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Abstract

A wireless sensor network deployed in an area of inter-
est is affected by variations in environmental conditions as-
sociated with that area. It must adapt to these variations
in order to continue functioning as desired by the user. We
present a novel, two-phase solution to the wireless sensor
network adaptivity problem. In the first phase, nodes in the
network, organized as clusters, execute an efficient algo-
rithm to dynamically calibrate sensed data. Each node pro-
vides its current energy level and the state of each on-board
sensor to a cluster-head. In the second phase, each cluster-
head executes an efficient, ontology-driven algorithm to de-
termine the future state of the network under existing condi-
tions, based on information received from each sensor node.
We describe an example application scenario to show how
our two-phase solution can be employed to enable a real-
world wireless sensor network to adapt itself to variations
in environmental conditions.

1. Introduction

The potential applicability of ad-hoc, wireless sensor
networks (WSNs) in a variety of domains, ranging from
simple distributed monitoring (e.g., habitat and environ-
mental monitoring) to complex surveillance (e.g., battle-
field surveillance, homeland security) [4, 6] has fueled
research interest in this area. In the near future WSNs
are expected to consist of sensor nodes containing on-
board micro-electromechanical systems (MEMS) as sen-
sors, which we expect to also be remotely programmable.

In security-related applications, such as battlefield
surveillance and homeland security, users of WSNs re-
quire a high level of accuracy (close to 100%) and may
specify tight accuracy bounds for all data reported by the
network. For example, military personnel obtaining in-
formation from a WSN deployed in a battlefield must

be assured that the network accurately reports the pres-
ence or absence of the enemy assets in the area. If the
WSN cannot report data at user-specified accuracy lev-
els or within the bounds, then the data would be considered
useless.

WSNss consist of sensor nodes of various capabilities, in-
cluding base stations (BS) and powerful, “rich uncle” (RU)
nodes, which in turn consist of one or more types of sen-
sors which perform the sensing function. The functioning
of each type of on-board sensor is affected by external en-
vironmental conditions, such as temperature, pressure and
humidity. Additionally, each sensor node is affected by its
own internal environment consisting of variables such as en-
ergy level and available memory. In both these cases, accu-
racy of data reported by the sensor node is adversely af-
fected. Thus, there is a need for sensor nodes to adapt to
variations in their environment, if possible, and restore data
accuracy levels to their original values.

An additional issue in security-related applications and
hostile situations is that the entire WSN is affected by the
prevailing security conditions in the area of deployment.
Thus, the WSN must adapt itself as a whole to variations
in security conditions in addition to environmental condi-
tions so that it can continue to perform its job as desired by
the user. This issue will be addressed in future work.

We address the wireless sensor network adaptivity
problem associated with an established WSN and propose
a two-phase approach as a solution.

In the first phase, sensor nodes possessing moderate
computational and storage capabilities adapt themselves to
variations in environmental variables by dynamically cal-
ibrating data from on-board sensors (Section 4). (We re-
fer to these nodes as capable sensor nodes in the rest of
this paper.) Based on the magnitude of the error between
expected and observed output values of on-board sensors,
these nodes determine the most appropriate state of opera-
tion of each sensor (Section 2) which they communicate to
BS/RU along with the data.

In the second phase, BS/RU employ a pre-deployed sen-
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sor node ontology (Section 5) written in OWL-Lite [9] to
reason over data received from sensor nodes and data that
the BS/RU nodes have themselves sensed. Using data ob-
tained from their sensors, BS/RU nodes calibrate data ob-
tained from resource-poor nodes which did not perform
data calibration before transmission. By reasoning over cal-
ibrated data BS/RU nodes collectively determine the most
appropriate operating state of the WSN under existing en-
vironmental conditions and instruct sensor nodes to operate
at that state.

Our work on adaptive wireless sensor networks, dis-
cussed in this paper, is part of a larger effort to build a
framework to enable the design of secure wireless sensor
networks that can adapt to changing environmental, topo-
logical and security conditions. Figure 1 shows the vari-
ous components of this framework, and pinpoints the com-
ponent discussed in this paper. Our goal is to build, sim-
ulate and evaluate the entire framework as a whole. This
precludes us from simulating the component discussed in
this paper in isolation and providing empirical results. In-
stead, we present a complete application scenario, and dis-
cuss how our two-phase approach is a solution to the wire-
less sensor network adaptivity problem.

