
Vulnerability Propagation in Package Managers
Used in iOS Development

1st Kristiina Rahkema
Institute of Computer Science

University of Tartu
Tartu, Estonia

kristiina.rahkema@ut.ee

2nd Dietmar Pfahl
Institute of Computer Science

University of Tartu
Tartu, Estonia

dietmar.pfahl@ut.ee

Abstract—Although using third-party libraries is common
practice when writing software, vulnerabilities may be found
even in well-known libraries. Detected vulnerabilities are often
fixed quickly in the library code. The easiest way to include
these fixes in a dependent software application, is to update
the used library version. Package managers provide automated
solutions for updating library dependencies, which make this
process relatively easy. However, library dependencies can have
dependencies to other libraries resulting in a dependency network
with several levels of indirections. Assessing vulnerability risks
induced by dependency networks is a non-trivial task for software
developers.

The library dependency network in the Swift ecosystem
encompasses libraries from CocoaPods, Carthage and Swift
Package Manager. These three package managers are used while
developing, for example, iOS or Mac OS applications in Swift
or Objective-C. We analysed how vulnerabilities propagate in
the library dependency network of the Swift ecosystem, how
vulnerable dependencies could be fixed via dependency upgrades,
and if third party vulnerability analysis could be made more
precise given public information on these vulnerabilities.

We found that only 5.9% of connected libraries had a direct or
transitive dependency to a vulnerable library. Although we found
that most libraries with publicly reported vulnerabilities are writ-
ten in C, the highest impact of publicly reported vulnerabilities
originated from libraries written in native iOS languages, i.e.,
Objective-C and Swift. We found that around 30% of vulnerable
dependencies could have been fixed via upgrading the library
dependency. In case of critical vulnerabilities and latest library
versions, over 70% of vulnerable dependencies would have been
fixed via a dependency upgrade. Lastly, we checked whether the
analysis of vulnerable dependency use could be refined using
publicly available information on the code location (method or
class) of a reported vulnerability. We found that such information
is not available most of the time.

Index Terms—iOS, Swift, Vulnerabilities, Library Dependency
Networks, Publicly Reported Vulnerabilities

I. INTRODUCTION

Using third-party libraries is common practice in software
development. Third-party libraries make it possible to reuse
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existing solutions to common problems. This can make the
development process faster and easier. These third-party solu-
tions are often better vetted than custom solutions. The Open
Web Application Security Project (OWASP), for example,
strongly recommends against the use of custom encryption
algorithms [1].

Nevertheless, vulnerabilities can be found in even very
popular and well-tested libraries. For example, in December
2021, a security vulnerability was discovered in the widely
used Log4J Java logging library. This vulnerability affected
4% of all the Java applications [2] and made them vulnerable
to remote code execution attacks.

Many of these vulnerabilities are fixed relatively quickly
[3]. After a fix is made available, dependents of the vul-
nerable library can include the fix via upgrading the library
dependency version. It can, however, be tedious to update
multiple dependencies manually. Automated solutions make
this process easier. For this purpose, package managers have
been created where the developer simply states the library
name and exact version or a version requirement. The package
manager takes care of downloading and installing the suitable
library version.

Using a package manager, it is easy to declare as many de-
pendencies as needed. These library dependencies themselves
can, again, have dependencies to other libraries, creating a
network of library dependencies. The collection of all libraries
that are available through a package manager and their library
dependencies create a library dependency network for each
package manager. When the number of direct and transitive
dependencies (i.e. indirect dependencies of any level of indi-
rection) grows, it also increases the risks of a library depending
on vulnerable library versions. As seen in the example of
Log4J, even a vulnerability in a seemingly harmless logging
library can have an affect on a significant part of an ecosystem.

The spread of vulnerabilities in package manager library
dependency networks has been studied for some package
managers. Zerouali et al. [3] studied how long it takes for
vulnerabilities in npm and RubyGems to be fixed and how
these vulnerabilities spread through the library dependency
network. They found that around 40% of libraries have a
direct or transitive dependency to a vulnerable library version.
Düsing et al. [4] analyzed how vulnerabilities in transitive
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dependencies affect the NuGet, npm and Maven package
manager library dependency networks. They also studied how
fast developers update their library dependencies when a
vulnerability is publicly disclosed. They found, that there is
a significant difference on how many libraries are affected by
vulnerable dependencies depending on the package manager.
They also found, that developers probably rely on automated
dependency updates, which are triggered when a vulnerability
is disclosed.

Although there are many studies that analyze library de-
pendency networks, especially for npm and Maven, there
are no studies analyzing the library dependency networks
of CocoaPods, Carthage and Swift Package Manager (Swift
PM). These three package managers are used when developing
applications in Swift, such as iOS, Mac OS or Watch OS
applications. In the following, we refer to the combined
ecosystems of CocoaPods, Carthage and Swift PM as the
Swift ecosystem. It is important to note that this ecosystem
also contains libraries written in other languages (such as
Objective-C, C, C++). Additionally, CocoaPods and Carthage
can also be used in applications written in Objective-C. In the
following, when referring to library dependency networks we
mean the library dependency networks of the Swift ecosystem
unless specified differently.

