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Inria / University of Lille
Lille, France
sarra.habchi @inria.fr

Abstract—The success of smartphones and app stores have
contributed to the explosion of the number of mobile apps
proposed to end-users. In this very competitive market, devel-
opers are rushed to regularly release new versions of their apps
in order to retain users. Under such pressure, app developers
may be tempted to adopt bad design or implementation choices,
leading to the introduction of code smells. Mobile-specific code
smells represent a real concern in mobile software engineering.
Many studies have proposed tools to automatically detect their
presence and quantify their impact on performance. However,
there remains—so far—no evidence about the lifespan of these
code smells in the history of mobile apps. In this paper, we present
the first large-scale empirical study that investigates the survival
of Android code smells. This study covers 8 types of Android
code smells, 324 Android apps, 255k commits, and the history of
180k code smell instances. Our study reports that while in terms
of time Android code smells can remain in the codebase for
years before being removed, it only takes 34 effective commits
to remove 75% of them. Also, Android code smells disappear
faster in bigger projects with higher releasing trends. Finally, we
observed that code smells that are detected and prioritised by
linters tend to disappear before other code smells.

Index Terms—Mobile apps, Android, code smells.

I. INTRODUCTION

Code smells are well-known in Object-Oriented (OO) soft-
ware systems as poor or bad practices that negatively impact
the software maintainability and cause long-term problems.
Since their introduction by Fowler [15], the research commu-
nity has shown an increasing interest in code smells. Many
studies investigated and quantified their presence and impact
on source code [28], [39]. Other studies focused on the evo-
lution of code smells in the change history (project commits).
In particular, Peters and Zaidman [46] showed that code smell
instances have a lifespan of approximately 50 % of the revision
history. Also, Tufano et al. [53] demonstrated that 50% of
code smells instances persisted in the codebase for more than
1,000 days and 1,000 commits from their introduction. These
studies helped in improving our understanding of code smells
and highlighted notable facts, like the lack of awareness from
developers about code smells.

Nowadays, mobile applications (apps) retain the highest
share in software market, and they differ significantly from tra-
ditional software systems [38]. In fact, the development of mo-
bile apps must take into consideration device limitations like
memory, CPU, and energy. These limitations motivated the
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identification of mobile-specific code smells [48]. Mobile code
smells are different from OO code smells as they often refer to
a misuse of the platform SDK and they are more performance-
oriented. This performance aspect drew the attention of the
research community as many studies investigated the impact
of these code smells on performances, demonstrating that their
refactoring can significantly improve app performance [11],
[23], [44]. Apart from performance, other aspects of mobile-
specific code smells remained unaddressed. Specifically, we
still lack knowledge about the lifespan of mobile code smells
in the apps history. This knowledge is particularly important
for understanding the extent and importance of these code
smells. Effectively, a code smell that persists in the software
history for long periods can be more critical than code smells
that disappear in only a few commits. Moreover, the survival
analysis of these code smells allows us to understand the
factors that favour or prevent their expansion in source code.
Understanding such factors is crucial for proposing solutions
that handle mobile code smells. For these reasons, we investi-
gate in this paper the survival of Android-specific code smells.
More specifically, we answer the following research questions:

e RQ1: For how long do Android-specific code smells
survive in the codebase?

o RQ2: What are the factors that impact the survival of
Android-specific code smells? We investigate in this question
the impact of project size, releasing practices, and code smell
properties on the survival chances of code smell instances. The
effect of the project size interests us as the common sense
suggests that code smells persist longer in big and complex
projects. Regarding releases, Android apps are known for
having more frequent releases and updates [37]. Our aim is
to investigate the impact of this particularity on code smell
survival. As for code smell properties, we are particularly
interested in the impact of Android Lint [5]. Android Lint is
the mainstream linter—i.e., static analyser, for Android. It is
integrated and activated by default in the official IDE Android
Studio. Our objective is to inspect whether the code smells
detected and prioritised by Android Lint are removed faster
from the codebase.

This paper has the following notable contributions:

1) The first large-scale empirical study that investigates the
evolution of mobile-specific code smells in the change history.
This study covers 8 types of Android code smells, 324 Android



apps, 255k commits, and the history of 180k code smells.

2) Among other findings, our study shows that, while in
terms of time Android code smells can persist in the codebase
for years, it only takes 34 effective commits to remove 75% of
them. Our results also show that Android code smells disap-
pear faster in bigger projects with more commits, developers,
classes, and releases. Finally, code smells that are detected
and prioritised by Android Lint tend to disappear before other
code smell types.

The remainder of this paper is organised as follows. Sec-
tion II explains the study design and Section III reports on the
results. Section IV discusses the implications and the threats
to validity, while Section V analyses related works. Finally,
Section VI concludes with our main findings and perspectives.

II. STUDY DESIGN

We start this section with a presentation of our study
context. Afterwards, we explain our data extraction technique.
Then, we conclude with a description of our approach for
analysing the extracted data to answer our research questions.

A. Context Selection

The core of our study is the analysis of mobile apps history
to investigate the survival of mobile-specific code smells. In
that respect, the context selection entails the choice of (1) the
mobile platform to study, and (2) the mobile-specific code
smells with their detection tool.