The rest of the paper is organized as follows. In Sec-
tion 2, we discuss our WSN model including capabilities of
BS/RU and sensor nodes. In Section 3, we lay out the ap-
plication scenario to which we can apply our solution. In
Section 4, we describe the data calibration algorithm in de-
tail. We discuss the sensor node ontology and the WSN state
determination algorithm in Section 5. In Section 6, we dis-
cuss examples of classification schemes that can be imple-

mented in the application scenario. In Section 7 we present
related work in the area of adaptive sensor networks. We
conclude and present directions for future work in Section
8.

2. Wireless Sensor Network Model

In our model, the WSN consists of a limited number of
static or mobile BSs and RUs, but is otherwise unattended
[1]. Each BS and RU can support hundreds of sensor nodes,
which can range from the simplest, least expensive ones
(e.g., Berkeley Motes, SmartDust) to medium sized sen-
sor nodes. Each BS and RU node possesses significantly
higher computational, storage and communication capacity
compared to sensor nodes. The sensor node ontology, which
completely describes a sensor node in terms of its individ-
ual components and their characteristics, is pre-deployed on
each BS and RU. Each BS and RU possesses sensor inter-
faces to sense a set of core environmental variables, such as
temperature, pressure, humidity and wind velocity.

Each sensor node possesses limited computational, stor-
age and communication capabilities. Each node contains a
protocol stack [1], which enables it to communicate with
neighbors, establish connections with them and reach the
nearest BS or RU. Thus, in our model, the WSN consists of
clusters of sensor nodes, in which either a BS or RU plays
the role of a cluster-head [2, 3].

As discussed in Section 1, each sensor node consists of
one or more sensor types. The following operating modes
are associated with each sensor type, based on information
provided in specifications (e.g., data sheets) for that type:
NORMAL, HIGH-SAMPLING, VERY-LOW-SAMPLING
and OFF. Further, specifications provide information about
energy consumption of each sensor type in each of these
modes. Capable sensor nodes can compute the accuracy of
each sensor in its present mode of operation. Therefore, the
state of each on-board sensor is described by the follow-
ing quadruple: < t,m,e,a >, where ¢, m, e and a stand
for sensor type, operating mode, energy consumed and ac-
curacy, respectively. Each sensor node tracks its overall en-
ergy consumption and knows the latest value of the remain-
ing energy level. Thus, dynamic information about a sensor
node can be summarized by the following tuple: <E, {S}>,
where E stands for the node’s present energy level and {S}
is a set of one or more quadruples, describing the state of
each on-board sensor.

Capable sensor nodes store a limited amount of infor-
mation about input-output characteristics of each on-board
sensor in the form of lookup tables. Input-output character-
istics are a strictly one-to-one mapping between input and
output values of the sensor. Similarly, they store the range
of expected output values from each sensor type for differ-
ent values of each of the core environmental variables, €i-



ther in a lookup table or as an executable function. Nomi-
nal values of core environmental variables are pre-deployed
on each sensor node. All sensor nodes periodically receive
current values of core environmental variables broadcast by
BS/RU nodes functioning as cluster-heads. Capable nodes
employ these values during data calibration (Section 4).

Each sensor node is in one the following three states at
all times: ACTIVE, LOW-POWER and INACTIVE. Upon
deployment, all sensor nodes discover each other and estab-
lish secure communication channels with each other. Sub-
sequently, all nodes transition to the LOW-POWER state.
All nodes in our model contain the required security mech-
anisms and protocols required to establish secure commu-
nications [2].

We emphasize that the WSN adaptivity problem is mean-
ingful and therefore considered, only for an established net-
work. Thus, issues of routing, transport, power management
and data aggregation are dealt with in other work [1, 2, 3]
and are beyond the scope of this paper.

3. Application Scenario

In this section we describe a scenario that requires a de-
ployed WSN to adapt to changing environmental condi-
tions. The application we consider deploys the WSN in a
hostile environment, i.e., a battlefield. The task of the net-
work is surveillance of enemy forces. There exists a set of
user-defined energy consumption and accuracy bounds that
can be combined in different ways. These energy-accuracy
combinations are generated, prioritized and made available
to WSN by the user.

