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Abstract

Research on data management in mobile ad-hoc net-
works focuses on discovering sources and acquiring in-
formation. Mobile devices assume answers to be cor-
rect and do not verify the veracity of the information
or the providers. This assumption is suitable for most
client-server environments; however, peer-to-peer en-
vironments lack the intrinsic stability of “anchored”
sources. In mobile ad-hoc networks, sources may pro-
vide faulty information, which can lead to incorrect con-
clusions. Consequently, devices need a mechanism to
evaluate the integrity of their peers and the accuracy
of peer provided information. To address this problem
we propose a query processing model that relies on dis-
tributed trust and belief. Each device maintains and
shares beliefs regarding the degree of trust it has for
its peers – where trust is determined by experience and
reputation. Additionally, each device associates a value
indicating its belief in the accuracy of the information
it holds. This knowledge is used by devices to deter-
mine the reliability of query responses. We implement
our model in GloMoSim and provide experimental re-
sults for different combinations of trust and accuracy al-
gorithms.

1. Introduction

Hand-held computing devices are becoming increas-
ingly common and are used for a variety of tasks – rang-
ing from booking airline tickets to finding directions to
a local movie theater. These devices mostly adhere to�
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the traditional client-server model in which they act as
clients and access non-transient information on trusted
servers. With the advent of ad-hoc computing technolo-
gies like Bluetooth, we believe that the scenario will
soon morph into a peer-to-peer model where devices
will communicate and collaborate with each other to
produce contextual knowledge. In this model the wired
infrastructure may not always be accessible, forcing a
greater reliance on peer provided information. We can
imagine one device asking another to recommend a good
Chinese restaurant that is nearby or inquiring about the
closest library.

Current research in wireless ad-hoc networks focuses
on discovering sources and acquiring needed informa-
tion, tacitly assuming that every obtained answer is cor-
rect. In a client server model, the server is “anchored”
and a client can verify through several authentication
and integrity schemes that the information came from
the server, forcing accountability. In dynamic environ-
ments there are no such anchored or accountable servers.
Furthermore, there are no schemes to protect a device
from malicious peers deliberately providing incorrect
answers to queries.

Recent query processing frameworks [5, 12] suggest
that for a mobile device to provide a required informa-
tion to its user, the device needs to pro-actively query its
dynamic environment. Pro-activeness is a necessary fea-
ture for mobile ad-hoc networks as one cannot guarantee
that a required information source is reachable when a
user asks her question. A device should instead be able
to anticipate future user questions via the use of pro-
files and pro-actively cache relevant answers obtained
from its peers. The device must, however, determine
and only cache trusted, reliable answers. Most mobile
devices are not capable of such reasoning at this point.
They also lack a “common sense” that we often employ



to decide the reliability of a source and information the
source provides.

To fully realize the potential of the mobile ad-hoc
paradigm we need a mechanism for mobile devices to
evaluate autonomously peers and peer information.

Along with enabling devices to estimate their trust in
other devices and the accuracy of the information they
provide, we believe that the mechanism should also en-
able devices to detect and distinguish between malicious
peers, which purposely provide incorrect information,
ignorant peers, which are unable to guarantee a reli-
ability level of provided information, and uncoopera-
tive peers, which have reliable information but refuse
to make it available to other devices. This mechanism
would implicitly create an incentive model, in which all
devices must provide only reliable information and pro-
vide this information often, otherwise they risk losing
the ability to communicate with other devices in the en-
vironment. This is because devices could stop interact-
ing and forwarding traffic for their malicious and unco-
operative peers.

As a step toward this mechanism, we define a query
processing model based on distributed belief and trust
management, where devices calculate trust in their peers
and accuracy belief of obtained information. To miti-
gate the effects of malicious and “ill-informed” devices,
our initial model categorizes peers as reliable and un-
reliable. In our model, the accuracy of an answer is a
function of the trustworthiness of the information source
and its belief in the accuracy of its answer. Devices as-
sign trust to an information source based upon past ex-
perience and from the recommendations of those devices
that it trusts.