1) The Mobile Platform: We decided to focus our study
on the Android platform. With 85.9% of the market share,
Android is the most popular mobile operating system as of
2018.! Moreover, more Android apps are available in open-
source repositories compared to other mobile platforms [18].
On top of that, both development and research communities
proposed tools to analyse the source code of Android apps
and detect their code smells [5], [25], [43].

2) Code Smells & Detection Tool: In the academic litera-
ture, the main reference to Android code smells is the catalog
of Reimann et al. [47]. It includes 30 code smells, which are
mainly performance-oriented, and covers various aspects, like
user interface and data usage. Ideally, we would consider all
the 30 code smells in our study. However, for feasibility, we
could only consider code smells that are already detectable by
state-of-the-art tools. Hence, the choice of studied code smells
will be determined by the adopted detection tool. In this re-
gard, our detection relied on PAPRIKA, an open-source tooled
approach that detects Android-specific code smells from An-
droid packages (APK). PAPRIKA is able to detect 13 Android-
specific code smells. However, after examination we found
that two of these code smells, namely Invalidate Without Rect
and Internal Getter Setter, are now deprecated [3], [6]. Thus,
we excluded them from our analysis. Moreover, we wanted
to focus our study on objective code smells—i.e., smells that
either exist in the code or not, they cannot be introduced or
removed gradually. Hence, we excluded Heavy AsyncTask,

Uhttps://www.statista.com/statistics/266136/
global-market-share- held-by-smartphone-operating-systems

Heavy Service Start and Heavy BroadcastReceiver, which
are subjective code smells [25]. We present in Table I brief
descriptions of the eight code smells that we kept for our study.

B. Dataset and Selection Criteria

To select the apps eligible for our study, we relied on
the famous FDROID online repository.> This choice allowed
us to include published Android apps and exclude dummy
apps, templates, and libraries that are available on GitHub.
We automatically crawled the apps available on FDROID
and retrieved their GitHub links when available. Then using
these links, we fetched the repositories from GitHub. For
computational constraints, we only kept repositories which had
at least two developers. This filter resulted in 324 projects with
255, 798 commits. The full list of projects can be found in our
companion artifacts [19].

C. Data Extraction

We performed our data extraction using SNIFFER [20], an
open-source toolkit that tracks the full history of Android-
specific code smells. Figure 1 depicts an overview of the
SNIFFER process. A full description of this process is avail-
able in our technical report and the source code is openly
published [19]. In this paper we only explain briefly the main
steps of the approach and how we use it in the context of our
study.

10 o
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Fig. 1: Overview of the SNIFFER toolkit.

1) Step 1: Extract App Data:
Input: Git link to an Android app.
Output: Commits and repository model.
First, SNIFFER clones the repository from Git and parses its
log to obtain the list of commits. Afterwards, it analyses the
repository to extract its model. This model consists of proper-
ties of different repository elements like commits, developers,
etc. One particular element that interests us in this study is
the Git tag. Git tags are used to label specific points of the
change history as important. Typically, developers use them to
label release points [51]. We will rely on these tags to study
the impact of releases on the code smell survival. Another
important information extracted in this step is the branch
property. Branches are a local concept in Git, thus information
about the original branch of a commit is not recorded to
be easily retrieved. For this, SNIFFER makes an additional
analysis to attribute each commit to its original branch. In
particular, it navigates the commit tree by crossing all commit
parents and extracts the repository branches. This extraction
allows us to track the smell history accurately in Step 3.

Zhttps://f-droid.org



Definition

[

Entity
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Leaking Inner Class (LIC): in Android anonymous and non-static inner classes hold a reference of the containing class. This can prevent
the garbage collector from freeing the memory space of the outer class even when it is not used anymore, and thus causing memory
leaks [3], [48].

Inner class

Member Ignoring Method (MIM): this smell occurs when a method, which is not a constructor and does not access non-static attributes,
is not static. As the invocation of static methods is 15%—-20% faster than dynamic invocations, the framework recommends making these
methods static [24].

Method

No Low Memory Resolver (NLMR): this code smell occurs when an Activity does not implement the onLowMemory () method.
This method is called by the system when running low on memory in order to free allocated and unused memory spaces. If it is not
implemented, the system may kill the process [48].

Activity

Hashmap Usage (HMU): the usage of HashMap is inadvisable when managing small sets in Android. Using Hashmaps entails the auto-
boxing process where primitive types are converted into generic objects. The issue is that generic objects are much larger than primitive
types, 16 vs. 4 bytes respectively. Therefore, the framework recommends using the SparseArray data structure, which is more memory-
efficient [3], [48].

Method

UI Overdraw (UIO): a Ul Overdraw is a situation where a pixel of the screen is drawn many times in the same frame. This happens
when the UI design consists of unneeded overlapping layers, e.g., hiding backgrounds. To avoid such situations the method clipRect ()
or quickReject () should be called to define the view boundaries that are drawable [5], [48].

View

Unsupported Hardware Acceleration (UHA): in Android, most of the drawing operations are executed in the GPU. Drawing operations
that are executed in the CPU (e.g., drawPath () of android.graphics.Canvas) should be avoided to reduce CPU load [22], [41].

