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Abstract-Security is extremely important for the deployment of
a Mobile Ad-hoc Networks (MANET) due to its openness to
attackers, the absence of an infrastructure, and the lack of
centralized administration. Most research efforts have been
focused on secure routing protocols, the distributed certificate
authority, and key distribution, while a few projects have focused
on secure autoconfiguration. However, the importance of
integration of a secure autoconfiguration and public-key
distribution has been neglected. This paper presents a secure
autoconfiguration and public-key distribution algorithm to
achieve uniqueness of address allocation and secure public-key
distribution when a new node joins a MANET, which provides
the bootstrapping for building a distributed certificate authority
(DCA) in the network where a trust relationship is absent.

Keywords-autoconflguration; public key distribution; MANET;
security

I. INTRODUCTION

A Mobile Ad-hoc Network (MANET) refers to a wireless
network consisting of mobile nodes where an infrastructure is
absent. In such a network, each node functions as both an end
node and router. It initiates connections to other nodes, and
forwards packets for other nodes at the same time. Due to the
abundance of mobile devices, the speed and convenience of
deployment, and the independence of networking
infrastructure, a MANET has many applications in the
scenarios where it is costly, inconvenient, or impossible to
build an infrastructure, such as search-and-rescue, battlefield,
and "smart transportation".

Before the deployment of MANETs, there are many issues
that are worth our research effort, among which security is
extremely important. A MANET is vulnerable to all kinds of
attacks due to the following reasons:

(1) In an open system, a malicious node can join and leave
the network arbitrarily;

(2) The wireless link between two nodes is a broadcast
channel, so the communication is vulnerable to eavesdropping;
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(3) The assumption underlying the MANET is that all the
nodes (or most nodes) cooperate to function properly. A
malicious node can undermine routing fabrics and other
services passively (by dropping the packets that need to be
forwarded) or actively (by injecting false information into the
network or altering the packets in transit);

(4) It is more difficult to identify the source of a message
in the MANET than in the hardwired network because of the
absence of an infrastructure and the lack of centralized
administration.

Thus, a seemingly easy task may become difficult when
encountered with attacks. One example is autoconfiguration.
Although there have been several autoconfiguration schemes
proposed for uniqueness of address allocation when a new
node joins the MANET ([1] - [8]), none will work properly in
an insecure environment. Therefore, some secure
autoconfiguration algorithms were proposed ([9]-[12]) to
defeat attacks on autoconfiguration.

However, difficulty arises from the integration of secure
autoconfiguration and public-key distribution because of the
dual roles of the IP address, which is used for both routing and
identification. For instance, after node N joins the network, the
association of its IP address and its public key must be
announced at the same time of autoconfiguration; otherwise, a
malicious node (say node M) will know node N's IP address
and use that address to associate with its own public key for
"man-in-the-middle" attacks.

To solve the problem, we proposed secure
autoconfiguration and public-key distribution, namely the SA
PKD scheme in this paper. It guarantees the uniqueness of IP
address allocation. At the same time, it distributes the public
key of the new node to all (or most) members in the MANET.
In the ideal situation, all the nodes will receive the binding of
the public key and IP address from the new node. Thus, it can
be used as a temporary certificate authority for the
bootstrapping steps in building a distributed certificate
authority ([13]-[15]), where a trust relationship is absent.
However, it is tolerable for some members to miss the binding



from one new node, because the new member can prove its
ownership of the identity after autoconfiguration in our
scheme.

The paper is organized as follows. Section 2 gives a brief
description about pre-existing secure autoconfiguration
schemes. Our SA-PKD scheme is presented in Section 3.
Section 4 analyzes the attacks on the SA-PKD scheme and
demonstrates its invulnerability, which is supported by the
simulation results in Section 5. Section 6 suggests future work
and concludes the paper.

II. RELATED WORK

This section gives a brief description of four secure
autoconfiguration schemes, three of which have been
examined in [16]. We used the same nominations from [16],
but include their weaknesses from our points of view.

