
Enforcing policies in Pervasive Environments
�

Anand Patwardhan, Vlad Korolev, Lalana Kagal and Anupam Joshi
Computer Science and Electrical Engineering Department

University of Maryland at Baltimore County
1000 Hilltop Circle, Baltimore, MD 21227�

anand2, vkorol1, lkagal1, joshi � @cs.umbc.edu

Abstract

This paper presents an architecture and a proof of
concept implementation of a security infrastructure for
mobile devices in an infrastructure based pervasive en-
vironment. The security infrastructure primarily consists
of two parts, the policy engine and the policy enforce-
ment mechanism. Each mobile device within a perva-
sive environment is equipped with its own policy en-
forcement mechanism and is responsible for protecting
its resources. A mobile device consults the nearest pol-
icy server, notifies its current state including its present
user, network presence, other accessible devices and lo-
cation information if available. Using this information
the policy server queries the “Rei” engine to dynam-
ically create a policy certificate and issues it to the re-
questing device. The system wide policy is described in a
semantic language “Rei”, a lightweight and extensible
language which is able to express comprehensive poli-
cies using domain specific information. The “Rei”policy
engine is able to dynamically decide what rights, prohi-
bitions, obligations, dispensations an actor has on the
domain actions. A policy certificate is created and is-
sued to the device. The policy certificate contains a set
of granted permissions and a validity period and scope
within which the permissions are valid. The policy cer-
tificate can be revoked by the policy enforcer based on
expiration of the validity period or a combination of
timeout, loss of contact with an assigned network.

X.509 based Public Key Infrastructure is used to pro-
vide identification and authentication.

� This research was supported in part by NSF awards 9875433 and
0242403, and a grant from NIST.

1. Introduction

1.1. Device Characteristics

Mobile devices including cell-phones, PDAs, laptops
have gained widespread acceptance. These devices are
compact, lightweight and typically have limited storage,
computation and communication capabilities. They are
capable of some form of wireless communication viz.
Bluetooth, 802.11, CDPD or infrared. Also such devices
are usually associated with a single user and carry per-
sonal data as well as corporate data.

Although undisrupted and continuous connectivity
for wireless devices is hard or perhaps impossible to
guarantee, connectivity of these devices has continued
to improve and most devices nowadays are almost con-
tinuously connected to the internet via some form of
wireless access. This improved connectivity enhances
user experience but at the same time poses new secu-
rity concerns. Devices can have several interfaces viz.
IrDA, Bluetooth, USB, Serial port, 802.11 etc. Each un-
guarded interface exposes a potential source of attack.

The ported or simplified versions of software de-
ployed on these devices are often more vulnerable than
on the systems for which they were originally intended.
Power-aware applications reduce or leave out in-built se-
curity mechanisms. Security issues involving wire-line
devices (desktops and servers) that have conventional
secure physical locations and are subject to some do-
main specific administrative policy have several well
understood and worked out solutions. Unlike wire-line
devices however, the untethered and compact mobile
devices are more susceptible to be lost, misplaced or
stolen. Moreover, their presence is not restricted to a par-
ticular network. Mobile users are expected to traverse a
large number of wireless networks. In the absence of a
security infrastructure wireless communications can be
overheard and the devices themselves are susceptible to
attacks.



1.2. Device environment and usage patterns

With the proliferation of handheld devices and
growth of wireless hotspots which provide multi-
tudes of services for such devices, in places like
cafes, gas stations, malls, airports; privacy of data ex-
changed in such interactions, needs to be addressed.
Some capabilities of the devices may have to be dis-
abled or restricted in order to protect the device from
others around it. In such pervasive environments, du-
rations of communication are variable, and the char-
acteristics of data exchange amongst entities is very
different from wired devices [4], [6]. Also in perva-
sive environments the devices and/or the subjects that
will interact are largely dynamic and cannot be enumer-
ated a priori. e.g. two individuals wishing to exchange
electronic business cards via their PDAs in a cafete-
ria, might never have met before.

Government agencies and companies often lease out
such devices to their employees. These devices are car-
ried around by their owners/lessees outside physically
secured premises. Portable devices can be lost, stolen
or go missing. These devices can go missing or unac-
counted and may have carried sensitive data and capa-
bilities at the time they were lost or stolen. FBI data [1]
shows that less than 3 percent of stolen or lost laptops
are ever recovered. This poses a serious security threat
especially if the device is carrying sensitive data or has
other special capabilities which if not revoked can prove
to be extremely damaging to the organization.