View

Init OnDraw (IOD): a.k.a. DrawAllocation, this occurs when allocations are made inside onDraw () routines. The onDraw () methods
are responsible for drawing Views and they are invoked 60 times per second. Therefore, allocations (init) should be avoided inside them
in order to avoid memory churn [3].

View

Unsuited LRU Cache Size (UCS): this code smell occurs when an LRU cache is initialised without checking the available memory via
the method getMemoryClass (). The available memory may vary considerably according to the device so it is necessary to adapt the
cache size to the available memory [22], [36].

Method

TABLE I: Studied code smells.

2) Step 2: Detect Code Smells:
Input: Commits and repository model.
Output: Code smell instances per commit.
SNIFFER relies on PAPRIKA to detect Android code smells.
Originally, PAPRIKA detects code smells from the APK, it
does not analyse the source code. However, we wanted to
detect code smells directly from the source code of commits.
Therefore, we needed to integrate a static analyser into SNIF-
FER that feeds PAPRIKA with a source code model. In such
way, before going through smell detection with PAPRIKA, each
commit goes through the static analysis.

Static analysis : SNIFFER performs static analysis using
SPOON [45], a framework for Java-based programs analysis
and transformation. SNIFFER launches SPOON on the commit
source code to build an abstract syntax tree. Afterwards,
it explores this tree to extract code entities (e.g., classes
and methods), properties (e.g., names, types), and metrics
(e.g., number of lines, complexity). Together, these elements,
properties, and metrics constitute a source code model that can
be used by PAPRIKA.

Detection of code smell instances : Fed with the model
built by the static analyser, PAPRIKA detects the code smell
instances. To this point, commits are still processed separately.
Thus, this step produces a separate list of code smell instances
for each commit.

3) Step 3: Analyse Change History:

Input: Code smell instances per commit and the repository
model.

Output: Full code smell history.

In this step, SNIFFER tracks the full history of every code
smell. As our study focuses on objective Android code smells,
we only have to look at the current and previous commits
to detect smell introductions and removals. If a code smell

instance appears in a commit while absent from the pre-
vious, a smell introduction is detected. In the same way,
if a commit does not exhibit an instance of a smell that
appeared previously, a smell removal is detected. In order for
this process to work, SNIFFER needs to retrieve the previous
commits accurately and track renamings. Thanks to the branch
information extracted in Step 1, SNIFFER is able to accurately
retrieve the previous commits even in the cases of multiple
branches and merge commits. As for renaming, SNIFFER relies
on Git to tracks files with their contents instead of their names
or paths. Git uses a similarity algorithm [2] to compute a
similarity index between two files. By default, if the similarity
index is below 50 %, the two files are considered as the same.
SNIFFER uses this feature to detect renamings and accurately
track file and code smell history.

We used SNIFFER on the 324 selected apps and extracted the
full history of 180, 013 code smells. This history is saved in a
POSTGRESQL database that can be queried for data analysis.
For the sake of evaluation and replication, we openly published
this database [19].

D. Validation

In order to assess the relevance of our analysis, we made
sure that the tools used in our study are validated on our
dataset.

1) PAPRIKA: Hecht et al. [22] have already validated
PAPRIKA with a Fl-score of 0.9 in previous studies. They
validated the accuracy of the used code smell definitions and
the performance of the detection. The objective of our valida-
tion of PAPRIKA is to check that its detection is also accurate
on our dataset. For this purpose, we randomly selected a
sample of 599 code smell instances. We used a stratified
sample to make sure to consider a statistically significant



sample for each code smell. This represents a 95 % statistically
significant stratified sample with a 10 % confidence interval of
the 180,013 code smell instances detected in our dataset. The
stratum of the sample is represented by the 8 studied code
smells. After the selection, one author manually analysed the
instances to check their correctness. We found that all the
sample instances are conform to the adopted definitions of
code smells. Hence, we can affirm that the PAPRIKA code
smell detection is effective in our dataset. The validated sample
can be found with our artifacts [19].

2) SNIFFER: We aimed to validate the accuracy of the code
smell history generated by SNIFFER. For this, we randomly
selected a sample of 384 commits from our dataset. This
represents a 95% statistically significant stratified sample
with a 5% confidence interval of the 255,798 commits in
our dataset. After the selection, one author analysed every
commit to check that the detected code smell introductions
and removals are correct, and the SNIFFER did not miss any
code smell introductions and removals. The detailed results of
this analysis can be found in our companion artifacts [19].
Based on these results, we computed the numbers of true
positives (TP), false positives (FP), and false negatives (FN).
These numbers are reported in Table II.

TP | FP | FN | Precision | Recall | FI-score
Introductions 151 7 0 0.95 1 0.97
Removals 85 7 0 0.92 1 0.96

TABLE II: Validation of SNIFFER.

We did not find any case of missed code smell introductions

or removals, F'N = 0. However, we found cases where false
code smell introductions and removals are detected, F'P =7
for both of them. These false positives are all due to a commit
from the Shopping List app [1], which renamed 12 Java
files. Three of these renamings were accompanied with major
modifications in the source code. Thus, the similarity between
the files was above 50 % and Git could not detect the renaming.
Consequently, SNIFFER could not track the code smells of
these files and detected 7 false code smell introductions and
removals.
Using the results of the manual analysis, we computed the
precision, recall, and Fl-score. Their values are reported in
Table II. According to these measures, we can affirm that
SNIFFER is effective for detecting both code smell introduc-
tions and removals.