In this example, the geographical environment is a desert
region consisting of plains intersected by a river bed that can
be crossed using one or more bridges. The major task is to
detect troop/vehicle movement across the river bed and de-
termine, according to prescribed energy-accuracy bounds,
the types of troops, vehicles, weapons and their numbers.

Given that the network is deployed in a desert, the prin-
cipal environmental variable is temperature. The tempera-
ture in this region is very high in the afternoon and very low
at night. Chances of high wind velocity and frequent sand
storms are very high. There is considerable variation in hu-
midity in the region over different seasons. All BS/RU in
the WSN possesses high-quality sensors to detect these en-
vironmental conditions and periodically transmit their cur-
rent values to sensor nodes as appropriate.

Five types of sensors are deployed in the network. Each
type has unique input-output characteristics, dynamic char-
acteristics and responses to changes in environmental vari-
ables.

1. Vibration Sensors: These are fixed on the bridge to de-
tect sudden high vibrations caused by movement of
heavy vehicles (e.g.,. tanks, armored carriers) over the

bridge. Their input-output characteristics are directly
affected by inherent vibrations of the bridge and fre-
quency of input vibrations. The characteristics are in-
directly affected by temperature.

2. Pressure Pad Sensors: Pressure pads are embedded in
the ground on all paths leading to the bridge to de-
tect movement and estimate the weight the vehicles.
Their input-output characteristics are directly affected
by frequency of input pressure and indirectly affected
by temperature.

3. Acoustic Sensors: These sensors are deployed both on
the bridge and on all paths leading to it, to detect sound
generated by moving troops and vehicles. Their input-
output characteristics are directly affected by noise and
indirectly affected by temperature.

4. Radioactive Sensors: These sensors are used to detect
radioactive emission from weapons systems on-board
the vehicles. They are highly accurate over short spans
of the bridge. Their input-output characteristics are di-
rectly affected by available energy. Thus, these sensors
must be activated selectively to conserve energy.

5. Line of sight optical sensors: These sensors employ a
transmitter and receiver on either side of the bridge.
Detection is accomplished by breakage in the line of
sight beam from the transmitter to the receiver. These
sensors are employed on all paths leading to the bridge
for early detection of enemy movement. The number
of times the beam is broken and the amount of time
it stays broken can be used to give information about
counts and lengths of the vehicles. These sensors are
directly affected by reduction in visibility (e.g., fog,
sandstorms) and humidity.

4. Data Calibration Algorithm

In this section, we discuss the algorithm executed by ca-
pable sensor nodes and possibly BS/RU nodes to perform
data calibration on each type of sensor whenever significant
changes in environmental conditions occur.

There are three inputs to the algorithm as shown in the
flowchart in Figure 4: current and nominal values of each of
the core environmental variables and the current data output
of the sensor type. Based on these inputs, the data calibra-
tion algorithm computes the expected output of each sensor
type at existent values of core environmental variables. For
example, the core environmental variable affecting acoustic
sensors described in Section 3 are temperature and exter-
nal noise. Further, the acoustic sensor’s output is a voltage
corresponding to the input sound intensity. The final out-
put of the algorithm for the acoustic sensor is a calibrated
value of the sensor’s output.
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Figure 2. Data Calibration Algorithm

We now explain the flowchart in detail. Initially, the al-
gorithm determines whether data calibration must be per-
formed. This is accomplished by determining if the current
value of each core environmental variable exceeds its nom-
inal value by a pre-determined threshold value. If so, data
calibration is required.

The algorithm uses either the lookup table or function
(Section 2) describing the effect of each core environmen-
tal variable on the input-output characteristics of each sen-
sor to determine its expected output value. The lookup ta-
ble maps different values of a core environmental variable
to corresponding output values of the sensor. On the other
hand, a function relates sensor input, sensor output and the
core environmental variable and describes how the output
value changes according to the environmental variable.

For example, assume that the average temperature co-
efficient of sensitivity (the function in this case) of above
acoustic sensor is 1%/°C with respect to the nominal value.
Therefore, if temperature increases by 10°C, then sensitiv-
ity (which is the ratio of output to input of a sensor) changes
by 10%, which implies that for the same input value, the
output of the acoustic sensor either reduces or increases by
10%. Thus, having obtained the error induced by the in-
crease in temperature, the algorithm corrects the measured
output accordingly.