We have simulated several belief and trust manage-
ment schemes within the GloMoSim [14] simulation en-
vironment. We illustrate the usefulness of our model by
way of experimental results, based upon a mobile ad-
hoc network consisting of 50 devices where each device
generates 100 different queries. We introduce untrust-
worthy devices into the network and are able to answer
questions like: (i) When reputation and trust are at is-
sue, what percentage of queries are rejected and hence
are considered to be “unanswered”; (ii) What is the con-
vergence period for the first or last device to determine
which devices are honest and which are not; and (iii)
How does the introduction of new devices into the envi-
ronment influence data gathering in pervasive comput-
ing environments?

2. Related Work

Most recently data management community has been
advocating the use of profiles, especially when dealing

with pervasive systems and stream data, in order to pre-
cache answers for future user queries. In a seminal
work, Cherniak et al [5] explore the use of profiles in
the area of client/server based data recharging for mobile
devices. As an alternative, Perich et al [12] propose a
profile in terms of beliefs, desires, and intentions. These
systems, however, do not address reliability of cached
information in terms of accuracy of the answer. Conse-
quently, devices could be caching wrong answers from
unreliable devices.

The management of trust and belief has been well re-
searched within the domain of software agents and ar-
tificial intelligence, including the Semantic Web. It has
been, however, largely ignored by the rest of the research
community due to its vast computing time and other re-
source constraints. Although the notion of provenance
is quickly gaining popularity within the database com-
munity [4].

Trust and belief management models can be divided
into two categories: mathematical and logical.

Jonker et al [10] propose a mathematical model for
capturing trust in multi-agent systems. Their model con-
sists of beliefs, and trust is a function of the values of
these beliefs. The trust function is based on initial trust,
experiences, and trust dynamics. The types of trust dy-
namics determine how past experiences affect the newly
computed trust value. Richardson et al [13] present a
mechanism for calculating the trustworthiness of users
on the Semantic Web by developing a “web of trust”
based on web algorithms like Google’s PageRank [8].
In this approach, every user maintains trust values for
a small set of users and uses the belief values of these
users and her trust in the users to calculate her own
beliefs. Abdul-Rahman et al [1] define a formal trust
model based on trust and recommendations. Users store
trust values for other users and ask trusted users for rec-
ommendations when dealing with unknown users. How-
ever, once a trust value is calculated it is not updated.

There is also a significant amount of work on devel-
oping logical trust models. Blaze et al [3] define trust
management as creating policies and assigning creden-
tials. They use a PolicyMaker engine for checking if
users’ credentials conform to policies before granting
them access. Keynote [2] is designed along the same
lines as PolicyMaker, however, it has been designed to
be simpler, to provide more support for PKI, and to al-
low policies and credentials to be transported over inse-
cure communication channels. Referee is a similar trust
management system that is designed to facilitate secu-
rity decisions for the web [6]. Kagal et al [11] also de-
scribe a policy based infrastructure for security and trust
management in multi-agent systems and the Semantic
Web. In this system, every entity has a policy that re-



flects its current binary trust values and exchanges them
with other entities via speech acts.

For our approach, we chose to develop a mathemat-
ical model. First a mathematical model requires fewer
computing resources than logical models, which require
reasoning engines and a certificate verification. Addi-
tionally, unlike logical models that only describe con-
ditions when devices are “trusted” enough to access a
certain information, mathematical models can also be
employed to represent answer accuracy and to handle
situations when more than one answer is provided for a
given query. Our work differs from other mathematical
models in that we propose several trust learning schemes
based on experience and recommendations, allow infor-
mation sources to specify their trust in the information
being provided, and use both kinds of values to compute
belief. Most other schemes either provide trust learn-
ing algorithms based on experience or on recommenda-
tions but do not combine the two. They also ignore the
believed accuracy of the information source, whereas
we use it as a factor for rating the trustworthiness of a
source.

3. Distributed Belief Model

Peer devices1 are the information sources in per-
vasive computing environments. Because these envi-
ronments are dynamic and their topologies change fre-
quently, a mobile device needs a mechanism to evaluate
the integrity of its peers and the accuracy of the informa-
tion they offer. The role of this mechanism is twofold:
It mitigates the danger presented by using faulty infor-
mation for some computation. Next, it protects the envi-
ronment from denial-of-service type attacks, where ma-
licious or ignorant devices flood the environment with
erroneous data. Such a mechanism must evaluate the
integrity of a device and be able to at least categorize
devices as reliable and unreliable.

