
A Framework for Regression Testing of Outdoor Mobile Applications

Carlo Bernaschina, Roman Fedorov, Darian Frajberg, Piero Fraternali

Politecnico di Milano
Milan, Italy

first.last@polimi.it

Abstract—Outdoor mobile applications are becoming popu-
lar in fields such as gaming, tourism and environment monitor-
ing. They rely on the input of multiple, possibly noisy, sensors,
such as the camera, GPS, compass and gyroscope. The regres-
sion testing of such applications requires the reproduction of
the real conditions in which the application works, which are
hard to reproduce without automated support. We present a
capture & replay framework that automates regression testing
of mobile outdoor applications, by recording data streams in
real-time on the field from multiple sensors, replays them in
lab and computes quality metrics to trace regression errors.

Keywords-Mobile applications; regression testing; augmented
reality;

I. INTRODUCTION

Outdoor mobile applications are becoming more and

more popular. Exemplary applications are maps (e.g.,

Google Maps, maps.google.com), touristic guides (e.g.,

mTrip, www.mtrip.com), games (e.g., Pokemon Go,

www.pokemongo.com), and augmented reality (e.g.,

PeakLens, www.peaklens.com). They are unique due

to their need to process, in real-time, data streams com-

ing from multiple, heterogeneous, and often noisy sensors.

Augmented reality applications process data streams from

GPS, compass, accelerometer, gyroscope, and camera, to

identify object on the view. Thus, they are extremely sensible

to different devices and external conditions (e.g., GPS by

meteorological conditions and compass by electromagnetic

fields). Due to the heterogeneity and correlation of input

data, testing cannot be done on synthetic data, but should

be performed on input captured on the field. Therefore,

regression testing, i.e., the practice of testing a new version

of an application to verify its correctness after a set of

changes, assumes a prominent role in the development pro-

cess. Incremental releases, required to extend functionality

and/or improve performance, must not jeopardize already

working functions. These characteristics of outdoor, sensor-

based mobile applications make testing, and regression

testing in particular, challenging for the following reasons:

1) Reproducibility. Field conditions in which the app is

used (e.g. location, sensor streams) are difficult or even

impossible to reproduce in a lab. 2) Non Functional Require-
ments. Besides absence of bugs, testing must also identify

improper handling of non functional requirements, such as

the accuracy perceived by a user. 3) Data Gathering. Testing

requires the collection of data series of input signals and the

correlated application outputs. We present a framework for

black-box regression testing of outdoor mobile apps, specif-

ically aimed towards efficient verification of new releases

with large collections of complex test data suites. It supports

capture, replay, custom metrics and regression testing.

II. RELATED WORK

Capture and replay frameworks for the assessment of

software quality have been largely studied in the past due

to the importance that they represent for maintenance and

testing purposes. In [1] the authors presented a tool to

capture and replay classic desktop Java program executions

in the field. In their work they described how all the

interactions between the main program and the system

are stored, including the GUI displayed. Additionally, they

replay such executions presenting each thread with exactly

the same input sequence it had during the capture. Moreover,

in [2] the authors presented their technique and tool for the

same purpose and they proposed their utilization for post-

mortem dynamic analysis of user executions, debugging of

deployed applications and regression testing. They state that

the effectiveness of regression testing highly depends on how

well it represents the way the program is used in the field.

We agree with the authors, but we highlight that in outdoor

sensor-based applications require a non trivial capture and

replay process, which is the motivation of this work. In [3],

[4] studies on capture and replay were presented focusing

just at GUI level. Conversely, in [5], the authors present

an approach specifically conceived for mobile devices, in

which they record and replay Android apps usage traces by

replicating GUI gestures and sensor readings. An Android

specific framework was presented in [5] focusing also on

interactions via gestures and sensor readings. However, it

was missing support for some critical signals, like camera

and GPS. Our original contribution is the design of a capture

and replay framework for outdoor multi-sensor applications.

We also show how it has been used to define quality metrics

and automate regression testing, for a mobile application[6].