Based on the measured and calibrated output values, the
algorithm computes the accuracy of the sensor and stores
this value in the a field of the < t,m,e,a > quadruple.
The current accuracy value of a sensor type determines its
most appropriate operating state (m) and corresponding en-
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Power Supply and Radio Modules

ergy consumption (e) in that state. Individual sensor nodes
cannot make this determination because they do not possess
either the user-defined energy accuracy bounds or a global
view of the existing state of the WSN. Only BS/RU nodes,
which possess both the capability and the information to ob-
tain the global state, can determine the final operating state
of each sensor type in the WSN, under existing environmen-
tal conditions (Section 5.1). Thus, each capable node places
the current operating state and corresponding energy con-
sumption value in the m and e fields of the quadruple, re-
spectively. The capable sensor node transmits the quadru-
ple in a message to the BS/RU node functioning as the sen-
sor node’s cluster-head.

Sensor nodes that are incapable of executing this al-
gorithm do not transmit the quadruple to their respective
cluster-heads. The nodes merely transmit uncalibrated data.
Cluster-heads calibrate data received from these nodes and
use prior state information associated with sensor types on-
board the nodes to determine the final operating state of
each sensor type.
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5. Sensor Node Ontology

The sensor node ontology we have designed attempts to
capture the most important features of a sensor node that
describe its functionality and its current state. The informa-
tion captured by our ontology is used by BS/RU to deter-
mine the current and future state of the WSN. The ontology
describes the main components of a sensor node: processor,
power supply, radio and sensor modules. A common thread
that runs through these modules is energy, both in terms of
capacity and consumption. Figures 3 and 4 show our sen-
sor node ontology in detail.

The processor module consists of the CPU and memory
components. The most interesting and important facets of a
CPU that influence the functioning of a sensor node are the
CPU’s available operating modes (i.e., active, low-power,
idle) and the amount of power it consumes in each mode.
Based on this information, the WSN can decide the most
appropriate CPU operating mode for each sensor node or a
class of sensor nodes, under existing environmental condi-
tions. The memory component reflects both static and dy-
namic memory on the sensor node.

The power supply module is an essential component of
a sensor node. This module determines how long the sen-
sor node can function usefully. Given that a typical sensor
node is self-contained and is typically unattended after de-

ployment, the power supply module is the final limiting fac-
tor on the sensor node’s capabilities. This is reflected in two
of the most important characteristics of the power supply
module — initial energy capacity and remaining energy ca-
pacity. Remaining energy capacity dictates the ability of the
sensor node to continue functioning in a certain mode. In-
formation regarding energy capacity of a node plays a very
important role in WSN adaptivity.

The radio transceiver module helps the sensor node com-
municate with other nodes in the network. It consists of a
transmitter and receiver. Identically to the CPU component,
the most important properties of the radio transceiver that
affect the sensor node’s functioning are its available modes
of operation (i.e., transmit, receive, low-power, sleep) and
power consumption in each mode. Each operating mode of
the transceiver reflects environmental conditions affecting
the node.

The sensor module consists of descriptions of one or
more sensor types. For each sensor type, primary informa-
tion captured in the ontology includes the < ¢t,m,e,a >
quadruple, i.e, sensor type, operating mode, accuracy and
energy consumption along with a description of the effect
of each core environmental variable on the sensor type. Ad-
ditionally, it also captures static information about the sen-
sor type, such as its input and output signal types, input and
output resolutions, and minimum and maximum operating
temperatures.

Additional useful information present in the description
of a sensor node includes its ID and geographical location.
The former is pre-deployed on the node while the latter can
be obtained post-deployment if the node possesses a Global
Positioning System (GPS) unit on-board.

5.1. WSN State Determination Algorithm

This algorithm enables a WSN to dynamically determine
its most appropriate state of operation under existing envi-
ronmental conditions. The operating state of a WSN reflects
the corresponding states of sensor nodes and each type of
sensor in the WSN. Figure 5 shows a flowchart of this al-
gorithm, which is executed by each BS/RU node currently
functioning as a cluster-head (Section 2).

The input to this algorithm is the <E, {S}> tuple trans-
mitted by each sensor node to its cluster-head. We recall that
E is the remaining energy on the sensor node and {S} is the
set of < t,m,e,a > quadruples associated with its sensor
types.