A successful mechanism for evaluating device in-
tegrity and information accuracy must address the inher-
ent limitations of mobile ad-hoc networks and of mobile
devices. Due to power, memory and computation con-
straints, the mechanism should not assume that each de-
vice can maintain information about all devices in the
environment and the information they can provide. The
mechanism also should not assume that each device is
reachable by any other device in the environment at any
time due to the underlying network constraints and the
mobility of devices. Additionally, devices may often be
unable to connect to a wired infrastructure and thus the
model should not assume that devices can off-load and
share their states through wired nodes.

1We use the terms peer and peer devices interchangeably.

To address the problem, we propose a query-
processing model that relies on a distributed belief. Our
model does not rely on any wired infrastructure nor does
it assume connectivity among all devices. Our model
also does not assume that each device can maintain be-
lief information about every other device or information
the other devices can provide. Instead, our model makes
only the following two assumptions:

Every device is able to assign an accuracy degree to
any information the device provides to its peers. The
accuracy degree represents the device’s belief about the
correctness of the information, which can range from
distrust to undecided to trust value.

Every device maintains trust degrees about a subset
of devices in the environment representing how much
a device trusts the other devices for providing accurate
answers to queries. A device, when asked, can pro-
vide its recommendation for some other device in ques-
tion. Similar to accuracy degree, the recommendation
can range from distrust to undecided to trust value.

In the remainder of this section, we define the neces-
sary terminology of beliefs and belief functions that our
model will operates over, and our model’s protocol.

Definition 1 �����
	�� represents an accuracy degree in
range from 
���� � to ��� � suggested by device � for infor-
mation 	 answering a given question.

�����
	�����
���� � implies that device � absolutely
disbelieves information 	 answers a given question.�����
	�������� � implies the device � is absolutely posi-
tive 	 answers the question, and � � �
	������ means the
device is undecided how 	 is answering the question.

Definition 2 ����� ��� is a trust degree, also in range
from 
���� � (absolute distrust) to ��� � (absolute trust), rep-
resenting how much � believes a device � to be reliable
and to provide accurate answers.

In order to maintain a belief knowledge, each device
must compute an initial trust for devices it has never
interacted with before. Each device may also use this
function to compute initial trust for devices it has inter-
acted with in the past but for which it no longer keeps its
trust degrees due to its limited memory resources.

Definition 3 !"� represents an initial trust function a
device � uses to compute an initial trust for new device� . � performs this function whenever it interacts with a
device for which it does not have any prior information.

We distinguish between pessimistic, optimistic and
undecided initial trust functions. Applying the pes-
simistic function, a device does not trust any new peer
by assigning it a trust degree of 
���� � . In the optimistic



case, each new device is always trusted and is assigned
a trust degree of ��� � while in last case the initial trust
degree is � .

Definition 4 # � represents a trust learning function
a device � employs to compute its future trust for a de-
vice � based on the current trust degree and past expe-
riences.

Once a querying device determines the final answer
to its query, it uses this function to update its trust beliefs
in other devices based on the devices’ responses.

Each device uses the initial trust and trust learning
functions to build and maintain its belief about other de-
vices in its environment. Subsequently, when a device
needs to answer a query for which it does not already
have a cached answer, the device should only use an-
swers from its trusted peers. We define trusted peers as:

Definition 5 A device � is a trusted peer for device �
if and only if � � �
�$�&%(' where ' is � ’s trust threshold.

When a device receives a response from its peer, it
should be able to use its belief in the peer’s answer ac-
curacy to weight the information the peer returns. Ad-
ditionally, when a device queries its peers for a trust
degree recommendation of some other peer, the device
should also be able to pro-weight the returned recom-
mendations. From belief network research concepts, we
assume that all devices in the environment are equal ex-
perts in providing answers to queries as well as trust
recommendation. Consequently, in our model, a device
does not maintain trust degree per the combination of
question domain and device but simply per device only:

Definition 6 ) represents a trust-weighting function
a device � uses to pro-weight a suggested accuracy de-
gree ��*+�,	�� of answer 	 provided by device - with its
trust degree in device - , � � �
-.� .