III. CAPTURE AND REPLAY FRAMEWORK

In this section we illustrate the architecture of the pro-

posed framework. For the sake of concreteness, we show its

use with PeakLens, an outdoor mobile application[6]), which

2017 IEEE/ACM 4th International Conference on Mobile Software Engineering and Systems (MOBILESoft)

978-1-5386-2669-6/17 $31.00 © 2017 IEEE

DOI 10.1109/MOBILESoft.2017.13

97

2017 IEEE/ACM 4th International Conference on Mobile Software Engineering and Systems (MOBILESoft)

978-1-5386-2669-6/17 $31.00 © 2017 IEEE

DOI 10.1109/MOBILESoft.2017.13

179

2017 IEEE/ACM 4th International Conference on Mobile Software Engineering and Systems (MOBILESoft)

978-1-5386-2669-6/17 $31.00 © 2017 IEEE

DOI 10.1109/MOBILESoft.2017.13

179

Version A B C D
Sequence 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

AAE (deg) 0.62 0.47 0.66 0.50 12.45 7.94 2.30 4.28 3.20 2.85 2.50 3.12 0.92 0.64 0.77 0.49

Precision (%) 98.96 99.56 99.59 98.79 84.70 85.53 96.40 92.68 98.85 99.14 99.73 98.86 99.11 98.66 99.50 98.26

Recall (%) 66.32 94.89 97.73 60.60 75.99 87.45 96.73 90.45 98.49 99.60 98.57 98.82 99.33 99.30 98.68 99.39

PQ (%) 25.30 86.60 93.80 0.00 3.82 5.20 64.80 10.82 22.09 80.60 88.60 33.51 92.57 94.40 96.40 99.48

RE 0.88 0.80 0.91 0.75 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Table I: Evaluation of versions A, B, C and D on 4 sequences

identifies mountain peaks and overlays them in real-time on

the view. However, the framework is applicable to any app

that produces output based on multiple sensor inputs.

Architecture. The proposed capture and replay frame-

work consists of a set of coordinated software modules:

1) Capture. It executes in the mobile device; it acquires

the sensor data streams. Readings at each time stamp

stored together with the business logic output to compose

a sequence. 2) Replay. It permits the visual inspection of

the app GUI, which reproduces the same type of outputs

recorded on the field. Besides, it produces an execution trace,

composed by the original sequence and the corresponding

new computed outputs. 3) Report. It enables testing new ver-

sions of the business logic on previously recorded sequences

by assessing the defined quality metrics. The component

compares the output produced by the app business logic

during replay steps with the reference outputs stored in the

original sequence. 4) Sequence Editor. It is a GUI able to

replay a sequence and used to mark it as correct, manually

fix positioning errors and save it as a gold sequence.

Input test data and gold standard. Through a beta

testing program we have gathered hundreds of sequences

worldwide. We identified a set of gold sequences. using a

web interface in which the user can mark a sequence as

correct (does not contains significant positioning errors) or

adjust it manually frame by frame. Even tough this approach

may overlook minor deviations, this simple process only

requires the visual inspection of the replay, confirming that

these deviations would go unnoticed by an average user.

Defects and output quality metrics. Classic regression

testing assesses the presence of bugs re-introduced in the

system by a change. However, in complex, multi-sensor

outdoor applications, their success depends primarily on

non-functional features such as accuracy of the outputs.

Therefore, we focus on this aspect during the evaluation

of the presented framework. To assess defects, the Report

component uses metrics defined at the level of the individual

sequence or frames and averaged on the set of sequences of

a test suite. In the case study, the following metrics have

been defined, to quantify the defects in peak positioning.

The Average Angular Error (AAE), formally described

in [6], considers the positioning errors of all the peaks

w.r.t. to the position in the gold sequence. The Precision
measures the fraction of peaks included in a frame that were

supposed to be shown. The Recall measures the fraction

of peaks present in a frame of the gold sequence that also

appear in the corresponding frame of the tested sequence.