A. Self-authentication scheme

In the self-authentication scheme [9] (which is an
application of Cryptographically Generated Address [17]), a
new node generates its public/private key pair randomly and
then uses the hash value of its public key as the IP address. To
detect address conflict, the new node broadcasts a Duplicate
Address Probe message (whose role is similar to the Duplicate
Address Detection message in [1]) throughout the MANET.
The message contains a timestamp and some signed
information to prevent replay attacks and IP spoofmg attacks
from a malicious node.

This method is simple and elegant. To verify a node's
ownership of the public key, another node merely performs the
same hash function on the public key and compares the hash
value with the IP address. With this scheme, a certificate
authority is not needed. However, such a tight relationship
between the public key and IP address brings the following
problems:

(1) The scheme limits one public/private key pair per node.
However, a node usually needs two pairs of public/private
keys: one pair for signing/verifying, and the other for
encryption/decryption. If a node uses only one key pair, it is
vulnerable to chosen ciphertext attack [18]. Thus, with the
self-authentication scheme, a node is going to have two IP
addresses, and thus some method is necessary to bind these
two IP addresses;

(2) The change of one leads to the change of the other. For
example, if a public/private key pair expires in the middle of
the communication, the IP address needs to change
accordingly. Similarly, if there is an address conflict after two
MANETs merge, one node needs to change both its IP address
and public/private key pair simultaneously;

(3) In the case that a MANET is connected to the Internet
with a gateway, the private address of the mobile node in the
data packets needs to be changed with NAT, thus the
relationship between the IP address and public key does not
hold any more.
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B. Challenge-response scheme

The challenge-response scheme [10] is based upon the
buddy system used in [5]. The procedures include two steps:
the first step is authentication, the second is address allocation.
Firstly, a new node uses its MAC address as the temporary
address to send both its MAC address and public key to all its
neighbors with one-hop broadcast, and then expects to receive
a unique nonce encrypted with the pubic key from each of the
neighbors. Once the new node decrypts the nonce, it increases
it by one, signs the message, and sends it back to its neighbor.
After the authentication, the neighbors will record the
mapping between the new node's public key and MAC
address. The new node then chooses a neighbor randomly as
the address allocator. The allocator divides its address pool
into halves and assigns one half to the new node. It is different
from the scheme in [5] in implementation details that the
nodes do not maintain the actual address pools, instead they
keep only the pointers pointing to the previous and next used
addresses in the pool, which will lessen the complexity in
maintenance of the address range if a node leaves the MANET
abruptly.

The scheme has two problems. Firstly, only one-hop
broadcast is used in the announcement of the public key, and
thus the public key is distributed to only the one-hop
neighbors; secondly, if the allocator is a malicious node, it can
assign a non-disjoint address pool to the new node, which will
lead to address conflicts in the current and subsequent address
allocations.

C. Trust model scheme

There are two secure autoconfiguration schemes based on
a trust model. The one proposed in [11] is based upon the
MANETconf algorithm [6]. It assumes that the number of
malicious nodes in the MANET is small. Each node in the
network maintains a trust value for each of its neighbors. The
neighbor whose trust value is greater than or equal to a
threshold is considered as a trustworthy node. For a remote
destination node, the source node gathers the trust values
along the path between the source and destination to calculate
the destination's trust value. With the trust model, a new node
chooses only a trustworthy neighbor as a requestor. The
requestor chooses a random IP address for the new node, and
broadcasts a DAD message to detect an address conflict. The
requestor will ignore all the veto messages from non
trustworthy nodes to prevent DoS attacks. This scheme can be
easily defeated by Sybil attacks [19] in which a malicious
node can forge multiple non-existent identities. They can
conspire to increase each other's trust value.