Rahkema et al. [5] published a tool for finding publicly
reported vulnerabilities in Swift application dependencies. The
evaluation of the tool showed that there are indeed open
source apps written in Swift that depend on library versions
with publicly reported vulnerabilities. To better understand the
magnitude of the use of vulnerable library versions, it would
be necessary to analyse the spread of vulnerabilities in the
entire library dependency network. No such studies have been
conducted so far for the Swift ecosystem. In the following, we
analyze how publicly reported vulnerabilities spread through
the library dependency networks of the Swift ecosystem.

In our study, we investigate three research questions, focus-
ing on (1) how the Swift ecosystem is affected by publicly
reported vulnerabilities, (2) how risks from these vulnerabil-
ities could be mitigated via dependency upgrades, and (3) if
publicly available vulnerability information would allow more
precise analysis of vulnerable dependencies.

The rest of the article is structured as follows. In Section II,
we summarize related work. In Section III, we explain some
background on the studied package managers, vulnerabilities
and the dataset used. In Section IV, we describe the research
questions and how we analyzed the dataset for each research
question. In Section V, we present answers to the tree research
questions and Section VI discusses these answers. In Section
VII, we describe the threats to validity. In Section VIII, we
conclude the paper.

II. RELATED WORK

A. Vulnerabilities in Library Dependency Networks

Zerouali et al. [3] studied how long it takes for vulner-
abilities in libraries from npm and RubyGems to be fixed,
how vulnerabilities spread through the library dependency

network and if vulnerable libraries are updated. They matched
vulnerability data from Snyk to npm and RubyGems libraries
and found that more than 15% of latest library versions
are directly dependent on vulnerable libraries. Additionally,
dependencies to vulnerable libraries affected 42.1% of npm
and 39% of RubyGems libraries. They found that one third
of vulnerable dependencies could be fixed by updating the
vulnerable dependency version.

Düsing et al. [4] matched vulnerabilities from Snyk to
libraries from the Maven, NuGet, and npm library dependency
networks. They, then, analyzed how vulnerabilities in direct
and transitive dependencies affect different library dependency
networks. They found that only 1% of libraries in NuGet and
8% of libraries in npm are affected by vulnerable dependen-
cies. Whereas, 29% of libraries served through Maven have
dependencies to vulnerable library versions. They also studied
how long it takes for libraries to update their vulnerable
dependencies after vulnerability disclosure and found, that
at least some libraries are probably using automated tools
that follow vulnerability databases and update all vulnerable
dependencies automatically.

Li et al. [6] analyzed library dependency networks of Java
projects from Maven and GitHub. They matched vulnerability
data from the National Vulnerability Database (NVD) to these
Java projects and found 503 vulnerabilities matching 174
Maven projects and 3326 vulnerabilities matching 840 GitHub
projects. They observed libraries with vulnerable dependencies
from 2019 to 2020 and found that only 5% of vulnerable
dependencies were fixed during this time frame. Prana et al.
[7] analysed vulnerabilities in library dependencies for Java,
Python and Ruby projects. They found that most vulnerabili-
ties persisted through their one year long observation period.

Zimmermann et al. [8] studied security risks in the npm
library dependency network. They found, that when installing
an average npm library the user implicitly trusts 80 dependent
libraries. When analyzing publicly reported vulnerabilities
from Snyk, they found, that up to 40% of all libraries have
(direct or transitive) vulnerable dependencies. Alfadel et al. [9]
analyzed the use of vulnerable npm dependencies in Node.js
applications. They found, that although 67.9% of examined
applications depended directly on vulnerable libraries, 94.9%
of these vulnerabilities were not known at the time.

Our study is the first study to analyse vulnerability propa-
gation in the Swift ecosystem.

B. Vulnerability Reachability Analysis

Tools have been implemented for multiple languages that
allow more detailed analysis of vulnerable dependencies.
Ponta et al [10] implemented Eclipse Steady, that analyses
if a vulnerable code in a dependency is called. The analysis
relies on fix commits, which provided more accurate results
than tools that relied only on vulnerability metadata such as
OWASP Dependency Check.

Bhandari et al. [11] built a dataset containing vulnerable
files and methods. Their analysis relied on the fixing commit
being available on NVD.



Hommersom et al. [12] analysed how vulnerability fix
commits can be found given public vulnerability information.
They built a commit ranking system based on metrics such as
time distance, commit messages and vulnerability description
and others. They showed that detailed public vulnerability
information can be successfully used to determine fixing
commits, especially if the vulnerability description includes
affected files, the patching commit or the commit message of
the fixing commit refers to the CVE.