We propose a security infrastructure that uses a se-
mantic language to express security policies and use pol-
icy enforcement mechanisms on the mobile devices in
an effort to mitigate the threats posed to the device. We
describe a proof of concept implementation where we
use the semantic policy language “Rei” [15] and a pol-
icy engine which we use to dynamically create policy
certificates for mobile devices based on their context in-
formation.

For example, we want the device capabilities like
802.11, Bluetooth and IrDA to be unrestricted while it
is in a trusted network. However if the device is in a un-
trusted/foreign network the enforcement mechanisms on
the device disable PIM, Bluetooth and IrDA communi-
cations, and limit web access via 802.11 interfaces to
certain sites/networks.

Note that the security kernel on the mobile device it-
self is trusted to actually enforce the issued policies. The
policy server on the local wireless network will first ver-
ify the authenticity of the device before granting net-
work resources to the device. Thus, any untrusted de-
vice will be denied network resources.

The paper is organized as follows. Section 3 de-

scribes the design objectives, design considerations and
device capabilities. Each component of the policy en-
forcement infrastructure is described in sections 4 to 9.
Finally two example scenarios are presented in section
10.

2. Related Work

2.1. Device Security

Susilo [16] identifies risks and threats pertaining to
use of handheld devices connected to the internet. The
first kind of threat is the use of the mobile device as a
carrier of malicious code. Since the mobile device is not
subject to physical security as are the fixed computers in
the wired networks, it is susceptible to attacks and hence
can potentially host malicious code while it is in some
untrusted network and try to propagate it, once back in
the home network. Another scenario involves a tempo-
rary user granted access to the network injecting mali-
cious code into the network. Susilo [16] suggests a com-
bination of a personal firewall on the mobile device and
another firewall at the access point to protect against this
scenario.

Another threat identified is one arising from appli-
cations that are capable of running on multiple plat-
forms viz. .Net applications. Multi-platform malicious
code can be difficult to detect and potentially affect all
devices supporting the framework.

Susilo [16] underlines the importance of having some
kind of protection mechanism on the handheld device it-
self.

2.2. Lightweight secure communication

Jenkin and Dymond [13] propose the use of one time
pads for ensuring data privacy. To reduce the compu-
tational burden of encryption and decryption in PKI
or similar infrastructures, use of one time pads is sug-
gested. The one time pad is stored on the on-board stor-
age of the device or some (secure) removable media. The
encryption process involves XORing the bits of the data
stream with those of the one time pad. The original data
can be recovered by XORing the data stream with the
same bits used in the encryption process. This relieves
the computational burden for the handheld device, but
requires large storage requirements. Also distribution,
secure storage and storage capacity make it infeasible
for most ordinary situations. Also this kind of commu-
nication is limited to parties which share the one time
pads, making pad distribution and secure storage a mat-
ter of concern.



This kind of privacy mechanism will be appropriate
for only a fractional part of the total data traffic, perhaps
the most sensitive parts of it. In our approach we use
the PKI infrastructure. SSH sessions are used in issuing
policies. Digital signatures are used to verify the policy
issuer’s identity and non-repudiation. The iPaq 3800 se-
ries that we are using is capable of handling these com-
putations. Most of the data traffic is not encrypted. In
fact even policies themselves need not be encrypted, in-
stead digital signatures on policy digests are provided
for verification. These checks are enforced only when
new policies are received and policy updates are not fre-
quent.

2.3. Policy Language

We use the Rei policy language for expressing secu-
rity policies. Rei is a policy specification language de-
fined in OWL-Lite.

Extensible Access Control Markup Language
(XACML) [8] is a language in XML for express-
ing access policies. XACML allows control over ac-
tions and supports resolution of conflicts. However, as
it is based in XML, it does not benefit from the inter-
operability and extensibility provided by semantic web
languages. It also does not model speech acts or han-
dle conflict resolution across policies. KAoS is a pol-
icy language based in OWL and is similar to Rei as
it can be used to develop positive and negative autho-
rization and obligation policies over actions. KAoS
policies are descriptions of actions that are permit-
ted (or not) or obligated (or not) limiting its expressivity
as policies are restricted to OWL. However, KAoS al-
lows the classification of policy statements enabling
conflicts to be discovered from the rules themselves.
The Rei engine includes run-time conflict resolu-
tion but cannot predetermine conflicts. Another advan-
tage of KAoS is that, if policy descriptions stay within
OWL-Lite or OWL-DL, then the computation is de-
cidable and has well understood complexity results. In
terms of speech acts, however, KAoS only models del-
egations, whereas, Rei includes an integrated approach
to speech acts for policy management, which is use-
ful in autonomic, distributed systems. Rei also provides
specifications and tools for policy analysis and consis-
tency checking that KAoS does not.