E. Data Analysis

We explain in this sub-section our data analysis approach
for answering our two research questions.

1) RQI: For how long do Android-specific code smells
survive in the codebase?: To answer this research question,
we relied on the statistical technique of survival analysis,
a.k.a. time-to-event analysis [31]. The technique analyses the
expected duration of time until one or more events happen
(e.g., a death in biological organisms or a failure in mechanical
systems). This technique suits well our study since we are

interested in the duration of time until a code smell is removed
from the codebase. Hence, in the context of our study, the
subjects are code smell instances and the event of interest is
their removal from the codebase. As for the time-to-event, it
refers to the lifetime between the instance introduction and its
removal.

The survival function S(¢) is defined as:

S(t) = Probability(T > t)

Where 7' is a random lifetime from the population under study.
That is, the survival function defines the probability for a
subject (a code smell in our case) for surviving past time ¢.
The survival function has the following properties [14]:

DO<SH<L

2) S(t) is a non-increasing function of ¢;

3) S(0) =1 and lim;_, o, S(¢) — 0.
Interestingly, survival analysis models take into account two
data types:

1) Complete data: this represents subjects where the event
of interest was already observed. In our study, this refers to
code smells that were removed from the codebase.

2) Censored data: this represents subjects that left during
the observation period and the event of interest was not
observed for them. In our case, this refers to code smells that
were not removed during the analysed commits.

To measure the lifetime of code smell instances, we relied on
two metrics:

1) #Days: The number of days between the commit that
introduces the code smell and the one that removes it.

2) #Effective commits: The number of commits between
the code smell introduction and removal. For this metric, we
only counted commits that performed modifications in the
file of the code smell. This fine grained-analysis allows us
to exclude irrelevant commits that did not effectively impact
the code smell host file.

Using these metrics as a lifetime measure, we built the survival
function for each code smell type. Specifically, we used the
non-parametric estimator Kaplan Meier [10] to generate sur-
vival models as a function of #Days and #Effective commits,
respectively.

To push forward the analysis, we report on the survival curves
per code smell type. This allows us to compare the survival
of the 8 studied Android code smells and investigate their
differences. Moreover, we checked the statistical significance
of these differences using the Log Rank test [21]. This non-
parametric test is appropriate for comparing survival distribu-
tions when the population includes censored data. We used
a 95% confidence interval—i.e., o = 0.95, with a null
hypothesis assuming that the survival curves are the same.

For implementing this analysis, we respected the outline
defined by Syer et al. [52]. We used the Python package
Lifelines [14]. We used KaplanMeierFitter with the
option ci_show=False to omit confidence interval in the
curves. Also, we used pairwise_logrank_test with
use_bonferroni=True to apply the Bonferroni [55] cor-
rection and counteract the problem of multiple comparisons.



[ Element | Metric Description

#Commits (int): the number of commits in the project.

Project size | #Developers | (int): the number of developers contributing to the project.
#Classes (int): the number of classes in the project.

Release #Releases (?nt): the number of releases in the project. _
Cycle (int): the average number of days between the project releases.
Linted (boolean): true if the code smell is detectable by Android Lint.

Code smell Priority [1-10]: this metric is only valid for Linted code smells. It presents the priority given to the code smell in Android Lint.
Granularity (categories): the level of granularity of the code smell’s host entity, namely: inner class, method, or class level.

TABLE III: Metrics for RQ?2.

2) RQ2: What are the factors that impact the survival of
Android-specific code smells?: In this research question we
investigated the impact of project size, releasing practices, and
code smell properties on the survival chances of code smell
instances. For this purpose, we defined the metrics presented
in Table III.

Project size : we specifically analysed the size in terms
of #Commits, #Developers, and #Classes.

Releasing practices: We analysed the impact of the
metrics #Releases and Cycle on the survival rates. In this
analysis we paid careful attention to the relevance of the stud-
ied apps for a release inspection. In particular, we manually
checked the timeline of each app to verify that it used releases
all the way. We excluded apps that did not use releases at all,
and apps that used them only at some stage. For instance,
the Chanu app [42] only started using releases in the last 100
commits. Its first 1,337 commits do not have any release.
Hence, this app is, to a large extent, release-free and thus
irrelevant for this research question. Out of the 324 studied
apps, we found 156 that used releases during all the change
history. The list of these apps can be found with our study
artifacts [19]. It is also worth noting that as Android apps
are known for continuous delivery and releasing [7], [37], we
considered in this analysis both minor and major releases. This
allows us to perform a fine-grained study with more releases
to analyse.

Code smell: unlike project and release metrics, the values
of code smell metrics are determined by the code smell type.
Specifically, the values of Linted and Priority are defined by
Android Lint [5]. Android Lint is able to detect four of our
code smells, namely LIC, HMU, UIO, and IOD. It attributes
a priority level from 1 to 10 that describes the importance of
these code smells, where 1 is the least important and 10 is the
most important. As for Granularity, it is determined by the
code smell host entities that are presented in Table I. In this
respect, the entities Activity and View both represent the
granularity level of class. For more clarification, we report in
Table IV the values of these three metrics per code smell type.