In our model, we overcome the problem of unreliable
information and unreliable information sources by re-
quiring that each device ask at least / sources the same
question. This, however, introduces two additional prob-
lems. First, the device must be able to combine all re-
ceived responses and their suggested degrees of accu-
racy. Second, the device must be able to decide, if pos-
sible, on only one final answer, it believes is correct. To
address these problems we define the following two ab-
stract functions:

Definition 7 0 represents an accuracy-merging
function a device � uses to combine weighted
accuracy degrees for same answers from multiple peers.

Definition 8 1 represents a final-answer function a
device � uses to determine the final answer it believes
answers its initial question based on all answers, sug-
gested accuracy degrees, and its trust in the responding
peers.

3.1. Query Processing

We first describe the query processing steps from the
perspective of the querying device and then from the per-
spective of the responding peer devices.

In our model, a querying device first collects re-
sponses from peers and then computes their trust de-
grees. We chose this approach because a device that first
computes trust degrees and queries only its trusted peers
may, in some situations, not be able to query any device.
More importantly, the querying device will never inter-
act with other, not yet trusted devices. Consequently, the
querying device cannot learn and adjust its trust degree
about other peers in its vicinity it does not already trust,
thus limiting the set of potential information sources.

3.1.1. Information Source Discovery

In our model, when a device needs to obtain an an-
swer for a query, it first attempts to discover which of
its peers may have the necessary answer. The device
does so by evaluating its cache of advertisements re-
ceived from its peers and by broadcasting a source dis-
covery request messages to its peers up to / -hop away.
While / is a tunable parameter, we only used /2�43
in order to prevent message flooding. The discovery
message 5�	�687:9<;>=8?<@��
A>�CBEDGFCDH/I9</I7J=<� consists of the de-
vice’s identity A��KB , the question F , and a nonce for
differentiating it from other discovery messages sent by
this device. A device may sent out the discovery mes-
sages more than once based on the responses it receives
from its peers.

3.1.2. Information Advertisement

When a cooperating, non-malicious peer receives a
source discovery, it checks its cache to find an answer
matching the question. If the peer has a cached answer,
it will respond by sending an advertisement messageL 5�;M=8?8N�	�68=8OP=8/�N:� A��KQ�DGFCDH/I9</I7J=<� . A��KQ is the identifier
of the device, e.g. its MAC address and F is the ques-
tion the peer can answer. Optionally, a device may pro-
actively broadcast bulk advertisements at random inter-
vals.



3.1.3. Querying Peers

After receiving responses from its peers, the querying
device evaluates all advertisements in its cache in order
to determine possible sources for its query. If a device
is unable to discover a sufficient number of information
sources that could provide answer to its question, the
device simply broadcasts the question to all peers in its
vicinity, again up to / hops away. If, however, the device
is able to collect some information sources, the device
sends a query to only those peers by constructing one
query message R<ST=8?<@��
A>�CBUDVA��KQWDVFCDX/I9</I7:=Y� at a time.

3.1.4. Collecting Answers

When a cooperating, non-malicious peer receives
a query message, and has a matching answer,
it will respond with a message in the form ofL /W6[Z�=8?M� A��KQ\DX��D L 7:7]ST? L 7]@^DH/I9</I7:=Y� . The message in-
cludes the identity of the answering peer together with
the device’s proposed answer and the accuracy degree
of the answer. The querying device temporarily caches
the response while waiting for additional answers from
other peers.

3.1.5. Recommendation Request

When a device receives an answer from its peer A>� Q ,
it calculates the peer’s trustworthiness by looking up its
trust beliefs. If the device is unable to determine if the
answering peer is a trusted peer, the device may initiate
a recommendation session for the answering peer.

In our model, the device can proceed in two ways:
The device can either ask only those devices who it
believes are its trusted peers or the device can ask
anyone in / -hop distance for recommendations about
the answering device. The querying device A>��B does
so by sending out a recommendation request message?Y=<7:9<O_O`=8/I5 L N�	�9</IaGb�c�dYb�egf[�
A>�+BEDXA>�+hiDVA��KQT� to some
remote peer A>�Ch with the identity of the answering peer.

3.1.6. Recommendation Response

When a cooperating, non-malicious peer receives a
recommendation request, it looks up its trust be-
liefs to determine if the querying device A>� B is
one of its trusted peers. If this is the case,
the device responds with its trust degree in A>�jQ
by sending a recommendation responses message?Y=<7:9<O_O`=8/I5 L N�	�9</IaGb�e k[lHm�e�bY�
A>�Ch&DXA>�KQ�DH��h&� no�H� . The
querying device then stores the recommendation re-
sponse in its cache as additional information for detect-
ing the current and future trust degree of the answering
device.