Initially, the algorithm extracts and classifies each <
t,m,e,a > quadruple according to a pre-determined classi-
fication scheme (e.g., sensor type, sensor energy consump-
tion, sensor operating mode, node location). In Section 6,
we discuss two different classification schemes applied to
the WSN described in the application scenario (Section 3)
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Figure 5. WSN State Determination Algorithm

and show how the WSN adapts to environmental changes,
based on each classification scheme. Subsequently, the al-
gorithm computes the overall energy consumption per class
of sensor nodes by combining the cumulative remaining en-
ergy E, of sensor nodes in this class and the cumulative en-
ergy consumption of sensor types (in their current operating
modes) that belong to the class. In a similar manner, the al-
gorithm computes the overall accuracy of sensor types in
the class.

At this point, each cluster-head has obtained a class-
based view of the current energy consumption and accuracy
of nodes in the cluster. In order to obtain a global view that
encompasses all nodes in the cluster, each cluster-head ob-
tains similar class-based views of all other clusters in the
WSN computed by their corresponding cluster-heads. This
exchange of class-based views is restricted to cluster-heads,
which employ out-of-band secure channels for this purpose.

As shown in the flowchart, the algorithm combines all
class-based views of all clusters in the WSN to obtain a
global view of the energy consumption and accuracy per
class of sensor nodes in the WSN. We emphasize that these
class-based energy consumption and accuracy values reflect
the current state of the WSN. In order to enable the WSN
to continue functioning according to user-specified energy-
accuracy bounds on the WSN, each cluster-head computes
the most appropriate operating state (i.e., ACTIVE, LOW-
POWER, IDLE) of sensor nodes and operating mode (i.e.,
NORMAL, HIGH-SAMPLING, LOW-SAMPLING, OFF)
of sensor types, respectively, per class of sensor nodes.

The algorithm accomplishes this task by providing the
class-based energy consumption and accuracy, along with
user-specified accuracy and energy bounds, and sensor node
locations (if available) as inputs to a statistical model pre-

deployed on each BS/RU node. The class-based operating
state of sensor nodes and operating modes of sensor types
are disseminated to each sensor node (only the values rele-
vant to the node) in the corresponding class.

Upon receipt of this information, each sensor node
changes its state and the operating modes of its sensors ac-
cordingly, thereby ensuring that all sensor nodes have
adapted to environmental conditions.

Additional information output by the statistical model in-
cludes WSN accuracy and energy consumption, after nodes
have adapted to environmental changes. This information
can be provided to the user who may decide, for example,
to deploy more sensor nodes to increase WSN accuracy.

6. Examples of Classification Schemes

We now discuss two different schemes using which each
BS/RU node obtains global views of energy consumption
and accuracy of the WSN deployed in the application sce-
nario described in Section 3.

6.1. Location-based classification

This scheme requires either prior knowledge of sen-
sor node locations (e.g., nodes deployed on the bridge) or
mechanisms to determine node locations after deployment
(e.g., GPS). Thus, each BS/RU obtains the geographical lo-
cation of every node in its cluster. Prior to deployment, each
BS/RU is programmed to classify nodes using geographical
location as the classifier.

Using this classification scheme, BS/RU functioning as
cluster-heads of all clusters in regions farthest from the
bridge instruct their cluster to transition to the ACTIVE
state. From this point onward, sensors on-board nodes in
these clusters actively sense and attempt to detect enemy
presence and movement in the region. These clusters form
the largest ring in the “perimeter”” around the bridge. Imme-
diately after activation and periodically thereafter, each sen-
sor node in these clusters receives current values of external
environmental variables that affect it. Given that conditions
in a desert region can vary significantly during the day (due
to sudden sandstorms, rising temperatures etc.) and night
(sudden cooling), each capable node in these clusters exe-
cutes the data calibration algorithm discussed in Section 4
to calibrate data from each sensor before disseminating it.
Additionally, it produces the <E, {S}>-tuple as discussed
in Section 4 based on accuracies of each of its sensor types
and their operating modes.