To investigate the impact of the defined metrics on code
smells survival, we used survival regression and stratified
survival analysis.

Survival regression: We used this approach to analyse the
impact of numerical metrics—i.e., #Commits, #Developers,
#Classes, #Releases, and Cycle. The survival regression
allows us to regress different covariates against the lifetime

[ Code smell | Linted | Priority | Granularity |

LIC True 6 Inner Class
MIM False — Method
NLMR False — Class
HMU True 4 Method
ulo True 3 Class
UHA False — Class
10D True 9 Class
ucCs False — Method

TABLE IV: The values of Linted, Popularity, and Granularity
per code smell type.

variable. The most popular regression technique is Cox’s pro-
portional hazard model [13]. Cox’s model has three statistical
assumptions:

1) proportional hazards: the effects of covariates upon sur-

vival are constant over time;

2) linear relationship: the covariates make a linear contri-

bution to the model;

3) independence: the covariates are independent variables.
We assessed these assumptions on our dataset and found that
our metrics do not respect the proportional hazard assumption.
That is, the impact of our numerical metrics on survival are
not constant and evolved over time. Thus, we opted for the
alternative technique of Aalen’s additive model, which allows
time-varying covariate effects [4]. The Aalen’s model defines
the hazard function by:

At|lx) = bo(t) + b1(t) * 1 + ... +by(t) x 2

Where x; refers to the studied covariates and b;(¢) is a function
that defines the regression coefficient over time. In our study,
the covariates are the numerical metrics and the regression
coefficients describe their impact on the survival of code
smell instances. For the interpretation of these coefficients,
we should note that the hazard function can also be defined
as A(t) = 1 — S(¢). This means that an increase in the hazard
function implies a decrease in the survival one. Consequently,
the metrics that have a positive hazard regression coefficient,
systematically decrease the survival chances of the studied
code smells and vice versa.

For implementation, we used AalenAdditiveFitter
from Lifelines package [14]. This implementation esti-
mates [ b(t)d¢ instead of b(¢). We used the function
smoothed_hazards_ () with the parameter bandwidth =
100 to get the actual hazard coefficients (b(t)).



a) Stratified survival analysis: We followed this ap-
proach to analyse the impact of categorical metrics, namely
Linted, Priority, and Granularity. To assess the impact of
these metrics, we relied on the same technique used for RQI,
Kaplan Meier. Specifically, we computed the survival function
for each metric and category. Then, we compared the survivals
among the different categories of each metric using the Log
Rank test. For instance, we computed two survival curves
for the metric Linted, one for Linted=True and another for
Linted=False. Then, we compared the two curves using the
Log Rank test.

III. RESULTS ANALYSIS

For the sake of clarity, we present the numbers of analysed
code smells before introducing the results of our research ques-
tions. Table V reports, for each code smell type, the numbers
of instances that were introduced in our dataset (#Instances),
the number of instances that were removed (#Removed), and

__ #Removed
the percentage of removal (% Removal = FTnstances )
[IC | MM [NLMR [ AMU [ UIO [ UFA [ 10D [ UCS [| Al
Fnstances | 98,751 | 72,228 | 4,198 | 3044 | 514 | 267 | 93 | 18 | 180,013
#Removed | 70,654 | 67,777 | 2,526 | 2,509 | 305 | 147 | 66 | 11 || 143995
%Removal |71 93 60 | 63 | 59 | 35 | 70 | 6l 79

TABLE V: Number and percentage of code smell removals.

A. RQI: For how long do Android-specific code smells survive
in the codebase?

LIC | MIM | NLMR | HMU | UIO | UHA | IOD | UCS All
01 41 117 136 111 400 300 60 16 52
Med | 370 602 765 625 | 1,007 | 1,516 | 347 395 441
03 1,536 | 1,978 00 00 00 00 1,422 | oo 1,691

TABLE VI: Kaplan Meier survival in days.

1) Survival in days: Figures 2 and 3 show the results of
Kaplan Meier analysis. To explicit our results, we also present
the survival distribution in Table VI. Figure 2 illustrates the
survival curves of the 8 studied code smells in terms of
days. The figure indicates that the survival probabilities differ
considerably depending on the code smell type. Indeed, 3, 000
days after introduction, code smells like LIC and MIM have
almost no chances to be alive, whereas code smells like UHA
and UIO still have 40 % chances to be alive. This disparity is
confirmed by Figure 3 and Table VI. We can observe that, on
average, after 441 days, 50 % of all the code smells are still
present in the codebase. However, this median value increases
significantly among the code smells MIM, NLMR, HMU, UIO,
and UHA. 50 % of these code smells are still alive after more
than 600 days. We assessed the statistical significance of these
differences with the Log Rank test. While we only report
the significant results, the full summary of the pairwise Log
Rank test between the 8 code smells is available with our
artifacts [19]. Overall, the results allowed to reject the null
hypothesis assuming that the survival curves of the 8 code
smells are the same—i.e., p — value < 0.05. We confirmed

that the survival order shown in Table VI is significant. More
specifically, we found the following:

o UIO and UHA are the code smells that survive the longest.
It takes around 3 years to remove 50% of their instances
(median > 1000 days);

o« NLMR, HMU, and MIM also have a high survival ten-
dency with an average of 2 years (median > 600 days);

o The least surviving code smells are 10D, LIC, and UCS.
50% of their instances are removed after only one year
(median > 300 days).