SWRL is a rule language for describing Horn like
rules in OWL [9]. Currently SWRL is still work in
progress and there are very few tools for it like Hoo-
let [5] that are just being developed. We are considering
re-doing Rei in SWRL in a few months when SWRL
and some supporting tools are more mature. This will
probably be an improvement and will strengthen Rei be-

cause we will not be introducing our own way of encod-
ing rules.

2.4. Policy Enforcement on handheld devices

Jansen et al. [11], [10] describe an implementation
of assigning and enforcing policies on handheld devices
using Java smartcards. The organization policy is dis-
tributed via tamper-proof smartcards. All the devices are
smartcard enabled. The policy to be enforced is read
from the smartcard, which requires authentication by a
username and pin. After authentication a card monitor
continuously monitors the existence of the smartcard. If
the smartcard is removed the device reverts to the default
policy of the device. [10], [12] describe the use of a pol-
icy specification language, a policy distribution mecha-
nism and certificate representation.

3. Design Approach

3.1. Design objectives

3.1.1. Access privileges subject to constraints In an
organizational setting, known users of the system are
given certain rights and privileges. Some of these users
may have the right to delegate some rights to others on
a temporary basis. These temporary access privileges
granted to other users are usually short-lived, yet all pos-
sible delegatees themselves cannot be enumerated be-
forehand. The system administrator may however wish
to restrict the actions that the delegatees may take, using
the resources that they have been granted temporary ac-
cess to. Furthermore, the system administrator may want
to ensure that such delegations can be made only within
the organization’s wireless network coverage. The pol-
icy specification should be able to express actions and
the constraints which should be satisfied for granting
those actions.

3.1.2. Network specific policies In certain situations
it might also be required of a trusted device to enforce
a policy dictated by the local network it is currently at-
tached to. In this case the network policy is used to de-
cide what the device is allowed to do. Thus distributed
policy management is required. This is possible with the
use of the semantic language “Rei”.

3.1.3. Accountability Additionally, the system ad-
ministrator may need to enforce strict policies about
how users can utilize resources in the system. Organi-
zations lease out such devices to their employees and
the employees are accountable for the proper use of
the device. Lost or misplaced devices have to be ac-
counted for and possibly traced. Other than the finan-
cial loss, sensitive data may be compromised along



with the loss of the device. Thus the system admin-
istrator needs to be able to specify the policy which
will ensure the safe use of the device and limit dam-
age in case it is lost or stolen.

3.1.4. Automatic guards Though most wireless de-
vices come equipped with some kind of wireless inter-
face and wireless access is commonplace, it is still infea-
sible or perhaps impossible to be able to consult a trusted
policy issuing authority “anytime and anywhere”. The
intention of having a policy enforcer is not merely to re-
strict the capabilities of the device, but rather to serve as
a guard against misuse, unintentional or erroneous vio-
lation of the organization policy. This is a security fea-
ture added to the device. e.g. the user need not recon-
figure the wireless interfaces of the device every time
he/she walks out of the secure network. Such reconfig-
urations should happen automatically based on the state
of the device.

3.1.5. Capability Restriction System administrators
may want to be able to disable some functionality of
the device if it is not operating within specified wire-
less network premises. The organization security policy
may restrict carrying sensitive data outside the premises,
in which case the policy enforcer located on the mobile
device can purge sensitive data or encrypt it if the de-
vice detects that it is no longer within the organization
premises. The user need not have to be bothered with
these details. The security policy is enforced based on
defaults provided to it. The user is also prevented from
inadvertently breaching the policy.

3.1.6. Adaptive Behavior Mobile devices can have
numerous “wireless encounters” with other unknown
and/or anonymous devices. While expressing security
policies for such mobile devices all such encounters can-
not possibly be enumerated beforehand and neither can
the device store a large number of such entries nor de-
pend on some augmenting device to provide such an
enumeration. Conventional security practices for wire-
line networks are not directly applicable here [6]. The
behavior of a mobile device should ideally adapt to its
environment. e.g. the organization policy may allow the
device to perform certain actions within a trusted envi-
ronment, but not in an unknown environment. The de-
vice could rely on a trusted authority to provide it with
access constraints. However consulting a trusted server
for every access is also not always possible, since undis-
rupted connectivity to such a server is hard to guaran-
tee.

