
Towards Mobile Twin Peaks for App Development
Giovanna Avellis∗, Julian Harty†, Yijun Yu‡

∗InnovaPuglia SpA Bari, Italy
†CommerceTest Ltd. High Wycombe, UK

‡School of Computing and Communications, The Open University, UK

Abstract—Requirements of mobile apps are often hard to elicit
from massive numbers of users, although it is important for the
solution architecture to meet them. Mobile Twin Peaks approach
is proposed as a process of developing apps concurrently and
iteratively that incorporates bidirectional communications within
a mobile app. The communications allow both requirements
engineers and software architects to reach a consensus on
functionalities and quality constraints and to adapt architectural
design decisions appropriately. To recommend architectural de-
sign decisions to the developers, we aim to obtain architecture-
critical requirements from a set of general apps by combining, for
example, analytics, ethnographic study, and information retrieval.
We argue that the effectiveness of these techniques could be
evaluated by experimental case studies and by engaging with
industry partners to perform action research.

Index Terms—Twin Peaks, app development, mobile analytics,
information retrieval, ethnographic studies

I. INTRODUCTION

“What makes a good app?” Developers often ask this
question because it is hard to know exactly what users really
want. Similarly, “which app is good for me?” Users often
cannot articulate their exact needs before using the product,
either. App stores enable users to choose something that might
fulfil their needs from their millions of apps, “for anything
imaginable there got to be something there”. However, the
dilemma is that developers often do not know which features
anonymous users desire, and users often do not know which
app offers the qualities and features they can only express
vaguely.

Figure 1, for example, shows the app store ratings for
the same app in both Apple App Store and Google Play
Store. Furthermore, Figure 2 shows some detailed comments
in Apples App Store; those from Google Play Store are similar.
Reviews tend to be terse and seldom provide sufficient infor-
mation about requirements, so it is challenging for developers
to decide on the perceived qualities of the app. Although it
may be useful for a developer to know statistics such as the
percentage of users who rate the app with five stars, and how
many rate it with one, etc., they are not very useful for them
to understand how well the users like this app. Similarly, the
users may find many apps with similar ratings; but it is hard
for them to know which app would best suit their needs. The
rating is just an indication of the impressions voiced by a small
percentage of the user base (only 1% of users may bother to
provide such feedback), and users may often get confused how
to compare seemingly similar apps.

In a nutshell, although app stores offer a channel for users

to leave feedback such as comments and ratings, they are
not effective when (1) comments are tersely expressed, (2)
ratings are opinionated or inaccurate, (3) few users provide
feedback, (4) users cannot memorize the contexts to provide
timely feedback, and (5) most community feedback does not
align with developers’ mission [3].

The real challenge lies in establishing effective communi-
cations between the two sides, e.g., adding something similar
to an interactive TV channel [8] to mobile apps, which
has not been addressed in literature. Twin Peaks [21] is
a recognised approach to the requirements engineering and
software architecture research communities. It interweaves
software requirements and architectures to achieve incremental
development and speedy delivery in order to satisfy both devel-
opers and users. The name “Twin Peaks” emphasises the equal
status given to requirements and architectures in incremental
software development, an iterative process, which produces
progressively and concurrently more detailed requirements
and design specifications. Inheriting from the general Twin
Peaks, our proposed Mobile Twin Peaks approach is inher-
ently iterative to support incremental development of mobile
apps by combining tried-and-tested components derived from
established architectural patterns in mobile apps.

Methodologically, it is also more focused than the general
Twin Peaks approach. To bridge the Twin Peaks between
developers (for architectures) and users (for requirements) in
the mobile world, we propose an implementation of the com-
munication channel in a tangible conceptual product, similar
to a chat room, to facilitate bidirectional communications,
between users and developers, about the requirements for
that mobile apps. Central to this mission is investigating live
representations of satisfaction arguments [25] which capture
the rationale on both sides of the communication channel.

To address these communications challenges, for the benefit
of mobile software engineers, we have set out three objectives
for this joint community:

1) to understand the factors that matter to app users by
information analytics and market analysis;

2) to localise requirements to recommended design deci-
sions in architecture by combining reverse engineering
and structural traceability retrieval; and

3) to evaluate the effectiveness of communications by
ethnographic user studies and experimental case studies.