50% of the instances of Android-specific code smells
stay alive in the codebase for more than 441 days.

LIC | MIM | NLMR | HMU | UIO | UHA | IOD | UCS || All
0l 3 1 3 1 2 3 2 3 3
Med | 10 6 11 8 7 16 3 11 9
3 34 33 38 50 44 64 7 11 34

TABLE VII: Kaplan Meier survival in effective commits.

2) Survival in effective commits: Figures 4 and 5 reports on
the results of Kaplan Meier analysis with effective commits.
The figures show that in the 100 effective commits that follow
the code smell introduction, most of the instances are removed.
We also observe that there are slight differences between the
survival tendencies of the 8 code smells. Indeed, Table VII
and the Log Rank test results show the following:

e UHA is the longest surviving code smell. It takes 16
effective commits to remove 50 % of its instances and even
after 64 effective commits 25 % of its instances are still alive
(median = 16 and Q3 = 64);

o IOD is the least surviving code smell. 75% of its in-
stances are removed after only 7 commits on the host file
(Q3="7);

o The other code smell types only have slight survival
differences. In average, their instances survive for 9 effective
commits and 75% of them disappear after 30 commits.

75% of the instances of Android-specific code smells are
removed after 34 commits on the host file.

B. RQ2: What are the factors that impact the survival of
Android-specific code smells?

1) Survival regression: Figure 6 shows the results of
Aalen’s additive analysis for the project metrics #Commits,
#Developers, and #Classes. It is worth noting that the three
metrics are not statistically independent in our dataset. Thus,
we measured their regression coefficients separately to avoid
the correlation bias. From the figure, the first thing that leaps
to the eye is that the three metrics have a positive impact
on the hazard of code smells. Indeed, the curve values are
positive during all the code smell lifetime. Thus, the project
size negatively impacts the survival possibility, which means
the bigger the project is, the less the code smells survive in
the codebase. Overall, the positive impact on the hazard is
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Fig. 6: The estimated hazard coefficients for #Commits, #Developers, and #Classes.

more present in the first days after the code smell introduction.
Indeed, the curves of the three metrics have their highest values
in the first 500 days. In the days after, the hazard rates drop
significantly to stabilise after 1, 500 days. This aligns with the
survival curves observed in RQI where the average survival
was less than 500 days.

Figure 7 shows the results of Aalen’s additive analysis for
the release metrics #Releases and Cycle. These two metrics
are not highly correlated in our dataset |r| < 0.3. Hence, we
can analyse their impact simultaneously with a multivariate
regression.

We observe from Figure 7 that the hazard coefficients for
the two variables are positive along the code smell lifetime.

This shows that the two metrics have a positive impact on the
hazard function. That is, increasing the number of releases and
the releasing cycle tend to shorten the code smell lifetimes.
Interestingly, Figure 7 also indicates that the cycle has more
impact on the survival rates than the number of releases.
Accordingly with the units, this means that adding one day
to the average releasing cycle has more impact on survival
rates than adding one release to the whole project.

Code smells disappear faster in projects that are bigger in
terms of commits, developers, and classes. Projects with
longer releasing cycles and more releases also manifest
shorter code smell lifetimes.
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2) Stratified survival analysis: Figure 8 compares the sur-
vival curves for code smells based on the metric Linted. The
figure shows that the survival curve of Linted code smells
is always under the curve of other code smells. This means
that code smells that are present in Android Lint have less
survival chances than other code smells. The Log Rank test
confirmed the statistical significance of this observation with
p —value < 0.05. This allows us to reject the null hypothesis
assuming that the two curves are the same.
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Fig. 8: The impact of the presence in the linter on survival.

Code smells detected by Android Lint are removed from
the codebase faster than other types of code smells.

Figure 9 shows the results of Kaplan Meier analysis strati-
fied with the metric Priority. It compares the survival curves
for code smells depending on their priority on Android Lint.
Overall, we observe that code smells with higher priorities
have less survival chances. Indeed, the code smells with the
highest priority—9—have the lowest survival chances. Their
survival curve is always below other curves. On the other
hand, code smells with the lowest priority—3—survive longer
than other code smells. The Log Rank test results showed that
all these differences are statistically significant with a 95 %
confidence interval. Hence, we can confirm that the more a
code smell is prioritised, the less its survival chances are.

Survival probability
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#Days.
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Fig. 9: The impact of linter priority on code smell survival.

Code smells that are prioritised by Android Lint have
less survival chances. They are removed faster than other
code smells.

Figure 10 compares the survival curves of code smells
depending on their granularity. The figure shows that code
smells hosted by inner classes have the least survival chances,
they disappear before other code smells. We also observe
that code smells hosted by classes survive way more than
code smells hosted by methods or inner classes. The Log
Rank resulted in p — values < 0.005 for all the pairwise
comparisons between the three curves. As a result, we can
reject the hypotheses assuming that the survival curves of
different granularities are the same.
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Fig. 10: The impact of granularity on code smell survival.