In our study we analyse how often detailed information on
the vulnerability location can be extracted from NVD, which
would allow for a more detailed analysis of the vulnerable
dependency.

III. BACKGROUND

In this section we describe the three package managers
used in iOS development, how dependencies are declared, the
available vulnerability information and the dataset used.

A. Package Managers

There are three package managers that are used in iOS de-
velopement: CocoaPods, Carthage and Swift Package Manager
(Swift PM).

CocoaPods is the first package manager that was released
in 20111. CocoaPods has a centralized repository of libraries
that anyone can add their libraries to. CocoaPods is easy to
use, but somewhat heavyweight, as it forces its users to use a
project file generated by the package manager.

Carthage is the second oldest package manager in the
Swift ecosystem and was released in 20142. Carthage has no
centralized list of libraries and is very lightweight. Developers
using Carthage use the package manager to fetch and compile
libraries, but the libraries need to be added to the projects
manually.

Swift Packge Manager is the latest and official package
manager for the Swift language released in 20173. Swift
PM also works as a project configuration file. Similarly to
Carthage, Swift PM does not have a centralized list of libraries.
When Swift PM was first released it only worked with
command line applications. Since 2019 support for XCode and
iOS has been added, making it the go to package manager in
iOS development.

B. Dependency Declarations

For each of the package managers dependencies are de-
clared in a package manager manifest file. Once the package
manager version resolution is run a resolution file is created
that stores the actual library versions installed. The three
package managers use different ways of declaring library
dependencies, but work similarly in principle [13].

For example, for CocoaPods dependencies are declared in
a Podfile. If Library C wanted to declare a dependency to
Library B the Podfile would look as follows:

1https://cocoapods.org
2https://github.com/Carthage/Carthage
3https://www.swift.org/package-manager/

pod ’LibraryB’

If Library B itself had a dependency to Library A, the
resolution file Podfile.lock would include the following after
CocoaPods installed the declared dependency:

PODS:
- LibraryB (version1):

- LibraryA
- LibraryA (version1)

This package manager resolution file indicates that version
1 of Library B was installed and since Library B depends on
Library A, version 1 of Library A was also installed.

There are now two dependency chains at time T3, as
illustrated in Figure 1:

• ABC1: A:v1 ← B:v1 ← C:v1
• AB1: A:v1 ← B:v1

Fig. 1. Illustration of dependency chains in a library dependency network
with three libraries A, B and C.

In Figure 1, version 1 of Library A has a publicly reported
vulnerability. This means that dependency chains ABC1 and
AB1 both represent dependencies to vulnerable library ver-
sions. At time T4, Library A releases a fix for the vulnerability:
version 2 of Library A. At time T5, Library B releases a
new version 2 that upgrades its library dependency to the
not vulnerable version of Library A. At time T6, Library
C releases a new version but does not upgrade its library
dependency. At time T7, Library C releases another version
that does update its library dependency to Library B version
2. At time T7, the following dependency chains exist in our
dataset:

• ABC1: A:v1 ← B:v1 ← C:v1
• AB1: A:v1 ← B:v1
• AB2: A:v2 ← B:v2
• ABC2: A:v1 ← B:v1 ← C:v2
• ABC3: A:v2 ← B:v2 ← C:v3

Dependency chains ABC1, AB1 and ABC2 represent vul-
nerable dependencies.

https://cocoapods.org
https://github.com/Carthage/Carthage
https://www.swift.org/package-manager/


C. Vulnerabilities

If a vulnerability is discovered in a software system, it can
either be fixed silently or the vulnerability can be released in
public vulnerability databases. Such databases make it possible
for users to monitor software systems they are using. One
of such vulnerability databases is the National Vulnerability
Database (NVD)4.

NVD provides public information on vulnerabilities, such as
a vulnerability description, severity levels, affected software,
and others. Useful links are provided for some vulnerabilities,
for example, to the security advisory or to the fixing commit.
The vulnerability database is accessible through an online
interface, through an API, and through downloadable database
snapshots.

D. Dataset Used

In our analysis we used the Swift library dependency net-
work dataset compiled by Rahkema et al. [14], [15] containing
information on libraries from the three package managers
used in iOS development. The dataset consists of nodes
and relationships. In our analysis, we are interested in the
following types of nodes:

• App (analysed library version)
• Library (library version)
• LibraryDependency (library dependency declaration from

manifest file)
• Vulnerability (publicly reported vulnerability)
and the following relationships:
• (App) - [IS] → (Library)
• (App) - [CHANGED TO] → (App)
• (Library) - [LIBRARY DEPENDS ON] → (Library)
• (App) - [DEPENDS ON] → (LibraryDefinition)
• (Library) - [:HAS VULNERABILITY] → (Vulnerabil-

ity)
This dataset is a node database, allowing for easy querying

of node chains, which we use to find dependency chains
between library versions. We give a more detailed description
of the dataset in our technical report [15]. The dataset contains
data on 60533 libraries, 572131 library versions and 23419
dependencies between libraries.