3.1.7. Calculating Final Answer

Once a device receives responses from all peers it
queried or once a pre-set session time period ends, the
querying device attempts to decide on the final, cor-
rect answer. A device determines the final answer only
if it received an answer from at least one trusted peer.
For every different answer value it received, the device
computes a combined accuracy degree for the particu-
lar value based on the suggested accuracy degrees of
the information sources and their related trust degrees.
Formally, given a set n of answer tuples ( 	 , � , � � �,	�� ),
where 	 is the suggested answer and � � �
	�� is the sug-
gested accuracy by device � , the combined accuracy
degree is:

��p�lXq&rtsum�b�vM�
	��w�yx Q
z �����
	��I){��BU�
�_��| (1)

If all trusted devices provide the same answer to the
original query, the querying device will simply use that
answer as the final value if its combined accuracy de-
gree is above a certain threshold ' , similar to a thresh-
old concept for a trusted peer. In some cases, and a
primary point of this exercise, the querying device may,
however, receive multiple conflicting answers. To ad-
dress this problem, the querying device can apply two
different techniques:

The querying device may accept an answer only if
precisely one of the suggested answers has a combined
accuracy level above ' . We refer to this technique as
only-one answer. This is a pessimistic approach as the
querying device will not cache an answer, if there is
more than one answer above the threshold or if there are
no answers above the threshold. At the same time, this
approach will limit the amount of uncertain or distrusted
data kept in the cache.

Alternatively, a device may employ a more optimistic
technique that considers the possibility of a question
having multiple valid answers, e.g. the list of Chinese
restaurants in a given location. In this case, the device
will choose the answer with the highest combined accu-
racy degree above ' . If there are multiple answers with
the highest accuracy degree, the device will randomly
choose one. We refer to this approach as the highest-
one answer.

3.1.8. Updating Trust Belief

If the querying device is able to determine its final an-
swer, it uses the answer to evaluate interaction experi-
ences it had with the answering peers. The experiences
can range from negative to undecided to positive. We
list the experience types in Table 1.



When a querying devices has either a positive or neg-
ative experience with any answering device, it should
update its trust degree for that device for future interac-
tions. In our model, we adapt two types of trust learning
functions as classified in [10]. The first category of trust
learning functions employs all history information for
predicting a future trust degree of a device. The other
category employs only the current experience and the
current trust degree. The querying device then either in-
creases or decreases the trust degree using slow, fast or
exponential steps.

3.1.9. Answering Peers

Thus far, we have detailed the steps from the point of
view of the querying device. We now describe the steps
taken by answering peers.

In order for a cooperating, non-malicious device to
answer a query asked by its peer, the device must first
have a matching answer in its cache or the device must
be able to produce the answer using some other means.

The device will return an answer only if the query-
ing peer is one of its trusted peers. The device evaluates
its beliefs to determine if its local trust degree of the
querying peer is above the trust threshold ' . Otherwise,
the device first initiates a recommendation session, de-
scribed above, and computes a combined recommended
trust degree. Given a set } of recommendation tuples
( F , � , � � � F�� ), where F is the querying peer, � is
the recommending peer with a suggested trust degree� � � F�� , the combined recommendation trust degree is
computed by the answering device � as:

} p�lXqUr sum�b�v �tF��w�~x h
z � � � F��I)����&� F�� | (2)

The device then sends back an answer to the querying
device only when �I���tF��&��' or } p�lHqUrts�m�b�v � F��&�(' . In
other words, for a device to return an answer, either the
device explicitly trusts the querying peer or its trusted
peers recommended the device to do so.

� � �
	��i��� � � �
	��i%��	�� L negative experience positive experience	��� L undecided negative experience

Table 1. Querying device interaction expe-
rience with a device � based on a final
trusted answer L when � suggested 	 as
the answer with accuracy degree �����,	�� .

