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Abstract—Large scale market penetration of electronic devices
equipped with Bluetooth technology now gives the ability toshare
content (such as music or video clips) between members of the
public in a decentralised manner. Achieved using opportunistic
connections, formed when they are colocated, in environments
where Internet connectivity is expensive or unreliable, such as
urban buses, train rides and coffee shops.

Most people have a high degree of regularity in their move-
ments (such as a daily commute), including repeated contacts
with others possessing similarseasonal movement patterns. We
argue that this behaviour can be exploited in connection selection,
and outline a system for the identification of long-term compan-
ions and sources that have previously provided quality content,
in order to maximise the successful receipt of content files.

We utilise actual traces and existing mobility models to validate
our approach, and show how consideration of the colocation
history and the quality of previous data transfers leads to more
successful sharing of content in realistic scenarios.

I. I NTRODUCTION

An extremely large percentage of people already possess
devices such as portable music players, PDAs and mobile
phones. These devices are quickly improving both in terms
of supported functionalities and storage capabilities. Current
portable consumer electronics can already store days worth
of music; new SDHC flash cards can store up to 32GB, so
whereas previously only a few audio files could be carried
around, it is now feasible to hold a person’s whole music
collection or a set of videos. The recent release of the
Microsoft Zunemusic player brings a new dimension to the
use of electronic media players. Their WiFi network interfaces
allow communication of data (such as music files) between
Zune devices. The use ofDigital Rights Management(DRM)
technology allows possibly copyrighted data to be shared
without infringing the ownership rights of the copyright holder.
DRM restricted music is useful for music distributors as it
allows their product to be sampled by people, encouraging
them to then purchase it. Besides music, several other data
types are freely available to share, such as sample clips, movie
trailers, and Creative Commons licensed data.

Crucially, an increasing number of portable devices are now
equipped with wireless network interfaces, so that ad hoc
networks can be formed, opening the door to a wide range
of decentralised and ubiquitous content exchanges, including:
file sharing, interactive games, and information updates (e.g.,
news headlines, traffic congestion updates, etc.), when cen-
tralised connectivity is expensive or unreliable. People spend a

considerable amount of time traveling (e.g., to work or school),
and enjoying leisure time (e.g., in coffee shops, bars). While
traveling, such as during a daily commute through a city,
people enjoy listening to music or watching movies to entertain
themselves in what would otherwise be unused time. The
availability of wireless network interfaces on portable devices
opens the door to spontaneous, though not always reliable,
communication between these devices. Despite their lack of
administration and organisation, these connections can still
be utilised for useful data transmission and content sharing.
However, a key issue for users of these devices is how to
decide whom to interact with among this variable plethora of
interconnected peers.

Traditionally, finding ‘who to interact with’ has mainly
been seen as a problem of understanding who is offering
the service required. Most service discovery and selection
frameworks, developed for both traditional distributed systems
and ubiquitous systems, focus on how to describe services,
how to formulate and spread queries, and then match queries
with service descriptions [1]. However, in this formulation
of the problem, the ad hoc nature of pervasive interactions
is not taken into account, in particular the following two
challenges have been overlooked: first, how to identify, among
the providers offering a desired service, those that are likely
to be connected long enough for the service provision to
complete; second, how to select trustworthy providers thatwill
actually deliver the service/content as promised.

The concept of thefamiliar stranger [2], someone that
we may often see but do not personally know, is a useful
property for the creation of digital relationships. In everyday
life people often followseasonal movementpatterns, traveling
very similar routes regularly and visiting the same places (e.g.,
the same journey to work, entering a coffee shop, going to
their local pub, etc.). People possessing similar patternswill
be more likely to be regularly colocated with each other.
Device connection history could thus be used to improve
future data communication. Even if nodes did move randomly,
which could be the case for some specific applications [3],
there would still be some locality information to be leveraged,
so that the future of colocations could be predicted and
exploited. A colocation-aware host selection framework could
thus use this knowledge to select those providers that will
most likely remain connected to the client for the duration
of the service. Various (co)location or mobility aware routing



algorithms, such as GPSR and CAR [4], [5] already exist;
however, not much has been done to exploit this knowledge
in service provision [6], [7]. These approaches mostly attempt
to overcome mobility and unstable connections to hide the
nature of the network.

Class 2 Bluetooth devices have a range of 10 meters, which
is suitable for communication between devices in relatively
stationary proximity, but will not provide stable connections
during free movement. In urban areas (where around half
the world’s population live) a lot of time is spent in close
proximity to many other people, e.g., when in mass transit
systems, offices or commercial districts. Most connections
formed during these periods are highly transient, and are
prone to being particularly unreliable. They vary from many
short connections (people passing by in the street) to a few
long ones (friends traveling/shopping together). Deviceswould
obviously benefit from identifying the colocations that arenot
expected to last long, to avoid setting up connections which
would lead to failed (incomplete) data transmissions.