To achieve these objectives, the research community needs
to work together in the following sub-areas:



Fig. 1. Mobile App Ratings are not very informative on requirements or architecture

Fig. 2. Mobile App Reviews from the Apple App Store

1) Mobile analytics and market analysis to find out
which requirements matter to the developers and users
of mobile apps [13]. To facilitate these aims, app arte-
facts from software repositories and metadata will be
collected from app stores, which has been happening
through the mining software repository community. De-
velopers can provide feedback on third-party libraries
used in mobile apps, for instance for the Google Play
Analytics SDK at the SafeDK Marketplace [22].
In addition, gathering information on developer-user
and developer-developer communication channels would
be extremely helpful, e.g., by investigating the many
feedback API’s [16] and side-channel communities (e.g.,
high-quality code samples in Stack Overflow, Gists [9],
and/or communications channels such as Slack). One
challenge for such aggregation is to have a standard
interchangeable format across markets and repositories.
Moreover, the statistical datasets, after collection and
analysis, still need to be validated with real users di-
rectly through ethnographic research methods to obtain
empirical evidence, and the insights need to be checked
with developers through action research methods.
As we have said earlier, the status quo is only 1% of
the users would actively leave feedback. To obtain their
real opinion, measures need to be studied on how to

usher them out of the silos and vote for the critical
decisions to help their favourite win, using political
election as an analogy. For effective preference elici-
tation and prioritization, it is also important to borrow
methods from interdisciplinary studies e.g., well-known
marketing analysis approaches such as apply Quality
Function Deployment (QFD) and Kano methods [18].

2) Program comprehension, refactoring, restructuring,
and recommendation are approaches to effectively
improve mobile apps. Reverse engineering techniques,
such as the horseshoe model [14], can help develop-
ers and architects re-engineer their software. Round-
trip engineering, or re-engineering, allows developers to
navigate between artefacts at different levels of abstrac-
tion, e.g., from architecture to requirements (i.e., reverse
engineering), and from requirements to architecture (i.e.,
forward engineering). By applying reverse engineering
tools on a range of candidate apps, the community could
prepare a corpus of live updated traceability links be-
tween requirements and reusable artefacts, and combine
with high-quality samples of third-party libraries, semi-
automated retrieval of relevant reusable structures could
be studied to enhance the quality feature requests, and
automate the build with reusable structures continuously.

3) Quality evaluation of apps and the engineering meth-
ods are important to tell how effective the proposed
quality injection process is able to enhance the quality
of software products. This kind of study could aim
to obtain quality criteria for mobile app development,
the measurement of quality attributes, and monitor the
quality metrics for the entire life-cycle. The community
could combine qualitative and quantitative analysis ap-
proach to obtain their correlations in the mobile analytics
dataset; carry out time-series analysis on the historical
change of quality metrics recorded over the life-cycle
apps; and evaluate these qualities by adding automated
monitors to the communication channel.

The remainder of the paper is organised as follows: Section II



presents related work in this area. Comparing the proposed
approach and research methodology for Mobile Twin Peaks
to related work, Section III enumerates the main contributions
in terms of novelty. Section III summarises the paper and calls
for action to fulfil the proposed research agenda with fellow
researchers in the community.

II. RELATED WORK

Existing mobile apps research focuses primarily on software
artefacts. For example, at the developers end, taint analysis [7]
and instrumentation on binary or source form of apps are
used to analyse whether they contain malicious code for
security [15] and privacy [24] or whether certain features such
as ads cause excessive energy and network consumptions for
performance/usability quality [10]. At user’s end, app store
metadata such as app descriptions, popularity metrics such as
number of downloads/installs, ratings, comments [6] are used
for studying whether certain features are desired by certain
cluster of users [23], or which features are offered by apps
and which features are requested by users [11]. However,
these artefacts-based studies have not captured the dynamics
between developers and users and the rich contexts of use,
which are equally important to analyse how effective they are
communicating to each other. Technical books for developers
teach them hands-on skills and best practices to make a mobile
app using specific language/platform quickly. Guide books,
blog’s and magazine articles often prepare users to the lists
of popular and useful apps they should know, and so on so
forth. However, none of them provide readers with in-depth
guidance on achieving effective and adaptive communications
between developers and users. For example: What makes an
app great? How to make it greater? How to let developers
listen to the users? Why cant I do that [20]?