3.2. Design considerations

It is widely accepted that the most reliable security
mechanisms need hardware support and, most devices
nowadays come equipped with some basic hardware
protection. Tamper-resistant smart cards are widely used
for secure storage of passwords, credit card numbers,
private keys and other sensitive data. More sophisticated
devices like the HP iPaq 5450 [3] come equipped with a
biometric fingerprint reader. IBM and Microsoft are in a
strategic alliance with IBM providing an “Embedded se-
curity subsystem” [2] supported by Microsoft’s operat-
ing system. The inbuilt security chip provides hardware
based protection. It is capable of storing electronic cre-
dentials mentioned earlier. Most device manufacturers
support or plan to support secure storage for such cre-
dentials.

PKI or PKI based infrastructures are thus easily de-
ployable on these devices. The devices that we used in
our testbed comprised of several iPaq 3800 series Pocket
PCs which have sufficient computation power and 128-
bit key encryption and decryption is not a burden.

3.3. Device Capabilities

The device that we primarily used is an iPaq 3870. A
wireless card sleeve was used to provide wireless access
to the device. Inbuilt capabilities of the device include
IrDA and Bluetooth. With this configuration, the device
is capable of accessing the internet via a 802.11b wire-
less network. Other than web access, the IrDA port and
Bluetooth capability can be used to transfer Personal In-
formation Management(PIM) data. The cradle of the de-
vice also allows communication via the serial and USB
ports. The Familiar Linux kernel(ver. ��� �������
	������� )
we are using, currently does not support communication
via the USB port.

We want to show how these device capabilities can be
selectively restricted to enforce a specified policy. Based
on the network status and the device status the device
posture could be one of the following. The device and
network state is modeled in the Rei language policy.

Device Posture
� Basic (Level 0)
� Normal (Level 1)
� Alert (Level 3)
� Shutdown (Level 4)

Device Environment
� Home Network
� Benign Network
� Hostile Network



� Dead-zone

Based on the posture of the device and the sensed en-
vironment of the device, the appropriate policy should
be applied. The device can sense the environment by
listening for heartbeats from trusted web entities called
beacons. When it hears heartbeats from the “home” bea-
con, the device can safely deduce that it is still within the
home network and the “home” policy is applied. Sup-
pose the device is in another known network of some af-
filiated organization, the device will recognize the heart-
beats of the trusted foreign beacon. The foreign beacon
can specify a different policy server for that network,
and the device then complies to the policy specified by
the new policy server. In the absence of heartbeats from
trusted beacons, the network is presumed to be a hostile
environment. In the event that there is no network ac-
cess the device assumes that it is in a dead-zone. This
state is largely based on the status of the 802.11 based
network access. In our current implementation, network
state is determined based only on broadcast messages
sent out by the beacons on the 802.11b network.

3.4. Architecture

As shown in figure 1, there are essentially three com-
ponents on the client side(mobile device) viz. the “Pol-
icy Manager”, “Context Manager” and the “Policy En-
forcer”. The “Beacon” is located on a local network de-
vice possibly co-located with the wireless base station.
The server hosts the “Policy Server” and the “Policy
Engine”. The beacon periodically broadcasts heartbeats
that the sentient Context Manager on the device con-
tinuously monitors.The role of the Policy enforcer is to
enforce the currently selected policy, whereas the Con-
text Manager is responsible for monitoring the context
of the device and selecting the appropriate current pol-
icy. The device boots up with an initial default policy.
The context manager listens for updates from the policy
server. The device can be transit between the home net-
work and other known or unknown networks. Beacons
are deployed across the wireless networks, which peri-
odically broadcasts heartbeats. The context manager lis-
tens for these heartbeats and based on the information
contained in the heartbeat, can determine if it is within a
trusted network. This state is continuously monitored. In
the event that heartbeats are not heard for a prolonged in-
terval of time, the context manager assumes that it is no
longer within the trusted network and immediately re-
verts to the policy prescribed for untrusted networks.

Pietro and Mancini [7] point out that it is impor-
tant to restrict the web presence of a service to reduce
the complexity and traffic for a given network infras-
tructure. In our design the issued policies are valid only

Figure 1. Policy Enforcement Infrastruc-
ture

within the scope of the broadcast, that is the hop-count
of the broadcast determines how far the heartbeats will
be heard. As soon as the user is outside this scope, the
policy is no longer valid and the device reverts to the
highly restrictive default policy. Thus this mechanism
has two effects, viz. it restricts the scope of operation
to a particular area, use of granted privileges is disal-
lowed outside this scope and, secondly a context is pro-
vided to the device so that only the relevant service inter-
faces may be exposed in communicating with the hand-
held device. A device possessing some capabilities al-
lowed by the enforced policy will allow the device to
access local services, whereas remote services can al-
ways be exposed via proxies if necessary.