IV. METHOD

In this section, we first present the research questions
that guided our study. Then we describe what analyses we
conducted to answer each of the research questions. The
jupyter notebook containing the scripts used in our analyses
can be found on GitHub5.

A. Research Questions

Our goal is a) to understand the scope of the library de-
pendency network affected by vulnerabilities, b) if vulnerable
dependencies could be effectively fixed via upgrading, and c)
if there is enough public information available about these

4http://nvd.nist.gov
5https://github.com/kristiinara/VulnerabilityPropagationAnalysis

vulnerabilities such that the functionality of existing tools
could be complemented with more detailed yet lightweight
vulnerability analyses. Guided by this goal, we formulate three
research questions.

• RQ1: How frequently do libraries have vulnerable depen-
dencies?

• RQ2: How many vulnerabilities could be fixed via up-
gradeing?

• RQ3: How precise could the vulnerability analysis be
made given public information?

In the following, we explain the underlying rationale of
each of the three research questions.

RQ1: Libraries with Vulnerable Dependencies
To better understand the risks imposed by vulnerabilities

in the library dependency network, we ask how libraries in
Carthage, CocoaPods and Swift PM are affected by vulner-
abilities. To get started, it is necessary to investigate which
libraries have publicly reported vulnerabilities. We are aware
that the actual number of vulnerabilities will be higher, as
not every vulnerability is publicly reported or even detected.
Nevertheless, it is reasonable to look at publicly reported
vulnerabilities instead of running a vulnerability scanner, to
avoid the multitude of false positive results that these tools
usually produce. Looking at publicly reported vulnerabilities
we can be reasonably certain that these vulnerabilities are
true positives and no manual double-checking is required. We
expect to find publicly reported vulnerabilities in a certain
amount of third-party libraries of the Swift ecosystem.

Yet, this is not sufficient. Since we expect vulnerabilities
to spread through dependency chains, we analyse the library
dependency network, i.e., the occurrences and lengths of de-
pendency chains along which vulnerabilities might propagate.

In addition, we refine our analysis by including information
about the predominantly used project language of the
vulnerable library and the severity level of the vulnerability.
Libraries in the Swift ecosystem can be written in different
languages. The most common languages are Swift, Objective-
C, C and C++ [16], with Swift and Objective-C covering
the vast majority of the libraries. We expect the vulnerable
libraries to have a similar distribution of languages as the rest
of the ecosystem.

RQ2: Vulnerable Dependencies Fixed via Upgrading
The simplest way to fix a dependency to a vulnerable

library version is to upgrade to a library version where
the vulnerability is fixed, if such a fix exists. Given that
developers are wary of upgrading their library dependencies
[3], [6], [8] our hypothesis is that, as in other programming
language ecosystems, many dependencies to vulnerable
libraries remain unchanged although an easy fix is possible
via upgrading the library dependency version. To check our
hypothesis, we analyse how often vulnerable dependencies
could have been fixed by upgrading the library dependency
version.

http://nvd.nist.gov
https://github.com/kristiinara/VulnerabilityPropagationAnalysis


RQ3: Precision of Public Vulnerability Information
Tools exist that can find dependencies to vulnerable libraries

when using CocoaPods, Carthage or Swift Package Manager
[14]. There are, however, no tools for Swift and Objective-C
that could perform more detailed analyses and determine if
a vulnerability from a library dependency really affects the
program. For such analyses it would either be necessary to
have data on where the vulnerability is located in the library
or an extensive analysis of the vulnerable library would be
needed. Our goal is to check if information about the location
of a vulnerability in the code is publicly available for the
reported vulnerabilities in the Swift ecosystem.

B. Data Analysis

In this section we describe what we do to answer the three
research questions.

1) RQ1: Libraries with Vulnerable Dependencies: To un-
derstand how vulnerable library versions may impact other
libraries, we first find all library versions that are connected
to vulnerable library versions through DEPENDS ON chains.
A dependency chain of length zero implies that the library
version itself is vulnerable. A dependency chain of length one
implies that the library version has a direct dependency to a
vulnerable library version. Dependency chains longer than one
imply that the library version has a transitive dependency to a
vulnerable library version.

For each library version that depends on a vulnerable library
we find the shortest path to a vulnerable library version. We
do this, because we assume that the risk of using vulnerable
code is higher when the dependency chain is the shortest. We
then report the number of libraries for each dependency chain
length by filtering out duplicate library names. The resulting
numbers indicate how many libraries have publicly reported
vulnerabilities and how many libraries depend on vulnerable
libraries (either through direct or transitive dependencies).