III. MOBILE TWIN PEAKS APPROACH

In this section, we will characterise the key methods that are
uniquely chosen for conducting research for the Mobile Twin
Peaks mission. The original Twin Peaks model [21] is shown
in Figure 3, where the requirements peak and the architecture
peak are refined iteratively and concurrently. One of the key
tenets is Rapid Change, which is especially necessary for
live mobile apps where Platform updates are commonplace,
security challenges are often in full view of potential attackers,
and many users expect apps to be fresh. An iterative approach,
such as Twin Peaks can help address these challenges faced
by the developers in particular.

The research agenda will innovate on the specialised rep-
resentations of requirements traceability links, focusing on
iterative and evolving satisfaction arguments between the Twin
Peaks of requirements and architectures. To do so, the research
community could use semantic hypertext representation, flex-
ible modelling, and reactive programming techniques from
HCI/CSCW. Essentially, we aim to develop a handbook mobile
app, which facilitates the communications between mobile app
developers and their users.

Fig. 3. Weaving together requirements and architecture

Fig. 4. Mobile Twin Peaks for App Development

Figure 4 illustrates the architecture of a proposed Mobile
Twin Peaks app. It extends the Twin Peaks of a single software
product to accommodate the large number of apps in the
App Stores. Hence there are at least N peaks on either end
of requirements or architecture, where N is the refinement
step of requirements or architecture. Secondly, the interactions
between each app may be useful for other apps. By leveraging
on the architectural or requirements knowledge of other or
similar existing apps, using the techniques such as traceability
recovery, localisation, and mobile analytics, it is possible to
establish indirect relationships between the co-evolving apps in
the eco-system. Furthermore, the channelling communications
between users and developers are now observable through
ethnographic studies so that researchers could learn common
patterns and heuristics to advise or recommend app devel-
opers on the architecture-significant requirements. This new
architecture would facilitate two kinds of research methods,
described as follows.

Ethnography in user case studies: To address unsolved
research questions such as how software developers commu-
nicate with users about their quality requirements satisfaction
in user studies, one option for the research community is
ethnography [16], a qualitative research method to study
people, cultures and their associated social and work practice..
Typically, ethnography study requires live observations that



do not obstruct the flow of development. In this case, the
proposed handbook app facilitates the communication channel
between developers and users; as a positive side effect, the
logged events through user case studies would provide a rich
source of information analytics for high-quality feedback.

Action research to ‘eat own dog food’: Developing a mo-
bile app as part of the research agenda can be a complementary
approach to ethnography as it offers an opportunity to learn-
by-doing. Researchers can apply what they discover when
new effective approaches are discovered in other research.
However, we are conscious of the fact that our actions as
researchers may invalidate the scientific findings when we
perform activities meant to be observed remotely as a scientist
(also known as the Uncertainty Principle in quantum physics).
In the design of the action research methodology; therefore,
after some internal clean up such as anonymization of per-
sonal identifiable information, the community could open up
the resources and tools created from this research for other
software engineers to replicate, and only after the observatory
data at the ethnography studies stage have been archived.

Furthermore, new ideas compared with the current state-of-
the-art, are described as follows.

Elicitation of NFR satisfaction arguments: Assessing
Non Functional Requirements [4], [19] of mobile apps re-
quires innovative approaches by mixing together direct and
indirect elicitation approaches. Directly elicited NFR’s from
good practices in software engineering could be analysed sys-
tematically using goal-decompositions and operationalisations.
Consequently, the goal-oriented evaluation consists of identi-
fying the goals under evaluation, and defining the associated
key performance indicators as measurable quality criteria for
satisfaction arguments. Whilst direct elicitation approach is
infeasible due to e.g. the lack of access to developers or users,
natural language processing analysis of their communication
logs provided in app stores could be used in classifying soft-
ware defects and feedback to quality requirements according
to latest ISO 25010 standard on Software product Quality
Requirements and Evaluation (SQuaRE). Key performance
indicators on the App Store such as daily ratings, retention
rates, downloads, installs, and uninstalls, etc. offers a fine-
grain evaluation of the cause and effect of changes at a given
time. Such approaches could elicit evidence as an objective
basis to provide satisfaction argumentation.