Heartbeats are signed by the owner entities and can
be verified by other entities involved. Using a PKI in-
frastructure with X.509 certificates is feasible in this sce-
nario. Trust issues are resolved using CA certificates in-
stalled in the mobile device.

Each of the modules shown in figure 1 are described
in the following sections. Section 4 describes the pol-
icy language “Rei”, section 5 describes the policy en-
gine and section 6 describes the Beacon. Sections 7, 8
and 9 describe the context manager, policy manager and



the policy enforcer respectively.

4. Policy Language

We use the “Rei”(pronounced “ray”) policy language
[15] for expressing security policies. Rei is a highly ex-
pressive and extensible declarative policy specification
language well suited for describing security policies in
pervasive environments. Rei includes constructs for ex-
pressing rights, prohibitions, obligations and dispensa-
tions. It also includes constructs for setting positive or
negative modality preferences and allows for stating pri-
ority between policies. It models speech acts like dele-
gation, revocation, request and cancellation. This allows
policies to be expressed in a less exhaustive way and also
allows for distributed policy management. [15] and [14]
show how policies can be used for guiding the behav-
ior of entities within a domain. The advantage of using
policies lies in being able to modify the security func-
tionality without having to change the implementations
of the entities themselves.

Rei defines a policy as a set of rules describing de-
ontic concepts like permission, prohibition, obligation
and dispensation over possible actions in the environ-
ment with respect to the requester, the action and the
context. For example, a privacy policy about not dis-
closing an SSN number would be a prohibition over tak-
ing any action that results in the SSN number being dis-
closed. Rei allows the inclusion of Prolog-like variables
that extend the expressivity of OWL. These variables
allow relations like uncle of, same age as, and differ-
ent group from, that are not directly possible in OWL.
Rei also models speech acts for remote policy manage-
ment like delegation and revocation that affect permis-
sions and prohibitions, and request and cancel that affect
obligations and dispensations. Another set of specifica-
tions included in Rei are those for meta policies. These
are used to resolve any conflict that may arise. For ex-
ample, if a user is both permitted to and prohibited from
performing a certain action, then the meta policies are
used to decide whether the permission or the prohibi-
tion holds.

Rei is capable of describing deontic concepts over en-
tities and actions based on their properties. Policies can
be written in “Rei” that are based on properties of enti-
ties and other domain conditions. Actions can be gener-
ically described specifying a subject “X” a target “Y”
and imposing constraints on both “X” and “Y” to sat-
isfy certain properties. e.g. in plain English, the policy
would describe “Action A with target Y can be granted
to subject X, provided X satisfies certain properties and
Y satisfies certain properties”. Consider the following
scenario: The “A” lab policy states that devices owned

by “A” lab in possession of people affiliated with “A”
lab, are allowed to use the capabilities of these devices
inside the “A” lab, but not if they leave the lab.

The Rei ontology can be augmented with a suitable
domain specific ontology which provides a sufficient
vocabulary to describe the security policy. In our cur-
rent implementation Rei policies are written in RDF. For
more expressive policies DAML+OIL, OWL-Lite can
also be used.

Thus a policy written in Rei is able to specify in ab-
stract terms the safe or acceptable use policy for the
set of trusted devices. The policy enforcer along with
the context manager ensure that the appropriate policy
is enforced and updated periodically. Due to constraints
of space, we refrain from providing a detailed descrip-
tion of the actual policies we have used in the imple-
mentation, however the policies can be found online at
http://www.csee.umbc.edu/˜anand2/rei.

5. Rei Policy Engine and Policy Server

Figure 2. Rei Policy Engine

The security policy is described to the Rei Engine us-
ing the Rei Ontology. As shown in figure 2, a domain
specific ontology may also be used to describe domain



specific information. The Rei policy engine reasons over
the policies described to it in the Rei policy language.
The Rei Engine has a Java front-end and uses Prolog
for its reasoning engine. The role of the Rei engine is to
grant access or deny access to requests made by princi-
pals in the domain. The policy server is responsible for
handling access requests from the various devices in the
system, presenting them to the Rei Engine and then dis-
tributing these policy certificates to the requesting enti-
ties.