The other secure autoconfiguration scheme in [12] is based
upon the buddy system in [5] and a threshold cryptography
based distributed certificate authority (DCA) in [13]. The
scheme assumes that a DCA is available in the MANET when
a new node joins the network. Before requesting a free IP
address pool, the new node first needs to collect at least k
partial certificates from its one-hop neighbors to form a full
certificate. From then on, all the control messages can be



authenticated. The problems with this scheme are that firstly,
at least k pre-configured DCA server nodes must be present in
the MANET without autoconfiguration; secondly, because
only one-hop communication is utilized by the new node to
apply for partial certificates, the scheme also assumes that the
new node must have at least k DCA server nodes as its direct
neighbors; thirdly, if the DCA is built on-the-fly, it is
vulnerable to Sybil attacks, as we illustrated in [15].

III. SECURE AUTOCONFIGURATION AND

PUBLIC-KEY DISTRIBUTION

The public key of the new node needs to be distributed at
the same time as the secure autoconfiguration. Otherwise, a
malicious node can impersonate the new node in registering or
distributing the public key. This section presents the SA-PKD
scheme that achieves two goals: uniqueness of address
allocation and secure distribution of the public key.

A. Network model

We assume that the MANET is a densely connected
network, in which there are multiple paths between any two
nodes. Other scenarios, such as partitioning of the network, are
studied in subsection III.e.

Ideally, there is a path that contains no malicious node
between the new node and each of the members. However,
even if there is a malicious node on the path , since our scheme
is going to use multi-hop broadcasts to distribute encrypted
and signed information, each node is monitored in forwarding
packets to detect message modification, as illustrated in Fig. 1.

@-------@-------@--------Q
Figure I. Figure I. A pathbetween newnodeN and memberA

In Fig. 1, there is a malicious node M between the new
node N and a member, node A. We assume that node M's
direct upstream neighbor node G is a good node . Because
broadcast is used in data communications, if node M modifies
the control message, node G will receive the modified copy .
Node G can move around or increase its transmitting power
and forward the control message again, trying to reach the
nodes beyond node M. In the end, node A will receive both
authentic and modified control messages. Node A needs to
keep both messages for verification.

If node M drops the control message silently, it seems to
node G that node M leaves the network or moves away . If
there is more than one path between the new node and the
member, the control message can arrive at the member along
other paths . However, if there is only one path, node A will
not receive any message. To solve the problem, we resort to
periodic HELLO messages in routing protocols [20]. To
maintain routing fabrics, the interval of HELLO message
broadcast is quite small (1 second for AODV). If we require
that the control message be repeated several times, and that its
interval be longer than that of HELLO messages, node G will
be aware of the malfunction of node M. Therefore, it can
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move around or increase its transmitting power and forward
the control message again .

When there is only one path from the new node to a
member and there are two consecutive malicious nodes along
the path, these two malicious nodes may conspire to tamper
with the control message without being detected by the
upstream node . Since we assume a densely connected network
and nodes are free to move arbitrarily, this is very unlikely to
happen. Moreover, according to the analysis in Section 4, the
attack coordinated by these two malicious nodes cannot
substitute the new node's public key, which alleviates the
effect of the attack.

B. Procedures

The procedures of SA-PKD scheme include the following
steps:

1) Generation of parameters: We based our SA-PKD
scheme on [1], in which the new node chooses its IP address
randomly. To be more specific, the new node , node N,
generates the following parameters on its own :

(1) A public /private key pair (PbN/ PrN);

(2) A random number (RN);

Node N can generate more than one pair of public/private
keys , which is similar to the steps described below. To
generate its tentative IP address, it applies a hash function on
RN (Addr-, = Hash(RN) ) . The hash function can be a default
hash function, or one from a list of hash functions . Here we do
not let the new node choose its random address directly,
because the relationship between RN and Addr-, may be
utilized in the proof of the ownership of the IP address after
autoconfiguration.

2) Broadcast of Duplicate Address Detection (DAD)
message: Like the scheme in [1], node N chooses a temporary
random IP address from a special address pool to broadcast a
DAD message several times to detect address conflict. This
temporary address is used only for autoconfiguration. Once
the address generated in step 1) is confirmed to be free, it will
be discarded.