Spatial Dimensions 150x150 O��
Simulation Period 50 O_	g/
Simulation KB 800 data/answers,

800 questions
Mobile Devices 50
Mobility Pattern Random Way-Point,

5 6 waiting period,
speed 1-5 O`6����

Routing Protocol AODV
Flooding Range 2 hops
Tx Range 3��YO
Tx Throughput 3����g�T6
Device’s Cache Size 250 ��� ,

50% of simulation KB
Cache Replacement Trusted-Based LRU,

victim is the least used
among least accurate data

Device’s Initial KB 100 questions, 100 answers
not matching initial questions

Device’s Initial Trust 3-5 other devices

Table 2. Simulation Environment

4. Experimental Results

We have implemented the belief-driven query pro-
cessing framework as part of the GloMoSim simula-
tor [14]. GloMoSim is a scalable simulation environ-
ment for wireless and wired networks with support for
mobility. It is designed using a discrete event simula-
tion capability provided by Parsec. Table 2 summarizes
our simulation environment. In order to allow devices
employing pessimistic trust approaches, where a trust in
other devices can only decrease, we randomly assigned
every device to have an initial high trust above ' for 3 to
5 other devices in the environment. While this is not nec-
essary for optimistic or undecided approaches, we used
the same initial assignments in order to be able to com-
pare them.

4.1. Experimental Parameters

To study the performance of a distributed-belief
query processing model, we have defined different ap-
proaches for each function from Section 3. In our query-
ing simulator we have parametrized 30 different aspects
of the model; however, for this paper we are interested in
only the parameters listed in Table 3. To simplify the ex-
periments, we assume that a dishonest device is always
dishonest. That is a dishonest device in our environment
never provides a correct answer because it is malicious
or not willing to cooperate. On the other hand an honest



Dishonesty Level Ratio of malicious nodes
Trust Threshold ' �������
Initial Trust:
Positive !"� initial trust ������� �
Negative ! � ����
���� �
Undecided !\� �����
Trust Learning:
Blindly positive #C�I� � B � nw�w����� � after 4 / 10

positive experiences
Blindly negative # �\� � B � nw�w��
���� � after 4 / 10
Fast positive #K�[� � B � nw�V�~� �t�$�¡� �£¢8
¤�¡� 3��
Fast negative #K� � � B � nw�V�~� �t�$�¡� 3£¢8
¤�¡� ���
Balanced fast #K� � B � nw�V�~� �t�$�¡� �£¢8
¤�¡� ���
Balanced slow # e � B � nw�V�~� �t�$�¡� 3£¢8
¤�¡� 3��
Exponential # b�¥:k � B � nw�w� �� � B � nw�W� ��Trust Weighting:)$¥ ¦ � @) p�lVe @j§(� : �

@j�(� : ¦ z �U
¨7:9�6T©[ªJ«��¬ |
Accuracy Merging:
Minimum 0 q&sum least suggested accuracy
Maximum 0 qU­]¥ highest suggested accuracy
Average 0 ­:®G¯ average accuracy
Final Answer:
HO highest-one
Distrust Convergence Time for honest devices

to discover all dishonest
devices

Table 3. Experimental Parameters

device is either a reliable device or at least an ignorant
one.

4.2. Answer Accuracy vs. Trust Functions

We measured how different initial trust and trust
learning strategies improve the number of correctly an-
swered queries. We varied the dishonesty level from
0% to 100%. When the dishonesty level was 0% ev-
ery device attempted to provide only accurate informa-
tion, based on its beliefs. With an increasing level of
dishonesty there were proportionally more devices that
were always malicious. Due to the size constraints of
this paper, we report only on the results for an initially
optimistic trust function !°� . The results are shown in
Figure 1.

We note that the combination of ! � and # �I� rep-
resented a scenario where a device did not use its trust
and accuracy beliefs for query processing. Since # �I�
can only increase a trust degree and by default all un-
known devices are trusted, a querying device could

never change the trust degree for its peers, i.e. decrease
the degrees. Therefore, this combination served as a
baseline for comparison with other trust learning func-
tions.#+e and # �8� learning functions had similar perfor-
mances. This was also true for # � and # � � functions.
This was due to the fact that in the case of initial op-
timistic trust function all unknown devices were by de-
fault trusted. For honest devices the trust did not have to
decrease while for dishonest devices the trust decreased
using same steps for each pair of functions. # b�¥]k learn-
ing function also behaved similarly because it used even
larger steps to decrease a trust for any dishonest device
in the environment.