Additionally, we analyse how the language of the vulnerable
library and the severity level of the vulnerability is associ-
ated with how far the vulnerabilities spread in the library
dependency network. We gather library dependency chains for
libraries that depend on vulnerable library versions and plot
the number of affected libraries for each dependency level. For
libraries with multiple dependencies to vulnerable libraries, we
count the library on each dependency level where it depends
on a vulnerable library version. We first plot the dependency
level graph distinguished by the programming language and
then by the severity level of the vulnerability.

The language of the library is determined by querying the
main project language from GitHub.

2) RQ2: Vulnerable Dependencies Fixed via Upgrading:
Figure 1 in Section III showed five dependency chains of
which three corresponded to vulnerable dependencies: ABC1,
AB1 and ABC2. For dependency chain ABC2, Library C
could have resolved the vulnerable dependency by upgrading
the dependency to Library B from version 1 to version 2. For
RQ2, we will study how often such chains to vulnerable depen-

dencies could have been fixed via upgrading the dependency
version.

For this analysis we first filter out library dependencies
where the package manager resolution file was missing. These
dependency versions were calculated based on the manifest file
and are therefore not suitable for upgradeability analysis.

To analyse how vulnerable dependencies could be fixed
via upgrading, we first identify all dependency chains to
vulnerable library versions. For each of these chains we then
check if a newer version of the direct dependency (like B:v2
for dependency chain ABC2 in Figure 1) exists that is not
dependent on the vulnerable library version. The process of
finding the newer version of the direct dependency takes into
account release times for each of the library versions such that
the release time of the dependency has to always be before
the release time of the dependent. This means that in Figure 1
it would have been possible to upgrade the dependency chain
ABC2, but not the dependency chain ABC1 because B:v2 was
released after C:v1.

For each dependency level we plot the number of depen-
dency chains that could have been fixed via an upgrade and
the number that could not have been fixed via an upgrade.
Additionally we count how many library dependencies could
have been fixed for each vulnerability severity level and
vulnerable library programming language.

The above analysis shows the upgradeability of vulnerable
dependencies over the whole time frame of the dataset. To
understand the potential impact of upgrades to the most recent
state of the library dependency network, we also analyse
for how many of the latest versions of libraries vulnerable
dependencies could have been fixed via upgrading.

3) RQ3: Precision of Public Vulnerability Information: For
each vulnerability, we check the public vulnerability descrip-
tion on NVD and record if it contains information about the
class or method that contains the vulnerability. Additionally
we check, if available, the patch link to see if the patch of the
vulnerability reveals where the vulnerability was fixed in the
code.

V. RESULTS

In the following, we present the answers to our research
questions one by one.

A. RQ1: Libraries with Vulnerable Dependencies

We found a total of 149 vulnerabilities in 61222 libraries.
This corresponds to 24.3 vulnerabilities per 10000 libraries.
We found that only 5.9% of connected libraries had depen-
dencies to vulnerable library versions. For 3% of connected
libraries, even the latest version of the library had a depen-
dency to a vulnerable library version.

In the following, we present in more detail our results on
how vulnerabilities propagate through the Swift library de-
pendency network. Furthermore, we show how library project
language and vulnerability severity are associated with vulner-
ability propagation.



Figure 2 shows how publicly reported vulnerabilities propa-
gate through the Swift library dependency network. There are
41 libraries with publicly reported vulnerabilities (dependency
tree level 0). Of those libraries only 12 have dependents. There
are 202 libraries without a publicly reported vulnerability that
have a direct dependency to at least one vulnerable library
version (dependency tree level 1). A considerable number of
libraries are added on level two (83) and level three (126).
Libraries with dependencies to multiple vulnerable library ver-
sions are counted at the lowest dependency tree level where a
dependency to a vulnerable library version exists. In total, 415
libraries have dependencies to vulnerable library versions, and
456 libraries are affected by publicly reported vulnerabilities
in total, if we include libraries that are vulnerable themselves.
Moreover, we can say that in case a library has at all a
(possibly indirect) dependency to a vulnerable library version,
then the longest chain to the first vulnerable library version
has at most six levels in the dependency tree.
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Fig. 2. Cumulative number of libraries affected by vulnerabilities for each
dependency level classified by the shortest dependency level to a vulnerable
library version for each library.

Table I shows the results of the analysis that explored
whether the programming language in which a library is
written has an influence on how vulnerabilities spread through
the dependency network. We determined the programming
language of each vulnerable library based on data from GitHub
on the main project language of the library. Table I indicates
that most vulnerabilities originate in libraries written in C
(88) and C++ (24). Libraries written in Swift and Objective-C
contribute only 19 and three vulnerabilities, respectively.

However, the highest impact on the Swift ecosystem comes
from vulnerabilities in libraries written in Swift and Objective-
C. Table I shows that vulnerable libraries written in Swift
and Objective-C have significantly more dependents (98 for
Swift and 313 for Objective-C) than projects written in other
programming languages (56 and 14 for C and C++). Figure
3 shows how far vulnerabilities from libraries written in the
different languages spread across the dependency network.