... ----- ... , , ,,,
\
\
\
I
I

\
\

\

"" MANET

.... _--_...
Figure2. Twonewnodechoosethe sametemporary address simultaneously

It is tolerable for two or more new nodes to choose the
same temporary address simultaneously because our scheme
uses application-level routing, as illustrated in Fig. 2. In Fig. 2,
nodes N 1 and Nz are both new nodes joining the MANET at
the same time. Node A is a neighbor of node N I, and node B is



a neighbor of node N2• We also assume a direct link between
nodes A and B for easy demonstration.

Suppose that these two new nodes choose the same
temporary address (say x) in broadcasting the DAD message.
In routing protocols, only one routing entry for x is saved in
the routing table. For example, if node A receives the DAD
message from node N, first and then that from node N2, the
next hop in the routing entry for address x will be node N, first
and then will be updated to node B. Thus, if node A needs to
send some reply message back to node N" the message will be
sent to node B and then node N2• In contrast, our SA-PKD
scheme stores routing entries at the application level. Node A
saves two entries for address x: one pointing to node N" the
other pointing to node B. Both entries will be used to send a
reply message to node Nj.Thus, node N, will not miss any
reply message in the course of secure autoconfiguration.
Although node N2 will also receive the message destined for
node N" we can always use sequence numbers, timestamps, or
random numbers to differentiate between the reply messages.

In the DAD message, node N puts the following
parameters in addition to a sequence number and a timestamp:

(I) The hash value of its IP address (Hash(AddrN), which
is in fact Hash(Hash(RN» );

(2) The IP address signed with its private key
(SigfIN(AddrN»'

For the reason of simplicity and readability, when
calculating the parameters, we deliberately omitted the
sequence number, timestamp, and some random numbers
inside the hash function and signing function. For parameter
(l), node N can use a different hash function. If it is not the
default hash function, the new node also needs to notify other
members within the DAD message the specific hash function
used to calculate the hash value of the IP address.

The DAD message is sent with multi-hop broadcasts. As
discussed in Subsection lILA, node N will know its direct
neighbors by means of periodical broadcasts of HELLO
messages, thus node N can monitor the forwarding of the
DAD packet. If node N has only one neighbor that is a
malicious node, and if the malicious node refrains from
forwarding the packet, node N will not receive any forwarded
copy in a limited time frame. Therefore, node N can move
around or increase its transmitting power and try broadcasting
again. If there is no forwarding at all after several trials, it can
infer that it is the first node in the MANET and can perform
self-configuration.

3) Receipt of Duplicate Address Detection (DAD)
message: When a node receives the DAD message, it
calculates the hash value of its own IP address. If it is the same
as the hash value in the DAD message, it generates a veto
message (an NACK message) and sends it back to node N.
The most important parameter in the NACK message is the
source IP address in the IP packet header, in addition to other
parameters such as a sequence number and a timestamp. To
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prevent a malicious node on the path from dropping the
NACK message, we resort to application-level routing as well:
every node records the upstream neighbor on receipt of each
copy of the DAD message, and sends NACK message to all
the upstream neighbors.

It is trivial for a malicious node to forge an NACK
message if it can find an IP address that has the same hash
value as the new node generates. For 10.0.0.0/8 in IPv4, if we
use MD5 hash function', with enough storage space (e.g.,
approximately 320MB for MD5), a malicious node can save a
table of all the available IP addresses in this range together
with their corresponding hash values. To solve this problem,
either we use an address range in IPv6, or we allow many hash
functions to choose from. For example, suppose that we have
16 different hash functions that all generate 128-bit results, the
storage requirement increases to approximately 5GB. The
third solution is to use the concept of seed in the encryption of
a password in UNIX: a random number appended to the IP
address in the calculation of hash value in step 2), which
increases the storage requirement exponentially. For example,
with a 2-bit random number, the storage requirement increases
to 4x320 MB; with an 8-bit random number, it increases to
256x320 MB.