The Perceived Quality (PQ) measures the percentage of the

frames of a sequence that are “good enough”. This indicator

can be regarded as the fraction of the entire sequence

time during which the user experience was satisfactory. The

definition of “good” is binary an is computed by properly

thresholding the previously presented metrics (3deg, 80%

and 80% respectively). Finally, the Ranking Error (RE)
assesses the difference between the ordering of peaks in

the test and gold frames.It is defined as the Normalized

Discounted Cumulative Gain index [7] over the two ordered

lists of peaks. It uses as relevance a numerical score referred

to the gold frame (3, 2 and 1 for peaks in the 1st, 2nd and

3rd page; 0 elsewhere).

IV. EVALUATION

For space reasons, we comment the evaluation of Peak-

Lens only for four gold sequences and four app releases. The

first 4 columns of Table I report the indicators for a release

with a regression error affecting peak ranking (version A). In

general, Perceived Quality is the most representative metric

at first sight, because it summarizes all the other ones.

However, in version A the diminished value of PRE shows

that a defect related to peak ranking has been introduced.

The next 8 columns of Table I refer to versions B and C

in which, respectively, a scale factor and a vertical offset

projection problem manifested. PQ decreased strongly in

both cases, with sensible angular error increase and loss

of both precision and recall. Sequence replay permitted

us to locate the wrongly positioned peaks and to remove

the defect. Finally, the last 4 columns of Table I refer to

version D, a release featuring a new algorithm to track peaks

during movement. In this case, PQ has not been affected

considerably and therefore the performance of the release

was considered acceptable. Overall, the regression testing,

coupled with the easy replay of complex outdoor conditions,

gave effective feedback on the new versions, and an average

PQ value below 90% proved to be a good predictor of the

insurgence of defects after a change.

V. CONCLUSIONS

We have presented a capture and replay framework for

regression testing of mobile applications exploiting input

output correlations. We have shown the impact of the

proposed framework on the development of an augmented

reality application, with a particular focus on non-function

requirements.

98180180

REFERENCES

[1] J. Steven, P. Chandra, B. Fleck, and A. Podgurski,
“jrapture: A capture/replay tool for observation-based
testing,” in ISSTA, 2000, pp. 158–167. [Online]. Available:
http://doi.acm.org/10.1145/347324.348993

[2] S. Joshi and A. Orso, “SCARPE: A technique and tool
for selective capture and replay of program executions,”
in 23rd IEEE International Conference on Software
Maintenance (ICSM 2007), October 2-5, 2007, Paris,
France. IEEE, 2007, pp. 234–243. [Online]. Available:
http://dx.doi.org/10.1109/ICSM.2007.4362636

[3] L. J. White, “Regression testing of gui event interactions,”
in Software Maintenance 1996, Proceedings., International
Conference on. IEEE, 1996, pp. 350–358.

[4] O. El Ariss, D. Xu, S. Dandey, B. Vender, P. McClean, and
B. Slator, “A systematic capture and replay strategy for testing
complex gui based java applications,” in Information Tech-
nology: New Generations (ITNG), 2010 Seventh International
Conference on. IEEE, 2010, pp. 1038–1043.

[5] L. Gomez, I. Neamtiu, T. Azim, and T. Millstein, “Reran:
Timing-and touch-sensitive record and replay for android,” in
2013 35th International Conference on Software Engineering
(ICSE). IEEE, 2013, pp. 72–81.

[6] R. Fedorov, D. Frajberg, and P. Fraternali, “A framework
for outdoor mobile augmented reality and its application to
mountain peak detection,” in International Conference on
Augmented Reality, Virtual Reality and Computer Graphics.
Springer, 2016, pp. 281–301.

[7] K. Järvelin and J. Kekäläinen, “Discounted cumulated gain,”
in Encyclopedia of Database Systems, L. Liu and M. T. Özsu,
Eds. Springer US, 2009, pp. 849–853. [Online]. Available:
http://dx.doi.org/10.1007/978-0-387-39940-9 478

99181181