The code smell granularity has an important impact on its
survival chances. Code smells hosted by classes survive
significantly more than smells hosted by methods and
inner classes.

IV. DISCUSSION
A. Discussion

Compared to the code smell longevity reported in previous
studies [8], [29], [46], [54], Android code smells have a
significantly shorter lifespan. Effectively, the study of Tu-
fano et al. [54] reported that the median survival of OO code



smells in Android apps is over 1,000 days and 1, 000 effective
commits. In our study, the only Android code smells that
reach this average longevity are UIO and UHA. All other
Android code smells have a median survival of 400 days. This
shows that Android code smells are by far less persistent than
OO code smells. This can be due to the nature of Android
code smells, which lead them to be introduced and removed
faster. Indeed, Android code smells are rather low granularity
instances and they can be removed accidentally in general. For
instance, a code smell like HashMap Usage is caused by the
instantiation of a HashMap collection. Therefore, any instance
of this code smell can be accidentally introduced or removed
by only modifying one instruction. On the other side, OO code
smells tend to be more sophisticated and may require extensive
modifications to refactor them. Interestingly, our results of
the granularity analysis align with this hypothesis. Indeed,
the comparison demonstrated that code smells that are hosted
by entities of higher granularity (class) remain longer in the
source code. This confirms that, when the code smell is at a
low granularity level, it becomes easier to remove and thus
disappear faster from the source code.

Another surprising finding is that Android code smells have
a very short lifespan in terms of effective commits. This
finding highlights a huge gap between the number of days and
effective commits needed to remove the code smell instances,
400 days vs. 9 effective commits. This contrast can be due
to the size and complexity of Android apps. Indeed, in large
software systems, the modifications are diffused across dif-
ferent software components. Hence, a code smell can survive
in such systems for years if its host entity is not frequently
modified. In this way, the survival in terms of days becomes
much higher than the survival in terms of effective commits.

Our survival regression analysis showed that Android code
smells disappear faster in projects that are bigger in terms
of commits, developers, and classes. This observation can be
due to the activity and dynamic of these projects. Indeed,
bigger projects that have more contributors are potentially
more active and thus are subject to more modifications. This
dynamism makes these projects more prone to code smell
removals. As for releases, our results showed that code smells
survive less in projects that adopt more releases and longer
releasing cycles. The two observations may seem contradictory
as we would expect a high number of releases to imply shorter
cycles. However, in practice our results showed that the two
variables do not have a strong negative correlation. This means
that to fasten code smell removals, developers should release
frequently without going as far as to shrink releasing cycles.

Finally, our results showed that code smells detected and
prioritised by Android Lint are removed faster than other code
smells. This can be a direct or an indirect effect of Android
Lint. Indeed, when the linter is adopted in the development
process, it directly detects code smells from the source code
and encourage the developer to remove them. Moreover, the
linter can also make developers aware of the code smells by
means of communication. In this way, even developers who
disabled the linter in their Integrated Development Environ-

ment (IDE) may still be aware about these code smells.

To sum up, our work takes a step forward in the study of
mobile code smells and opens up perspectives for new research
directions. Concretely, it has the following implications:

e The high releasing frequency in the mobile ecosys-
tem [37] does not necessarily promote bad development prac-
tices. Android code smells survive less in projects with more
releases. That being said, very short releasing cycles can also
be a factor that favours code smell persistence. We invite future
studies to inspect in depth the impacts of releasing trends on
other aspects of code smells like introductions and removals.

e The short lifespans of Android code smells incite us to
hypothesise that their removal is not intended and rather ac-
cidental. We invite future works to investigate this hypothesis
and inspect the actions leading to the removal of Android code
smells.

o We confirm the benefits of using linters to detect per-
formance issues in mobile apps [17]. We encourage the
community to work on approaches and tools that allow the
detection and refactoring of larger sets of mobile code smells.

e Our results align with previous findings about the effi-
ciency of integrating software quality tools in the development
workflow [12], [17], [26], [50]. We invite future works to
invest in the integration of tools like ADOCTOR and PAPRIKA
in the IDE.

o We confirm the importance of priority and severity indica-
tors in static analysis tools [9], [12], [17], [26]. We encourage
tool makers to adopt such measures in their software quality
tools.

B. Threats To Validity

Internal Validity: For this study, one main major threat could
be errors-in-variables bias. In our case, this can be caused
by false assessment of code smell lifetimes by associating
code smell introductions or removals to the wrong commits.
This can occur in situations where code smells are introduced
and removed gradually or when the change history is not
accurately tracked. However, as explained previously, we
consider in this study only objective code smells that can
be introduced or removed in a single commit. Moreover, the
validation showed that, by considering branches and file re-
namings, SNIFFER accurately tracks code smell introductions
and removals (F'1 — score = {0.97,0.96}).