However, even if the malicious node can find an IP
address that has the same hash value, the result is not as
damaging as it seems. According to the nature of a hash
function, there will always be more than one number mapped
to the same hash value. Thus, even if the hash value is the
same, the source IP address forged by the malicious node may
not be the same as the IP address generated by node N.
Therefore, the NACK message may be legally ignored as in
step 6) below.

4) Forwarding of DAD message: Each member needs to
forward the DAD message to its neighbors even if it has the
same hash value of IP address and sends back a NACK
message, as illustrated in Fig. 3. In Fig. 3, node N is the new
node, node G is a good node, node M is a malicious node, and
node A is another member. There is a direct link between node
G and node M. Even if Hash(AddrN) = Hash(AddrG), their
addresses may still be different. Thus, node G still needs to
forward the DAD message to other members, because node A
may have the same address as node N. It is the NACK
message from node A that prevents the actual address conflict.

------r----~----------- ------------~
N ---- M _--------------- A

Figure 3. Forwarding of DAD packet

1 Here we use MD5 hash function for illustration and simulation, which does
not necessarily mean that MD5 should be used in the scheme. A more secure
hash function, such as SHA-2, should be used in practical deployment.



Generally speaking, to prevent the same data packet from
being forwarded multiple times by the same node, each node
needs to check the Flooded Packet Identifier (FPI) introduced
in [21] for each copy of the broadcast packets. For IPv4
packets, the FPI includes the source IP address, IP
identification value, and fragment offset value, which are not
enough for the SA-PKD scheme. For example, if node M in
Fig. 3 modifies one parameter in the DAD message, it should
be regarded as a different message. Thus, each node needs to
check both the header and payload and forward the message if
necessary.

5) Forwarding ofNACK message: It should be noted that
unlike broadcast of DAD messages, NACK message is
forwarded with unicast. Thus, if a malicious node modifies the
source IP address in the packet header, it will not be directly
detected by the upstream node. Although in step 3), we
suggest that the NACK message be sent through multiple
reverse paths, if there is a malicious node on each path, they
could conspire to replace the source IP address with another
one.

However, the problem is not too serious either. Firstly,
because the possibility that the new node chooses an occupied
address is so low that it is very unlikely to happen, and thus
the NACK message is not so important as the DAD message
in step 2) and the Commit message in step 7); secondly,
suppose that node A sends back a NACK message and that the
NACK message is lost or modified, and thus node N cannot
receive the IP address of node A, node N will keep
broadcasting the DAD message with the same hash value for
several times. Once node A receives the second DAD
message, it infers two possible reasons:

(1) The NACK message is lost or modified;

(2) The NACK message is legally ignored by node N (as
described in the next step).

In either case, better safe than sorry. Node A chooses to
broadcast the NACK message. Thus, the modification of
NACK message can be detected. If node A still receives the
third DAD message with the same hash value, it can infer the
second possibility.

6) Receipt of NACK message: Once node N receives the
NACK message, it compares the source IP address with the
address computed from RN it chooses. If they are the same,
node N chooses another RN and repeats step 2) until there is no
duplicate address or a limited number of retrials have been
accomplished. For the NACK message whose source IP
address is not the same as its own, it is legally ignored.

7) Broadcast of Commit (CMT) message: Node N will
repeat broadcasting DAD messages several times to make sure
none misses the message. Once DAD procedures fmish, node
N broadcasts its public key (PbN) in a Commit (CMT)
message throughout the MANET. In addition to its public key,
other parameters, including the sequence number and
timestamp, will also be used. The source IP address of CMT
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message is now the hash value of RN, the IP address that it
generates. This address will also be used for all the subsequent
data communications. The temporary address chosen for step
2) is discarded.