We do not show results for undecided and pessimistic
initial trust functions. Since ! � assigns an absolute trust
to any unknown peer, the querying device was able to
obtain always more answers, correct or incorrect, than
when using ! � or ! � . This holds even for less reli-
able environments. In fact when the trust learning func-
tion employs small steps to decrease a trust degree of
a peer, the querying device was able to obtain answer
for as many question as when everyone in the vicin-
ity was honest. This was, however, at a cost of an in-
creased number of wrong answers the device accepted
as correct ones. While the trust learning functions with
a high trust decreasing step were able to somewhat re-
flect the dishonesty of the environment by accepting less
answers, they still had several times worser performance
than when the initial trust function was not optimistic.

We found that the initial trust value a device assigned
to an unknown peer greatly affected the final trust value
for that peer. The final trust degree in turn affected the
accuracy of results the device obtained for its queries.
The higher the initial trust value was the more often a
device was able to obtain an answer to its query. How-
ever, the device frequently accepted incorrect answers
as it was unable to correctly estimate the real trust value
for malicious devices. On the other hand, devices us-
ing more pessimistic or undecided initial approaches ac-
cepted fewer number of suggested answers, sometimes
including incorrect responses. However, the ratio of cor-
rect versus incorrect answers was significantly higher for
the latter approaches.

4.3. Distrust Convergence vs. Dishonesty Level

We also measured the effects of the dishonesty level
on the distrust convergence period. The convergence
period represented the time from the beginning of the
simulation until all honest devices in the environment
were able to detect unreliable sources. Figure 2 depicts
the distrust convergence periods for environments with
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Figure 1. The effects of trust learning functions with an initial optimistic trust for environments
with varying level of dishonesty. The results are shown for # �I� , # �W� , #Ce , # � , # �8� , # � � , and#Cb�¥:k learning functions.

25%, 50% and 100% dishonesty levels. The graphs dis-
play values for the same combination of initial trust and
trust learning functions from Experiment 4.2.

We found that the trust convergence period was
highly dependent on the dishonesty level. Since a de-
vice was unable to obtain reliable recommendations and
answers in highly dishonest environments, a device was
unable to judge the honesty of its peers and for non-
optimistic approach this resulted in a final undecided
trust.

The blindly negative trust learning function had the
most visible effect on updating a trust belief. Since
this function could only decrease the amount of device’s
trust in its peer, the function always caused the least
trust among all possible combinations in every simula-
tion run. For an undecided initial trust, this heuristic
was quickly approaching an absolute distrust of 
���� � for
dishonest devices in most environments. We note that
for environments where all devices were dishonest, this
heuristics stabilized at � , i.e. at undecided trust degree,
as it could not generate enough positive or negative ex-
periences. A similar rule applied to other combinations.
In general, the less evidence a device could obtain for
or against its peer, the less likely the device was able to
make a decision about the peer’s dishonesty.

5. Conclusions and Future Work

As the mobile ad-hoc network paradigm shifts from
the traditional client-server approach to a peer-to-peer
model, devices need to be able to determine how much
they can trust their peers and the information the peers
provide. To address the issue, we proposed a query pro-

cessing model for these pervasive computing environ-
ments based on distributed belief and trust management.

To mitigate the effects of malicious and “ill-
informed” devices, our model categorizes peer devices
as reliable (trusted) and unreliable. Using our model
devices compute trust in their peers and the accuracy
degree of offered information. The accuracy of infor-
mation is a function of the trustworthiness of the infor-
mation source and its belief in the accuracy of its data.
Devices assign trust to an information source based upon
past experience and from the recommendations of those
devices that it trusts. We have shown the effects of dif-
ferent heuristics for estimating device trust and accuracy
of information in environments with varying level of dis-
honesty through a simulation.

For our work we have assumed that the integrity of
messages sent in the wireless network can be guaran-
teed. However, for our future work we will investigate
the possibility of integrating our model with an intrusion
detection and monitoring scheme, such as [9], that al-
lows the detection of unreliable devices that tamper with
packets they agree to forward. We also propose to inves-
tigate the notion of estimating trust based on domains [7]
instead of treating all informations as part of one domain
and treating all devices as equivalent domain experts.
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