Maintaining live satisfaction arguments using bidirec-
tional transformations: Any change to evidence could rebut
or mitigate the claims of the satisfaction arguments of NFR’s.
To keep these satisfaction arguments alive, the argument
structures need to be maintainable and updateable, and the
results of argumentation to be highlighted in a dashboard,
and triggering automated notifications through chat bots. To
begin with an initial exploration, e.g., Oxford Universitys
Haskell research group and NII Japan research group on
bidirectional programming, are potential collaborators to this
community by enhancing pandoc to document the quality
requirements satisfaction arguments [26]. As the initiator of
this community, we plan to open up the collaborations with

active researchers in the community to introduce multiple
forms of live argumentation.

Documenting architectural decisions in existing mobile
apps: It is easy to say that documentation is necessary for
mobile software development. However, in practice it is hard
to do. The main reason often lies in tacit architectural decisions
whose consequence to NFR’s is felt too late. Here we would
deploy requirements monitors, as reflective services built
from structured information retrieval, to proactively collect
feedback of poor architectural decisions. Architectural design
decisions will be structured hierarchically so that the accuracy
of requirements diagnosis can be achieved on demand at the
right level of abstraction through, e.g., incremental model
transformations [4].

Facilitating in-app bidirectional communications: In-
cluding effective communications in an app can significantly
improve the volume and quantity of conversations, reviews,
feedback, etc. Apptentive are a commercial company who
provide ”in-app communication tools”. They provide an SDK
that can be embedded in mobile apps to enable bi-directional
feedback. They report their tools provide: a 330% in survey
completion, a 15-fold increase in ratings, a 17% survey
completion rate [2]; and ”Product Decisions supported through
feedback” [1]. These figures are significantly better than the
industry expects and show the potential of effectively designed
in-app communications. An important consideration is being
available to respond to communications initiated by users,
particularly for smaller teams with a widespread user base.
Unless the team follows-the-sun [5] they need to find ways
to provide acceptable, timely responses even if they’re not
available. Adaptive chatbots may be one approach provided
they don’t degenerate into a similar pit that beset Microsoft’s
Tay bot [17].

IV. CONCLUSIONS

This paper posits a new research agenda to bring mobile
app developers and users together in eliciting, refining, and
sharing their requirements and architectural design decisions
in an integral, iterative, and inspiring process, using an in-
app bidirectional communications channel. This channel may
enable and encourage richer conversations and engage more
users, further increasing the positive feedback cycles where
developers then improve the app and users are ’rewarded’ with
improved apps where the improvements are based on their
feedback so they are encouraged to participate again.

The conceptualisation of Mobile Twin Peaks develops the
existing Twin Peaks methodology, however, other variants of
the implementation can also be envisioned, for instance, to
use mobile apps to support the existing software development
such as the ReviewReviews app [12].

Acknowledgements

We thank Anthony Finkelstein and Bashar Nuseibeh for
inspiring this work. In part it is supported by ERC Advanced
Grant 291652 - ASAP.



REFERENCES

[1] Apptentive. Actionable customer feed-
back guides roadmap and reduces churn.
http://cdn2.hubspot.net/hubfs/232559/Case Studies/ActionableCustomer
FeedbackReducesChurn.pdf, fetched on 2 March 2017.

[2] Apptentive. Why apptentive. https://www.apptentive.com/why-
apptentive, fetched on 2 March 2017.

[3] J. Atwood. Listen to your community but don’t let them tell you what
to do. https://blog.codinghorror.com/listen-to-your-community-but-dont-
let-them-tell-you-what-to-do, fetched on 2 March 2017.

[4] G. Avellis. Assessment of non functional requirements in mobile
learning. In the 10th World Conference on Mobile and Contextual
Learning (Bejing, China, October 18-21, 2001), pages 1–8, 2011.

[5] M. Betts. 24/7 global application development? sounds good, doesn’t
work. https://en.wikipedia.org/wiki/Follow-the-sun, fetched on 2 March
2017.

[6] N. Chen, J. Lin, S. C. H. Hoi, X. Xiao, and B. Zhang. Ar-miner: Mining
informative reviews for developers from mobile app marketplace. In Pro-
ceedings of the 36th International Conference on Software Engineering,
ICSE 2014, pages 767–778, New York, NY, USA, 2014. ACM.

[7] W. Enck, P. Gilbert, B. Chun, L. P. Cox, J. Jung, P. D. McDaniel, and
A. Sheth. Taintdroid: an information flow tracking system for real-
time privacy monitoring on smartphones. Commun. ACM, 57(3):99–106,
2014.