On receipt of the CMT message, each node uses the source
IP address and the public key to verify the hash value of the
address and the signature contained in the previous DAD
message, and thus gets the association between the public key
and the IP address of the new node. Each node also forwards
the CMT message to its neighbors, just like the forwarding of
DAD messages. In addition, node N also broadcasts the CMT
message several times.

After SA-PKD scheme finishes, node N will have a unique
IP address, and all the other members have the association of
its public key and its IP address.

C. Other scenarios

If there is a partition in the network, the members in one
partition will be unaware of new nodes' IP addresses and
public keys in the other partition. Once these two partitions
merge, a malicious node in one former partition can initiate
"man-in-the middle" attack against another node in the other
former partition. Thus, we require the merger of two partitions
be viewed as the merger of two independent MANETs.

To solve this problem, we use the same concept of
Network ID (NID) from other autoconfiguration schemes.
Every MANET has a unique NID, which is updated by the
new node. The new node generates a random number for NID
and puts NID in the CMT messages. On receipt of the CMT
message, each node updates its NID. If two or more nodes join
the MANET or partition at the same time, the NID chosen by
the node with the largest IP address will be adopted by all the
members. The NID is also piggybacked in periodic HELLO
messages to detect merger of two MANETs. If there is no new
node joining any partition, the partitions are going to have the
same NID and no further action is necessary. Otherwise, they
are going to have different NIDs.

If two MANETs merge, we require that the nodes in one
network join the other and perform SA-PKD procedures again.
Although the IP address will be changed, with the measures
from [22], the communication overhead can be minimized.

IV. ANALYSIS OF ATTACKS ON SA-PKD

This section analyzes the attacks focused on SA-PKD
scheme. Other attacks, such as repeated forwarding of
modified DAD or CMT messages to consume computation
and power resources, are not directly related to our scheme,
and thus are skipped in our analysis. We also ignore replay
attacks since we include sequence numbers, timestamps, and
random numbers in the messages.

The DAD message contains two of the most important
parameters: the hash value of the IP address and signed IP
address. Because the random number (RN) and the public key
(PbN) are kept secret in the beginning by node N, none can



Figure 4, Attacks on DAD procedures for case I

Node A will receive and record all the values for
verification on receipt of the CMT message.

In the end, node N broadcasts a CMT message that
contains two important parameters: Addr-, and P~. Now node
M has three typical choices to modify the CMT message:

(1) Replace P~ with PbN'

Node A will receive both public keys and use them to
verify the DAD messages and get the following results :

CMT Previously
received DAD Resultparameters message

Node A recovers Addr», which is
Authentic Message the same as the source IP address

(G-+A) in CMT message, and hash value
verification succeeds

PbN Substituted Node A cannot recover the addressMessage (M-+A)

Random Message
Node A cannot recover the address(M-+A)

Authentic Message Node A cannot recover the address(G-+A)
Node A recovers Addr,»,which is

Substituted not the same as the source IP
PbN· Message (M-+A) address in CMT message, and thus

verification fails

Random Message
Node A cannot recover the address(M-+A)

determine the IP address and public key from these two
parameters. As a matter of fact, these two parameters seem
like two random bit strings to all the other members.

To attack the SA-PKD scheme, the malicious node M
needs to modify these two parameters in the DAD message.
Node M has two typical choices:

(1) Node M chooses another public/private key pair (PbN' /
PrN') and another random number (RN'), replace SigfIN(AddrN)
with SignN'(AddrN') and Hash(AddrN) with Hash(AddrN ,) , as
illustrated in Fig. 4. We denote this modified message as
Substituted Message;

(2) Node M replaces them with two random bit strings.
The modified message is denoted as Random Message.

ISignN(AddrN)IHa~h~~~~r:)_!1 G Is~~n:~~ddrN)IH ash(AddrN)I

-~ t~@==~-~ ~~~=:G

IS;g,,(Add,,) IlIa:~:~;,:;i MI------- I I
SignN,(AddrN') Hash(AddrN')

PROCESSING OF DAD PARAMETERS
FOR CASE 2

TABLEll.