The Policy Server first presents the Rei Engine with
the current state information of the device in question,
which normally includes in the least, the device identi-
fier, the person in possession of the device and the lo-
cation of the device. The Policy Server then consults
the Rei Policy Engine to create a new policy certifi-
cate with the granted requests. The policy server then is-
sues this newly created policy certificate to the request-
ing device. For this particular scenario, the Rei Engine
is loaded with the local network acceptable use policy.
Later queries to the Rei Engine provide additional in-
formation about the location of the device, user of the
device etc., when the new policy certificate is to be is-
sued. The policy server issues the request for resource
access to the policy engine. The policy engine reasons
over the current status of the system and based on the
policy for the role of the subject, issues a policy certifi-
cate.

The policy certificate contains the set of permissions
or capabilities that are being issued to the device. Ad-
ditionally the policy certificate contains a validity pe-
riod and the issuer’s identification information. The pol-
icy certificate also contains a digital signature which can
be verified at the requesting location by the local pol-
icy enforcer. Details of the contents of the policy certifi-
cate can be found in [11].

6. Beacon

The beacon periodically broadcasts heartbeats in-
tended for the mobile devices. The context manager lo-
cated on the device listens for these heartbeats. Beacons
are intended to serve as location identifiers, so that the
mobile devices are informed of their current location
from the heartbeats they hear. The heartbeats of these
beacons are digitally signed. We use X.509 certificates
with the PKI infrastructure. The mobile devices have a
set of installed public keys, so the mobile devices can
verify the signatures contained in the heartbeats. The
heartbeats also provide a set of URIs that indicate the
nearest policy server for that network.

7. Context Manager

The Context Manager monitors heartbeats from bea-
cons. A beacon is trusted if the signature is valid and is
from a trusted source. Trust is based on installed public
keys. Upon receiving the first heartbeat and verifying the
signature in the heartbeat, the Context Manager notifies
the Policy Manager of the new Policy Server, provided
in the heartbeat. The heartbeats provide context informa-
tion and URIs of Policy Servers. The Context Manager
notifies the Policy Manager if heartbeats are not heard
for a prolonged interval of time. Both the Context Man-
ager and the Policy Manager are in user space, whereas
the Policy Enforcer is in the kernel.

8. Policy Manager

The Policy Manager is responsible for retrieving poli-
cies from the Policy Server. It is provided with the Policy
Server URI by the Context Manager. The Policy Man-
ager is responsible for verifying the policy certificate us-
ing the installed public key certificates. The Policy Man-
ager also logs events and errors generated by both the
Policy Enforcer and the Context Manager. The Policy
Manager uses SSH sessions to present credentials and
retrieve policy certificates from the Policy Server.

9. Policy Enforcer

The Policy Enforcer is the access mediator located
on the device. It consists of a set of kernel-resident pol-
icy enforcement mechanisms that perform access per-
mission checks based on the policy presented to the de-
vice by the Policy Server. The Policy Enforcer is imple-
mented as a set of kernel patches applied to various parts
of the kernel including the serial port driver, the IrDA
protocol stack, TCP/IP stack, socket manager, PCMCIA
card manager, file system etc. A detailed description of
the implementation details [11] is available.

The Policy Enforcer is responsible for enforcing the
“current” policy that has been verified to have been is-
sued by a trusted source. If no such policy has been
received, the Policy Enforcer enforces a default policy
which is highly restrictive and allows minimal commu-
nication, sufficient for fetching a new policy from policy
server.

The Context Manager on the device listens for “heart-
beats” from trusted beacons. The beacon signs its own
heartbeats and also specifies the hop count of the data-
grams that it broadcasts. This restricts usage of the is-
sued policy within range of the heartbeats of the policy
server.



10. Example Scenarios

Figure 3. Home network and foreign net-
work

10.1. Home Network

Consider the following scenario depicted in 3. Bob is
a Ph.D. student affiliated with the lab “A”. He has been
issued a mobile device that belongs to lab “A”. All the
lab devices are equipped with the policy enforcement
mechanisms described earlier. The lab “A” policy allows
all Ph.D students who are affiliated with the lab to be
able to use lab “A”’s resources and use the full capabili-
ties of the device they have been leased, while in the “A”
lab.