Although there are some libraries that have dependencies to
libraries written in C and C++, there are significantly longer
dependency chains to libraries written in Swift and, especially,
to libraries written in Objective-C. In the case of Objective-C
dependency chains to vulnerable library versions can have up
to 14 levels of indirection. Differently to Figure 2, libraries in
Figure 3 are counted on each level of indirection they occur.

TABLE I
VULNERABILITIES BY PROJECT LANGUAGE

Project language vulnerabilities libraries dependent libraries

C 88 19 56
C++ 24 8 14
Swift 19 6 98
Go 12 1 1
JavaScript 4 4 4
Objective-C 3 3 313

In the following, we present our results on how vulnera-
bilities of different severity propagate throughout the library
dependency network. Vulnerabilities have four levels of sever-
ity: CRITICAL, HIGH, MEDIUM and LOW. Table II provides
information on the distribution of severity levels of the vulner-
abilities found in the Swift ecosystem, as well as dependent
libraries affected by these vulnerabilities. Most vulnerabilities
(80) are of level HIGH, 31 and 37 vulnerabilities are CRITI-
CAL and MEDIUM, respectively. Only one vulnerability has
the level LOW. Most libraries (353) are affected by MEDIUM
level vulnerabilities through dependencies.

Figure 4 shows how vulnerabilities with different severity
levels propagate through the library dependency network.
Vulnerabilities with severity level MEDIUM propagate the
furthest through the dependency network. However, vulner-
abilities with severity level CRITICAL and HIGH can both
be observed with levels of indirection in the dependency tree
up to Level 5.
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Fig. 3. Number of libraries affected by vulnerabilities for each dependency
level classified by main project language.



TABLE II
VULNERABILITIES BY SEVERITY

Vulnerability severity vulnerabilities libraries dependent libraries

CRITICAL 31 15 73
HIGH 80 31 136
MEDIUM 37 14 353
LOW 1 1 1
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Fig. 4. Number of libraries affected by vulnerabilities for each dependency
level classified by severity level of the vulnerability.

B. RQ2: Vulnerable Dependencies Fixed via Upgrading

To answer RQ2, we analyse how many vulnerable depen-
dencies could have been fixed via a dependency upgrade at the
time a library version was released. For the upgradability anal-
ysis we require that the version data for direct dependencies
originates from package manager resolution files and that the
direct dependency is to a library included in the set of libraries
available for our analysis. After filtering out dependencies
that did not meet our criteria 341 out of 415 libraries with
vulnerable dependencies remain.

First, we analyse how updating direct dependencies would
have fixed a vulnerable dependency for different levels of
indirection. Figure 5 shows that 27% (498 of 1833 in total)
of vulnerable direct dependencies could have been fixed via
an upgrade. Furthermore upgrading direct dependencies would
also have fixed 16% (244 of 1555 in total) of second level
vulnerable dependencies and 64% (694 of 1082 in total) of
third level vulnerable dependencies. Note that the levels of
dependency tree in Figure 5 are greater than 0 and less than 10.
They must be greater than 0 because there are no dependencies
at level 0. There is no data beyond level 9 as the data on
those library chains happened to not be compatible with the
upgradability analysis.

Next, we analyse how many vulnerable dependencies could
have been fixed via upgrading depending on the severity of the
vulnerability. Table III shows that over all dependency chains
the probability of fixing the vulnerability via a dependency
upgrade is around 30%. However, if we look at the latest
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Fig. 5. Number of dependency chains to vulnerable library versions that could
be fixed (green) and not fixed (red) by an upgrade of the first dependency in
the dependency chain. The numbers are shown for each dependency level.

version of each library, the percentage of fixing dependencies
to critical vulnerabilities via upgrading is 71%, fixing depen-
dencies to vulnerabilities of level HIGH is 52% and fixing
dependencies to vulnerabilities of level MEDIUM is 39%.

TABLE III
VULNERABLE DEPENDENCY FIXES BY SEVERITY

Vulnerability all versions latest version
severity fixed not fixed fixed not fixed

CRITICAL 31% 69% 71% 29%
HIGH 33% 67% 52% 48%
MEDIUM 30% 70% 39% 61%

Finally, we explore whether there are differences in the
percentages of fixing vulnerabilities via upgrading between
the project languages of the vulnerable libraries. Table IV
shows percentages of vulnerable dependencies being fixed via
upgrading for each of the four most prominent languages. Over
all library versions, the probability of fixing a vulnerable de-
pendency is around 30%, with the exception of C++ where the
probability is considerably smaller. For the latest versions of
each library the probability of fixing a vulnerable dependency
via an upgrade is highest for C (67%) and Swift (60%), and
lowest for Objective-C (38%) and C++ (33%).