Thus, node A will get the association of Addr-, with P~
from the authentic messages, and the association of Addrc
with PbN' from the Substituted Message.

(3) Replace any parameter in CMT message with a random
value

Node A will get the association of Addr-, with P~ from
the authentic messages.

(2) Replace (Addre, PbN) with (Addrc- PbN')

Node A will receive both public keys and IP addresses,
and use them to verify the DAD messages and get the
following results:

If node M replaces the public key with a random bit string ,
node A cannot recover Addr-, with the modified CMT
message. Similarly, if node M replaces the source IP address
in CMT packet with a random IP address, the hash value of
that random IP address is not equal to the saved copy of the
hash value, and thus verification fails . However, with
authentic DAD and CMT messages, node A can still get the
association of Addr-, with PbN•

Because DAD messages go before CMT messages, even if
node M knows node N's IP address and public key on receipt
of the CMT message, it cannot substitute node N's
public/private key pair with another key pair used for the DAD
message stored in other nodes . Thus, in any case, node N will
get a unique IP address. At the same time, all the other nodes
will always get the correct association of Addrj, with P~, and
probably the association of Addre- with PbN', which seems like
another new node joining the MAENT.

In the case that node A misses either DAD message or
CMT message, node A cannot get the association of the new
node's IP address and public key. In the case that two
consecutive malicious nodes conspire to tamper with the DAD
message and CMT message, node A cannot get the association
from the new member either. However, from the analysis
above, the malicious nodes cannot substitute the new node's

CMT
Previously

parameters received DAD Result
message

Node A recovers Addru, which is
Authentic Message the same as the source IP address

(G-+A) in CMT message, and hash value

(AddrN, PbN)
verification succeeds

Substituted
Message (M-+A) Node A cannot recover the address

Random Message Node A cannot recover the address(M-+A)
Authentic Message Node A cannot recover the address(G-+A)

Node A recovers Addre-, which is
(Addr-», Substituted the same as the source IP address

PbN,) Message (M-+A) in CMT message, and hash value
verification succeeds

Random Message Node A cannot recover the address(M-+A)

PROCESSING OF DAD PARAMETERS
FOR CASE I

TABLE!.
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public key. Since the new node still keeps RN secret, the new
node still has the chance to prove its ownership of the IP
address and make announcement of the binding of its IP
address and its public key ifnecessary.

v. SIMULATION

We implemented the simulation ofSA-PKD scheme in ns
2 (version 2.33) with CMU extension for ad hoc networks
[23]. We ran the simulations in both secure and insecure
env~~nments. In the latter, we increased the percentage of
malicious nodes to examine its invulnerability.

A. Simulation setup

The random waypoint mobility model is adopted in the
~i~ulation, in which all the nodes are constantly moving
inside a square area. The maximum speed is 20 mis, while the
minimum speed is 5 mls. The pause time is set to 0 second.
The sizes of the area were adjusted to accommodate different
sizes of MANET from 10 nodes to 50 nodes. Once the
simulation starts, each node joins the MANET every 10
seconds. We let each node broadcast DAD messages and CMT
messages three times in intervals of 3.0 seconds, which can be
adjusted according to different applications.

To calculate hash values, we integrated the implementation
of MD5 algorithm from [24]. For signing and verification
operations, we implemented a simplified RSA algorithm.
Because our scheme relies on multi-hop broadcasts and
application-level routing, the simulation has no preference on
underlying routing protocols.

B. Invulnerability

We let each node print out some debug information during
the simulation, like that in Fig. 5:

(part 1)
Node 0 address:233 142 211 65
Node 0 public key: 25983 (e) 26329 (n)
Node 0 is configured!
Node 1 address:244 195 49 197
Node 1 public key: 11231 (e) 11461 (n)
Node 1 is configured!