Bob has authenticated himself to the device and, ini-
tially the policy enforcer has enforced the default pol-
icy on the device, which allows minimal communica-
tion. As Bob walks into the “A” lab, the device hears
the heartbeats from a beacon. The device verifies that
the signature is from one of the beacons it trusts. The
context manager then reads the contents of the heartbeat
message and signals the policy manager to retrieve the
policy server’s address, and issue a request for a pol-
icy certificate to the policy server. The default policy
ensures that such minimal communication is allowed,
though other capabilities of the devices remain disabled.
The policy server is provided with the device identifier,
the user and the location of the device(based on which
beacon’s heartbeats were heard). The policy server now
transforms this information into domain specific infor-
mation in the Rei language. Then the Rei Engine is
queried for access requests based on the device capabil-
ities. A device specific policy certificate is then created,

signed by the policy server and issued to the request-
ing device. The policy manager on the device issues this
policy to the policy enforcer. The new policy is then en-
forced for the time duration specified in the policy cer-
tificate. In this case, since Bob is a Ph.D. student and
the device was leased to him, he will be able make unre-
stricted use of the device capabilities within the lab.

When Bob leaves the lab, and is out of range of the
beacon, the device can no longer hear the heartbeats.
The context manager on the device resets a timer each
time it hears a heartbeat. When no heartbeats are heard
for a prolonged interval(twice the heartbeat interval), the
timer goes off and the context manager resets the device
to use the default policy. The policy certificate is valid
only for the time interval specified within the certificate
and heartbeats from a trusted beacon can be heard.

10.2. Other trusted Networks

Now suppose that Bob, leaves the “A” lab but is still
within the university campus and walks into another lab
“B” which has a trusted beacon. This lab however has
a policy that foreign devices should only be able to use
web services via 802.11 but not use IrDA or Bluetooth.
This policy may conflict with lab “A”’s policy that all
Ph.D. students be allowed unrestricted use of the de-
vice’s capabilities. However the meta-rules specified in
the Rei language can be used to resolve these conflicts.
e.g. the meta-rule may resolve the conflict by specifying
that the lab policy where the device is present should
have priority over all other policies. Additionally the
University policy may have priority over all the lab poli-
cies.

11. Prototype Implementation details

The devices we used in our prototype implementa-
tion were 3800 series iPaqs, running Linux kernels. The
context manager located on the iPaq verifies the signa-
ture in the heartbeats using a pre-installed set of X.509
public key certificates(of deployed beacons and policy
servers). If either the signature is incorrect or cannot
be verified, the context manager ignores the heartbeat.
The heartbeat messages contain policy server informa-
tion (URI of the policy server) from which the policy
certificate should be requested. Once the policy server
information is available for a particular network, the pol-
icy manager contacts that policy server, authenticates it-
self using (PKI) and requests a policy certificate. In the
policy certificate request, the userid and device capabil-
ities are listed, in addition to context information from
the heartbeat. The policy server then issues a policy cer-
tificate, which is basically a list of capabilities of the



device. e.g. IrDA is disallowed. The policy manager is-
sues this to the policy enforcer, which actually enforces
it (like a set of firewall rules). Once enforced, all fur-
ther attempts to use IrDA result in the attempt being
blocked and an informative pop-up on the display of the
device, notifying the user that his/her IrDA access at-
tempt has been blocked, since the current security pol-
icy does not allow it. Before enforcement however, a sig-
nature verification on the policy certificate itself is per-
formed to verify authenticity. If the signature is not veri-
fied, the default “shutdown” state results. The policy cer-
tificates come with a validity period and also specify a
timeout interval for the heartbeats. Allowing for some
heartbeats to be missed, a timeout (equal to twice the ac-
tual heartbeat interval) results in the policy manager re-
verting to a default highly restrictive policy. Once a pol-
icy certificate expires or is invalidated by a timeout, the
device remains in the default “shutdown” state till a new
policy certificate is available. The policy server is Java
based and uses the Java interface to the Rei Policy En-
gine. The security policy for a network is described us-
ing the Rei ontology and an augmenting ontology, which
describes additional domain specific entities like loca-
tions, device types, device capabilities, people etc. The
Rei Engine uses these ontologies and the policies de-
scribed to it in RDF and makes decisions on whether
to allow or disallow particular access requests. Samples
of augmenting ontologies and security policies can be
found online at http://www.csee.umbc.edu/˜anand2/rei
and http://www.csee.umbc.edu/˜lkagal1/rei.

12. Conclusions and Future Work

In this paper we have presented a proof of concept
implementation of a policy enforcement infrastructure
for mobile devices. We have used a semantic policy
language “Rei” to express security policies. “Rei” al-
lows policies to be expressed in higher levels of abstrac-
tion without requiring knowledge of all possible entities.
Policies can be expressed in terms of domain specific in-
formation. The policy engine is used to make decisions
of allowing or disallowing access requests from actors
in the domain.