External Validity: The main threat to external validity is
the representativeness of our dataset. We used a set of 324
open-source Android apps from F-Droid with more than 255k
commits. It would have been preferable to consider also
closed-source apps to build a more diverse dataset. However,
we did not have access to any proprietary software that can
serve this study. We also encourage future studies to consider
other datasets of open-source apps to extend this study [16],
[32]. Another possible threat is that our study only concerns
8 Android-specific code smells. Without a closer inspection,
these results should not be generalised to other code smells
or mobile platforms. We therefore encourage future studies to



replicate our work on other datasets and with different code
smells and mobile platforms.

Construct Validity: In our case, the construct validity might
be affected by the gap between the concept of code smells
in theory and the detection performed by PAPRIKA. However,
the definitions adopted by PAPRIKA have been validated by
Android developers with a precision of (0.88) and a recall of
(0.93) [22], [24]. On top of that, our validation showed that
PAPRIKA is also effective in the dataset under study.
Conclusion Validity: The main threat to the conclusion valid-
ity in this study is the validity of the statistical tests applied.
We alleviated this threat by applying a set of commonly-
accepted tests employed in the empirical software engineering
community [35]. We paid attention not to violate the assump-
tions of the performed statistical tests. We are also using non-
parametric tests that do not require making assumptions about
the distribution of the data. Finally, we did not make conclu-
sions that cannot be validated with the presented results.

V. RELATED WORK

Code Smells in Mobile Apps: With the advent of mobile
apps as new software systems, many works have studied
mobile-specific code smells. Reimann et al. [47] proposed
a catalog of 30 quality smells dedicated to Android. These
code smells cover various aspects like implementations, user
interfaces or database usages. After the definition of these code
smells, many research works proposed tools and approaches
for detecting them [25], [27], [43], [47]. Reimann et al. offered
a tool called REFACTORY for the detection and correction
of code smells [49]. Afterwards, Hecht er al. [24] proposed
PAPRIKA, a tooled approach that detects OO and Android code
smells in Android apps. Also, Palomba et al. [43] proposed
another tool, called ADOCTOR, able to identify 15 Android-
specific code smells from the catalog of Reimann et al.
Other studies focused on assessing the performance impact
of these code smells on app performance [11], [23], [44].
In particular, Palomba et al. [44] showed that methods that
represent a co-occurrence of Internal Setter, Leaking Thread,
Member Ignoring Method, and Slow Loop, consume 87 times
more energy than other smelly methods. To cope with bad
practices in mobile apps, a few works proposed refactoring
solutions [33], [40]. Notably, Morales et al. [40] proposed
EARMO, an energy-aware refactoring approach for mobile
apps. By analysing 20 open-source apps, they showed that
refactoring antipatterns can decrease significantly energy con-
sumption. Other studies aimed to understand the phenomenon
of code smells in mobile apps. Mannan et al. [34] compared
the presence of well-known OO code smells in 500 Android
apps and 750 desktop applications in Java. They observed that
the distribution of code smells in Android is more diversified
than in desktop applications Our study complements these
studies by analysing an unaddressed aspect of mobile code
smells, which is lifespan and persistence in software history.

Code Smell Survival: To the best of our knowledge,
no work has investigated mobile-specific code smells in the
change history. The closest work to our study is the one
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of Tufano er al. [54], which analysed the change history
of 200 open-source projects (including 70 Android apps) to
understand the evolution of OO code smells. They found
that OO code smells are rarely removed, only 20% of their
instances were removed during the observed software history.
They also observed that 50% of code smells instances persisted
in the codebase for more than 1,000 days and 1,000 commits
from their introduction. Several other studies investigated
the longevity of OO code smells instances in the software
history [8], [29], [46]. In particular, Peters and Zaidman [46]
conducted a case study on 7 open-source systems to investigate
the lifespan of code smells and the refactoring behavior of
developers. They found that, on average, code smell instances
have a lifespan of approximately 50 % of the examined revi-
sions. Kim et al. [30] studied the genealogy of code clones
in two Java open-source projects. They found that 54% to
72% of the removed instances disappeared in around 8 check-
ins out of over 160 check-ins. Arcoverde et al. [8] conducted
an explanatory survey about the longevity of code smells.
They found that code smells survive for long times because
developers continuously postpone refactoring operations.

VI. CONCLUSION

We presented in this paper the first large-scale empirical
study that investigates the lifespan of mobile-specific code
smells in the change history. We analysed 8 Android code
smells, 324 Android apps, 255k commits, and 180k code
smells instances. This study resulted in several findings:
Finding 1: While in terms of time Android code smells can
remain in the codebase for years before being removed, it only
takes 34 effective commits to remove 75% of them.

Finding 2: Android code smells disappear faster in bigger
projects with more commits, developers, and classes.
Finding 3: The high releasing frequency in the mobile ecosys-
tem does not necessarily promote long code smell lifespans.
Finding 4: Android code smells that are detected and pri-
oritised by Android Lint tend to disappear before other code
smell types.

These findings highlight important challenges for researchers
and tool makers. In particular, we encourage the community
to work on approaches and tools that allow the detection and
integration of larger sets of mobile code smells. On top of the
research implications, this paper provides a comprehensible
replication package that includes the collected data for this pa-
per with the used tools and scripts [19]. We highly encourage
the community to build on our findings and perform further
studies on mobile code smells.
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