(part 2)

Begin node 0 key table:
Node: 1 Address: 244 195 49 197 Public

key: 11231 (e) , 11461 (n )

Node: 2 Address: 246 164 11 27 Public key:
8735 (e) , 8927 (n )

Node: 3 Address: 248 5 48 74 Public key:
4499 (e) , 4681 (n )

Node: 4 Address: 71 223 222 220 Public
key: 1991 (e) , 2171 (n )

Node: 5 Address: 246 229 195 201 Public
key: 2483 (e) , 2641 (n)

Node: 6 Address: 202 217 183 51 Public
key: 2183 (e) , 2279 (n)

Node: 7 Address: 181 223 58 217 Public
key: 9359 (e) , 9593 (n)

Node: 8 Address: 188 239 154 244 Public
key: 1055 (e) , 1157 (n)

Node: 9 Address: 226 11 229 140 Public
key: 13803 (e) , 14101 (n)

I ~nd node 0 key table:

Figure 5. Debug information from a to-node simulation
in secure environments

Fig. 5 shows the debug information from a 10-node
simulation in secure environments. After each node
successfully configures itself, it prints out its IP address (IPv4
format) and public key (e and n), as node 0 and node 1 in part
1. In the end of a simulation, each node also dumps its key
table that records other nodes' IP addresses and public keys.
For example, in Fig. 5, node O's table contains 9 entries since
there is no malicious node present.

To simplify the work of matching each entry in each
node's key table in part 2 with the IP address and public key
that are announced by each node in part 1, we wrote a Perl
sc~ipt to analyze the debug information. The Perl script first
builds a separate key table of IP addresses and public keys
from part 1, and then checks each node's key table in part 2
for verification.

In insecure environments, we randomly choose nodes as
malicious nodes that modify DAD messages and CMT
messages, as node M in Fig. 3. For example, we choose node 3
as a malicious node in a 50-node simulation, and we get the
debug information as in Fig. 6. In Fig. 6, because node 3 is
malicious, node 0 has only one entry for nodes 1, 2, and 3, but
two entries for all the subsequent nodes: one is authentic, and
the other forged by node 3, such as nodes 4 and 5. However,
node 0 still gets the correct association of IP address and
public key of those nodes.

(part 1)
Node 0 address:233 142 211 65
Node 0 public key: 25983 (e) 26329 (n)
Node 0 is configured!
Node 1 address:97 221 4 239
Node 1 public key: 687 (e) 865 (n)
Node 1 is configured!
Node 2 address:57 76 16 213
Node 2 public key: 3995 (e) 4237 (n)
Node 2 is configured!
Node 3 address:22 194 123 44
Node 3 public key: 1043 (e) 1121 (n)
Node 3 is configured!
Node 4 address:87 238 137 52
Node 4 public key: 4047 (e) 4183 (n)
Node 4 is configured!
Node 5 address:97 137 145 58
Node 5 public key: 3743 (e) 3869 (n)

(part 2)

Begin node 0 key table:
Node: 1 Address: 97 221 4 239 Public key:

687 (e) , 865 (n)
Node: 2 Address: 57 76 16 213 Public key:

3995 (e) , 4237 (n )

Node: 3 Address: 22 194 123 44 Public key:
1043 (e) , 1121 (n )

Node: 4 Address: 87 238 137 52 Public key:
4047 (e) , 4183 (n)

Node: 4 Address: 147 66 79 237 Public key:
4679 (e) , 4867 (n )

Node: 5 Address: 97 137 145 58 Public key:
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We increased the percentage of malicious nodes from 2%
to 4%, 8%, and 10%, and the Perl script showed that all the
members in the MANET correctly get the associations of the
new nodes.

VI. CONCLUSION
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proposed by other researchers, we proposed the SA-PKD
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and secure public-key distribution simultaneously for a
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Figure 6. Debug information from a 50-node simulation
with one malicious node

3743 (e), 3869 (n)
Node: 5 Address:217 226 164 132

key: 55215 (e), 55687 (n)
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