[8] A. Finkelstein. Turn on, tune in. http://blog.prof.so/2011/06/turn-on-
tune-in.html, fetched on 2 March 2017.

[9] GitHub Help. About gists. https://help.github.com/articles/about-gists,
fetched on 2 March 2017.

[10] J. Gui, S. Mcilroy, M. Nagappan, and W. G. J. Halfond. Truth in
advertising: The hidden cost of mobile ads for software developers. In
Proceedings of the 37th International Conference on Software Engineer-
ing - Volume 1, ICSE ’15, pages 100–110, Piscataway, NJ, USA, 2015.
IEEE Press.

[11] M. Harman, Y. Jia, and Y. Zhang. App store mining and analysis:
Msr for app stores. In 2012 9th IEEE Working Conference on Mining
Software Repositories (MSR), pages 108–111, June 2012.

[12] J. Harty. The reviewreviews app. https://github.com/julianharty/app-
store-reviews-app, fetched on 2 March 2017.

[13] J. Harty and A. Aymer. The Mobile Analytics Playbook: A Practical
Guide to Better Testing. Hewlett Packard Enterprise, 2015.

[14] R. Kazman, S. G. Woods, and S. J. Carrière. Requirements for
integrating software architecture and reengineering models: Corum ii.
In Proceedings of the Working Conference on Reverse Engineering
(WCRE’98), WCRE ’98, pages 154–, Washington, DC, USA, 1998.
IEEE Computer Society.

[15] G. Meng, Y. Xue, Z. Xu, Y. Liu, J. Zhang, and A. Narayanan. Semantic
modelling of android malware for effective malware comprehension,
detection, and classification. In Proceedings of the 25th International
Symposium on Software Testing and Analysis, ISSTA 2016, pages 306–
317, New York, NY, USA, 2016. ACM.

[16] L. Merrick. 10 most popular user feedback tools for mobile
apps. http://www.buzinga.com.au/buzz/user-feedback-tools, fetched on
2 March 2017.

[17] Microsoft. Tay bot. https://en.wikipedia.org/wiki/Tay (bot), fetched on
2 March 2017.

[18] J. Mikuli and D. Prebeac. A critical review of techniques for classifying
quality attributes in the kano model. Managing Service Quality: An
International Journal, 21(1):46–66, 01 2011.

[19] J. Mylopoulos, L. Chung, and B. Nixon. Representing and using
nonfunctional requirements: A process-oriented approach. IEEE Trans.
Softw. Eng., 18(6):483–497, June 1992.

[20] A. Nhlabatsi, T. Tun, N. Khan, Y. Yu, A. K. Bandara, K. M. Khan, and
B. Nuseibeh. why cant i do that?: Tracing adaptive security decisions.
EAI Endorsed Transactions on Self-Adaptive Systems, 15(1), 1 2015.

[21] B. Nuseibeh. Weaving together requirements and architectures. IEEE
Computer, 34(3):115–117, 2001.

[22] SafeDK Marketplace. Measure everything about your mobile app.
https://www.safedk.com/sdks/google-google-play-analytics, fetched on 2
March 2017.

[23] F. Sarro, A. A. Al-Subaihin, M. Harman, Y. Jia, W. Martin, and Y. Zhang.
Feature lifecycles as they spread, migrate, remain, and die in app stores.
In 2015 IEEE 23rd International Requirements Engineering Conference
(RE), pages 76–85, Aug 2015.

[24] R. Slavin, X. Wang, M. B. Hosseini, J. Hester, R. Krishnan, J. Bhatia,
T. D. Breaux, and J. Niu. Toward a framework for detecting privacy
policy violations in android application code. In Proceedings of the 38th
International Conference on Software Engineering, ICSE ’16, pages 25–
36, New York, NY, USA, 2016. ACM.

[25] Y. Yu, V. N. Franqueira, T. T. Tun, R. J. Wieringa, and B. Nuseibeh.
Automated analysis of security requirements through risk-based argu-
mentation. Journal of Systems and Software, 106:102 – 116, 2015.

[26] Y. Yu, Y. Lin, Z. Hu, S. Hidaka, H. Kato, and L. Montrieux. Maintaining
invariant traceability through bidirectional transformations. In Proceed-
ings of the 34th International Conference on Software Engineering,
ICSE ’12, pages 540–550, Piscataway, NJ, USA, 2012. IEEE Press.