In our prototype implementation we demonstrated
how a policy can be expressed in the “Rei” policy lan-
guage using the Rei Ontology and an augmenting do-
main specific ontology to describe rights, prohibitions,
obligations, dispensations an actor has on the domain ac-
tions. We showed how a mobile device equipped with a
policy enforcer can be used to dynamically change its
behavior and capabilities in a pervasive environment us-
ing this security infrastructure. We demonstrated the use
of the expressivity of a high level semantic language

“Rei” for describing system wide policies, the dynamic
creation of device level policies, policy distribution and,
enforcement of these policies on mobile devices.

As noted earlier, the devices with the policy enforcers
are themselves trusted devices and cooperate with the
security infrastructure. The policy enforcers serve as au-
tomatic guards that enforce the correct policy based on
current state of the device. This infrastructure addresses
security concerns resulting from vulnerabilities in the
software or hardware implementations of the device.
The security infrastructure does not protect against in-
tentional misuse or attacks.

An alternative to issuing policies from a Pol-
icy Server is to use smartcards that contain the policy
certificate [11]. The smartcard adds to the hardware re-
quirements of a device. However it is the least obtru-
sive, since the policy can be enforced so long as the
the card monitor notifies the existence of the card. In
case of the Policy Server, the sentient program lis-
tens for heartbeats from the beacon. It may happen
that during periods of severe network congestion heart-
beats are lost and the devices suddenly revert to their de-
fault policy which will be very disruptive for the users.
However in the case of the Policy Server, the pol-
icy certificates are created dynamically and are adapted
to the context of the device. Also, listening to heart-
beats is usually free since most mobile devices come
equipped for wireless connectivity, no additional hard-
ware is required. In case of smartcards, the policy is stat-
ically issued and stored on the smartcard, it does not
change or adapt to changes in a pervasive environ-
ment.

For future work we are exploring the possibility of
using the device information and the beacon informa-
tion echoed by the device to be able to trace a device. A
beaconing module on the device itself can help trace the
device if it is lost.

References

[1] 2002 CSI/FBI Computer Crime and Security Survey,
www.gocsi.com.

[2] IBM and Microsoft Security,
http://www.pc.ibm.com/us/security/index.html.

[3] iPAQ H5450 Pocket PC,
http://h40055.www4.hp.com/ipaq/5450.html.

[4] A. Aziz and W. Diffie. Privacy and authentication for
wireless local area networks. IEEE Personnal Communi-
cations, 1(1):25–31, 1993.

[5] S. Bechhofer. Hoolet swrl reasoner.
http://owl.man.ac.uk/hoolet/, 2004.

[6] V. Bharghavan and C. Ramamoorthy. Security issues in
mobile communications, 1995.



[7] R. Di Pietro and L. V. Mancini. Security and privacy is-
sues of handheld and wearable wireless devices. Com-
mun. ACM, 46(9):74–79, 2003.

[8] S. Godik and T. Moses. Oasis extensible access control
markup language (xacml). OASIS Committee Secifica-
tion cs-xacml-specification-1.0, November 2002.

[9] I. Horrocks, P. F. Patel-Schneider, H. Bo-
ley, S. Tabet, B. Grosof, and M. Dean.
http://www.daml.org/rules/proposal/.
http://www.daml.org/rules/proposal/, 2003.

[10] W. Jansen, T. Karygiannis, M. Iorga, S. Gavrila, and
V. Korolev. Security Policy Management for Handheld
Devices. In The 2003 International Conference on Secu-
rity and Management(SAM’03), June 2003.

[11] W. A. Jansen, T. Karygiannis, S. Gavrila, and V. Korolev.
Assigning and Enforcing Security Policies on Handheld
Devices. In Proceedings of the Canadian Information
Technology Security Symposium, May 2002.

[12] W. A. Jansen, T. Karygiannis, V. Korolev, and S. Gavrila.
Policy Expression and Enforcement for Handheld De-
vices. Technical report, NIST, May 2003.

[13] M. Jenkin and P. Dymond. Secure Communication be-
tween lightweight computing devices over the internet.
In Proceedings of the 35th Hawaii International Confer-
ence on System Sciences, January 2002.

[14] L. Kagal, T. Finin, and A. Joshi. A Policy Based Ap-
proach to Security for the Semantic Web. In 2nd Interna-
tional Semantic Web Conference (ISWC2003), Septem-
ber 2003.

[15] L. Kagal, T. Finin, and A. Joshi. A Policy Language for A
Pervasive Computing Environment. In IEEE 4th Interna-
tional Workshop on Policies for Distributed Systems and
Networks. June 2003.

[16] W. Susilo. Securing Handheld Devices. In 10th IEEE
International Conference on Networks, August 2002.