TABLE IV
VULNERABLE DEPENDENCY FIXES BY PROJECT LANGUAGE

Project over all versions latest version only
language fixed not fixed fixed not fixed

C 24% 76% 67% 33%
C++ 6% 94% 33% 67%
Objective-C 30% 70% 38% 62%
Swift 36% 64% 60% 40%

Looking at the success rates of fixing a vulnerable depen-
dency via upgrading from the point of view of the different



vulnerabilities we see that for 25% of vulnerabilities the
success of upgrading is over 89% and for another 25% of
vulnerabilities the failure of fixing the dependency via an
upgrade is over 94%. These numbers indicate that fixing a
vulnerable dependency via upgrading is very successful for
some of the vulnerabilities and not possible for others.

C. RQ3: Precision of Public Vulnerability Information

Our answer to RQ3 is based on checking whether the
public descriptions of vulnerabilities in the Swift ecosystem
include information on the class or method that contains
the described vulnerability. This kind of detailed information
could be used to fine tune the analysis and detection of
vulnerable dependencies by identifying the piece of code that
contains the vulnerability. In situations where a library is
dependent on a vulnerable library version it might be good
to know whether the code of the vulnerable library is used
by the dependent library. Analysing the description of each
vulnerability and including data from patch links showed that
most vulnerability descriptions do not include detailed enough
information to determine the vulnerable class or method.
Table V shows that not a single vulnerability in a project
written in Swift specified both the vulnerable method and the
vulnerable class. Similarly, very little information is available
about vulnerabilities in projects written in Objecive-C. There
is more information on vulnerabilities in projects written in C
and C++ but these vulnerabilities also affect significantly less
libraries in the Swift ecosystem.

TABLE V
PRECISION OF PUBLIC INFORMATION ON VULNERABILITIES

Project language vulnerabilities method class both

Swift 19 1 7 0
Objective-C 3 1 1 1
C 88 43 29 16
C++ 24 18 15 12

VI. DISCUSSION

A. RQ1: Libraries with Vulnerable Dependencies

The total amount of 149 vulnerabilities in 61222 libraries
in the Swift ecosystem corresponds to 24.3 vulnerabilities per
10000 libraries. This ratio is much higher than that for npm
where Zimmermann et al. found the ratio to be around 8 in
2018 [8]. The difference between the two ecosystems could
be due to the high number of very small libraries in npm.
In contrast, Li et al. found the ratio to be 113.5 for Java
projects [6]. The Java ecosystem is older and might have larger
libraries, but we do not have a definite reason for the big
difference.

Our results show that only 5.9% of connected libraries
have dependencies to vulnerable library versions. For 3% of
connected libraries, its latest version is still dependent on
a vulnerable library version. In contrast, Düsing et al [4]
found that 9% of libraries in npm had direct dependencies

to vulnerable libraries. Zimmermann et al. [8] found that 40%
of npm projects they studied depended (directly or transitively)
on vulnerable libraries. Alfadel et al. [9] found that 67%
of all npm applications had at least one vulnerable direct
dependency. Zerouali et al. [3] found that for more than 15%
of npm and RubyGems libraries the latest version of the
library is directly dependent on a vulnerable library version.
Additionally, they found that for 42.1% of all npm libraries
and for 30% of RubyGems libraries the latest version of the
library had a transitive dependency on a vulnerable library
version. Therefore, in comparison to other ecosystems, the
Swift ecosystem is considerably less affected by vulnerable
library dependencies. A possible reason could be that libraries
in the Swift ecosystem have less dependencies on average than
libraries in other ecosystems, such as npm. Another possibility
is that there are less vulnerabilities reported for the libraries
in the Swift ecosystem but our analysis shows that this is not
true, at least in comparison to npm.

Looking at the severity of the vulnerabilities, the vulnera-
bilities with severity level MEDIUM spreads the most in the
library dependency network. A possible explanation is that
vulnerabilities with a MEDIUM severity level are not taken
as seriously as vulnerabilities with higher severity levels and,
therefore, are able to exist longer and spread further in the
library dependency network.

Most vulnerabilities in the Swift ecosystem originate form
libraries written in C and C++. When looking at the impact
on the whole library dependency network, however, vulner-
abilities in libraries written in Swift and Objective-C spread
considerably farther. Libraries written in Swift and Objective-
C have more dependents and therefore a higher impact on
the overall library dependency network. Domınguez-Alvarez
et al. [16] found that most libraries available through the Co-
coaPods package manager are written in Swift and Objective-
C. It might be, that libraries written in C and C++ are very
specialized and therefore not used by many other libraries.

B. RQ2: Vulnerable Dependencies Fixed via Upgrading

Overall, around 30% of vulnerable dependencies could have
been fixed via an update of direct dependencies. Surprisingly,
there is not much difference between vulnerability severity
levels when looking at upgradability over all library versions.
When looking at the latest version of each library, however, our
results show that vulnerabilities with severity level CRITICAL
could have been fixed in 70% of the cases. This is a strong
indication for developers to keep up with library dependency
upgrades as a means to avoid dependence on vulnerable
libraries. If upgrading to each new version is not possible,
developers should at least check if their dependencies have
publicly reported vulnerabilities, for example using automated
tooling such as [5].

