memo BBN-
TM-I30I, BBN Technologies, 2001.

[14] K. Xu, X. Hong, and M. gerla, “An ad hoc network with mobile
backbones,” IEEE Internation Conference on Communications, 2002.

[15] I. Rubin and P. Vincent, “Topological synthesis of mobile backbone
networks for managing ad hoc wireless networks,” IEEE International
Conference on Management of Multimedia Networks and Services:
Management of Multimedia on the Internet, 2001.

[16] M. Spohn and J. J. Garcia-Luna-Aceves, “Neighborhood aware source
routing,” Proc. ACM MobiHoc, 2001.

[17] S. Kurkowski, T. Camp, and W. Navidi, “Minimal Standards for Rig-
orous MANET Routing Protocol Evaluation,” Technical Report MCS
06-02, Colorado School of Mines, 2006.