After receiving the <E, {S}>-tuple from each sensor
node in its cluster, the cluster-head determines the cumu-
lative accuracy and energy consumption of its cluster. It
uses the statistical model to compute the most appropriate



operating mode for each sensor on each node in the clus-
ter. It also determines whether or not to activate nodes in
the next inner ring of clusters in the perimeter around the
bridge. This becomes necessary if the accuracy of the pre-
vious ring of clusters falls below user-defined bounds; oth-
erwise the next ring is not activated. Each BS/RU repeats
this process until either the ring of clusters closest to the
bridge is reached or energy bounds specified by the user are
reached.

As outer rings of clusters detect enemy movement within
some accuracy bounds, inner rings are consecutively acti-
vated (if previously inactive). Assume that the enemy has
reached the bridge and different rings of clusters have con-
firmed its presence. Now, nodes on the bridge are activated
to actually determine the types of vehicles and possibly the
types of weapons carried in those vehicles. This calls for a
new global view of the WSN — one based on sensor types.

6.2. Classification Based on Sensor Type

As discussed earlier, the main sensor types on the bridge
are pressure pad sensors, vibration sensors and radioactive
sensors supported by optical sensors on either side of the
bridge. Radioactive sensors consume high energy when ac-
tive, therefore they should only be activated when abso-
lutely necessary. Thus, initially only pressure pad and vibra-
tion sensors on the bridge are activated along with the opti-
cal sensors. The pressure pad and vibration sensors’ task is
to identify heavy vehicles (e.g., a 30-ton truck) which may
suggest that they are carrying nuclear weapons. This causes
the radioactive sensors to be activated to detect the weapons.
The optical sensors’ task is to count the number of vehicles,
troops etc., attempting to cross the bridge.

In this situation, BS/RU are concerned about the accu-
racy of pressure pad and vibration sensors separately. Thus,
when they receive <E, {S}>-tuples from all nodes on the
bridge, they use sensor type as the classifier to separate
pressure pad sensors from vibration sensors. Each BS/RU
computes cumulative accuracies of these sensors separately
and determines their most appropriate mode. If they detect
heavy vehicles with high accuracy then radioactive sensors
are activated immediately and their energy consumption is
monitored to ensure that the energy-accuracy bounds are
continuously met. They are made inactive as soon as a de-
termination on the weapon type is made. This process re-
peats until all vehicles capable of carrying nuclear weapons
are identified. Finally, each BS/RU reports the cumulative
data, accuracy, confidence on accuracy and remaining en-
ergy back to the command and control, which is the pri-
mary user of this WSN, for appropriate action.

7. Related Work

In this section, we discuss work published by the re-
search community on sensor node calibration [5, 11], WSN
adaptivity [7, 10] and mechanisms to describe sensor nodes
[8].

Whitehouse and Culler [11] discuss macro-calibration
in sensor/actuator networks and describe an ad-hoc lo-
calization system. The authors focus on methods to es-
timate the distance between nodes and thereby calibrate
their location. They describe an ad-hoc localization sys-
tem called Calamari that uses a fusion of RF received sig-
nal strength information (RSSI) and acoustic time of flight
(TOF). The authors contend that ad-hoc localization can-
not be accomplished on a global scale, i.e., across the sen-
sor/actuator network, using calibration functions. This is be-
cause the transmitter/receiver pair of each device in the net-
work can only be calibrated with that of a neighboring de-
vice, thereby achieving only pairwise localization. There-
fore, they frame calibration as a parameter estimation prob-
lem; they parametrize each device and choose values of
those parameters that optimize the performance of the over-
all system. In our solution, sensor nodes do not employ data
calibration for the purpose of localization. Our data calibra-
tion algorithm is used to determine the error induced in sen-
sors due to variations in environmental conditions.

Bychkovskiy et al. [5] describe a collaborative approach
to sensor calibration. They describe a two-phase technique
designed to calibrate devices in large-scale, dense networks.
In the first phase, the technique derives relative calibra-
tion relationships between pairs of co-located sensor nodes.
Subsequently, in the second phase, the technique maximizes
the consistency of pairwise calibration functions among
groups of sensor nodes. The main idea in the first phase is
to employ temporal correlation of signals received at neigh-
boring sensor nodes when the nodes are observing the same
phenomenon. The second phase is formulated as an opti-
mization problem. In our solution, input-output characteris-
tics of sensors at nominal values of core environmental vari-
ables are pre-deployed on BS/RU and capable sensor nodes.
Thus, there is no need to correlate input signals with neigh-
boring sensors in order to calibrate each sensor. In fact, in
our solution neighboring sensor nodes need not have any
sensor type in common. This is because calibration is a
per sensor node operation and does not involve neighbor-
ing sensor nodes. Classification, which is akin to correla-
tion described above, occurs only at BS/RU nodes which
obtain a global view across types of sensors.