C. RQ3: Precision of Public Vulnerability Information

Currently, tools exist that can be used to check for vul-
nerable dependencies when using CocoaPods, Carthage or
Swift Package Manager [5]. There are, however, no tools for



the Swift ecosystem that could check if a vulnerability in a
dependency really affects the developed application. Existing
tools could be extended if detailed information about the
exact code location of a vulnerability was available. Our
results suggest that NVD does not include enough detailed
information on vulnerabilities in libraries written in Swift and
Objective-C. Therefore, the best solution for developers is to
upgrade to a version of the library where the vulnerability has
been fixed - if such a version is available.

VII. THREATS TO VALIDITY

In this section we discuss the potential limitations of our
analyses, focusing on construct, internal, and external validity
threats.

A. Construct Validity

In our analysis, we assume that every vulnerable depen-
dency implies that the dependent library is (indirectly) vul-
nerable as well. However, the presence of vulnerable depen-
dencies does not necessarily imply that the library is actually
vulnerable. In a preliminary study [17] Zapata et al. analysed
dependencies of 60 projects using the npm package manager
and showed that most projects with vulnerable dependencies
do not actually use the vulnerable code. Hejderup et al. [18]
analysed libraries written in Rust and showed that not all
resolved dependencies are really called, which means that de-
pendencies to vulnerable libraries might not necessarily affect
the library itself. Given that our results show that relatively
few libraries depend on vulnerable libraries in the library
dependency networks of the Swift ecosystem, a more detailed
analysis would not affect this conclusion. A detailed analysis
of call graphs might reduce the percentage of libraries with
dependencies to vulnerable libraries even further. However, as
we show in our answer to RQ3, the data needed for such an
analyis is often not available.

Our analyses using information about the programming
languages in which the vulnerable libraries are written de-
pends on the information provided by GitHub about the main
programming language. A library could, however, be written
in several programming languages and the vulnerability itself
could be located in code that was written in a programming
language different from the main programming language.
To understand the level of correctness of the information
provided by GitHub in the context of our analysis, for those
vulnerabilities where class/file level data was available, we
also checked the language of the class/file and compared it to
the main programming language indicated by GitHub. In only
two of the 92 cases where such information is available, the
vulnerability is located in a file written in a different language
as the main programming language of the library. None of
these two cases occurs in libraries classified as written in
Objective-C or Swift.

B. Internal Validity

The analysed dependency data relies on package manager
resolution files. Not every library that uses a package manager

includes the corresponding resolution files in the repository.
For such repositories the package manager manifest files are
used to resolve the dependencies following Rahkema et al.
[14].

Building the dependency graph by only declaring the exact
version of a dependency means that transitive dependencies
could in practice be resolved differently. When a transitive
dependency is resolved at a later date then it is possible that the
actual version of the transitive dependency would not match
the version in the dataset. The data on the version ranges does,
however, exist in the dataset and could be checked as future
work.

For the vulnerability data we rely on data from NVD. This
means that we need to trust that the data is correct. It is
possible that there are incorrect entries if they have not been
checked by third parties. We do, however, believe the data to
be reliable as it is an official and public database which is
continuously reviewed and maintained.

C. External Validity

We claim that our results hold for all open source libraries
in the library dependency networks of the Swift ecosystem, i.e.
all open source libraries that are available through CocoaPods,
Carthage and Swift PM. CocoaPods, Carthage and Swift PM
are the only package managers used in the Swift ecosystem.

The dataset we analyzed represents the Swift ecosystem in
the period from September 2011 to December 2021. We make
no claims regarding how the vulnerability propagation might
evolve in the future.

The vulnerability data in the dataset is based on public data
from the NVD. When using other vulnerability databases, for
example Snyk, the results might be different. Vulnerabilities in
NVD are publicly reported, which adds to the trustworthiness
of the data.

VIII. CONCLUSION

We studied the vulnerability propagation in the library
dependency network controlled through the package managers
used in iOS development, and analysed how developers could
protect against vulnerabilities from third party libraries.

We found that the Swift ecosystem is affected less by public
vulnerabilities than other ecosystems such as npm. The spread
of vulnerabilities is smaller, probably due to less dependencies
on average. We showed that upgrading direct dependencies is
an effective way to fix vulnerable dependencies and, as long
as no tools exist that correctly analyse whether the vulnerable
code is actually called, the best option for developers is to
regularly upgrade library dependency versions. Currently, no
tools exist for Swift and Objective-C that are able to perform
such a detailed analysis, and we showed that there is not
enough public data available to implement such tools easily.
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