Heinzelman et al. [7] discuss the design and evaluation
of a family of adaptive protocols, called SPIN, for informa-
tion dissemination in WSN. The main idea in this work is
to eliminate redundant data transmissions by sensor nodes
to help conserve energy. Nodes achieve this by naming



data, i.e., create meta-data, prior to transmission. Neigh-
bors which receive this data use the meta-data in conjunc-
tion with application-specific knowledge and their own en-
ergy levels to decide whether or not to accept, aggregate and
re-broadcast this data. In our work, nodes are assumed to
have established security associations with each other dur-
ing the bootstrap process, thereby precluding them from re-
broadcasting data arbitrarily. This indirectly ensures energy
conservation on nodes because, unless the destination of the
data is specified as a broadcast address, the security asso-
ciation only allows unicasting. Additionally, in our work,
while each node can decide whether or not to participate in
the WSN, BS/RU in the WSN make a globally appropri-
ate decision, based on existing environmental and topologi-
cal conditions. SPIN does not address the issue of data cali-
bration and does not consider environmental variables other
than the local energy level to make the WSN adaptive.

Tilak et al. [10] discuss infrastructure trade-offs in sen-
sor networks. For a given application and infrastructure of
the sensor network, they study the effect of changing the un-
derlying network protocol. The study is conducted for dif-
ferent applications (habitat monitoring, temperature track-
ing) and WSN infrastructures (random, uniform, planned).
The goal of the study is to determine application-level per-
formance based on metrics such as accuracy (with respect
to distance between sensor and target), latency, energy effi-
ciency, goodput and scalability.

Sensor Model Language (SensorML) [8] is an XML
schema for meta-data that describes sensors from a func-
tional perspective rather than hardware. The schema also
defines sensor platforms (i.e., physical mounts for sensors),
interfaces that allow tasks to be submitted to sensors and
the data derived from sensors. SensorML descriptions of
sensors are primarily intended for human users. In contrast,
our ontology provides high-level descriptions of the various
components of sensor nodes (i.e., the platforms in OpenGIS
literature), which can be given as input to a reasoning en-
gine for purposes of classification. In addition, our ontology
provides functional descriptions of sensors and the affects
of internal and external environmental variables on sensor
functionality. This information enables BS/RU nodes in the
WSN to determine the most appropriate operating state of
each class of sensor nodes, based on existing environmen-
tal conditions. Finally, our ontology allows human users to
interact with a deployed WSN via BS/RU nodes to obtain
class-based, cluster-based or network-based views.

8. Conclusions and Future Work

We have proposed a novel two-phase solution to the
wireless sensor network adaptivity problem. Our solution
employs a data calibration algorithm, a comprehensive sen-
sor node ontology and a WSN state determination algorithm

to enable a deployed WSN to dynamically adapt itself to
changing environmental conditions. Our solution provides
a two-fold benefit — it allows human users to define ini-
tial conditions and expected behavior of the network upon
deployment and it enables the network to adapt to chang-
ing conditions to meet the user-defined requirements. It has
applications in the domain of the Semantic Web as it en-
ables human users to communicate with the network us-
ing semantically rich descriptions of queries and requests,
which the latter can reason over and understand. Addition-
ally, our approach is applicable to networking and control
domains as it enables the network to determine existing con-
ditions, detect significant changes to the environment, infer
the meaning of these changes and adapt to them.

In future work, we will describe results of simulations of
the proposed solution, in conjunction with the other com-
ponents of our framework for secure, adaptive sensor net-
works, on a large scale. Work on incorporating mechanisms
to enable a deployed WSN to adapt to changing security
conditions in addition to environmental conditions is on-
going and results will be reported in future work. For ex-
ample, if the underlying security protocols determine that a
sensor node in a cluster has been compromised, the WSN
should determine if the entire cluster is likely to be compro-
mised and take appropriate action. The WSN must be able
to determine the consequences of such an action, in terms
of connectivity and other metrics.
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