Open networks, such as public wireless spaces, have been
recognised as easily open to abuse, where malicious users
selfishly try to maximise their own utility, or aim to disrupt
the utility of others. For example, providers may maliciously
falsify their service descriptions, in order to attract clients,
and then deliver the service incorrectly or at a much lower
standard. Because multiple identities could be created at
zero cost (Sybil attack), and because of continuous changes
in the network topology, similar abuses can be perpetrated
fairly easily without ever being ‘caught’. To discourage such
behaviours, distributed reputation management systems have
been proposed that enable devices to reason about the trust-
worthiness of other peers by means of past experiences and
recommendations [8]. As discussed above, ubiquitous systems
are often characterised by seasonal movement patterns of
groups of devices. We thus argue that a reputation-aware
content source selection protocol could be highly effective in
estimating a peers’ future behaviour, isolating maliciouspeers
and thus further reducing the chances of service provision
failures.

The contribution of this paper is twofold:
• A mechanism for content provider selection based on

expected colocation and trust information;
• An evaluation of the mechanism through the use of

realistic mobility models and real traces.
The paper is further structured as follows: Section II

illustrates a public transport scenario that we will use to
describe our approach. Section III provides a description of
the mechanisms behind the approach. The simulation setup and
results are documented in Section IV, followed by a discussion
(Section V), related work (Section VI) and some concluding
remarks (Section VII).

II. SCENARIO

In order to exemplify our approach to content source
selection, we introduce a typical pervasive computing sce-
nario where the previously made observations hold: com-

Figure 1. City commuting diagram.

muters moving through a large city by means of a mass
transport system (e.g., buses/trains), carrying a device (e.g.,
phone/PDA/music player) that can play audio/video files and
has Bluetooth capability. Users want to download and share
content while they commute, for example, to enjoy in their
journey to/from work or school. During periods of host-to-host
connectivity, devices may transfer music tracks or video clips
between each other. However, while some commuters may be
cooperative, many will display selfish behaviour, only sharing
content that will benefit them (e.g., pushing advertisements).

Fig. 1 depicts a road in a large metropolitan city at rush
hour, filled with people traveling on various forms of transport.
The user Alice (A) is traveling on her daily commute to work
and has been on her regular bus for the last three stops; she
wants to receive media for some entertainment. User Bob (B)
is also commuting on the same bus, having boarded two stops
ago. A tourist Carol (C) is traveling to a museum on a route
she has never been on before and she has been aboard since
the start of the route. Dave (D), another worker in the city,
is cycling along his usual route to work, which is similar to
the bus route. Advertising board E, located next to the road,
pushes advertisements in response to any requests for content.

Alice does not personally know Bob, but having been on
the same bus before due to their similar commutes, they
have exchanged files successfully in the past. Carol has never
been to this city before, and has never previously been in
contact with any of the other participants. Alice has also had
interactions with Dave before, but he is rarely proximate toher
for long periods of time because he cycles. Most attempts by
Alice to download a file from him have terminated mid-way
through, as they have moved out of communication range. This
is a big problem for Alice as she wasted battery power and
time that could have been spent on a successful download.
This also caused useless network contention. Alice has also
previously received advertisements, misrepresented as content
files, from board E; she discovered this upon inspecting (e.g.,
trying to listen to/display) the file. Having identified the
source of the transmitted data she did not find beneficial, her
device stored a negative reputation about E, in order to avoid
accepting content from E in the future. Also, Alice has only
just come within communication range of the board, as it is a



stationary device, and it will quickly be out of range again.
As noted in this scenario, colocation time and trustworthi-

ness are critical parameters upon which to base the selection
of content provider. In terms of colocation, the aim is to filter
out devices that are not really moving with us, like the case
of Dave in our scenario; such devices stay colocated for very
short periods and then move away. On the contrary, for devices
actually moving with us (like Bob and Carol), colocation time
has a certain minimum threshold (e.g., time between two or
more bus stops). We can use this threshold to distinguish
between ‘stably’ colocated devices and more transient ones.

The other parameter worth reasoning about is the provider’s
trustworthiness. Some sources may maliciously distributeun-
requested content (e.g., advertisements) in order to maximise
their own utility. Even without being malicious, the content
could have simply been incorrectly labeled or encoded in an
unknown format and be useless. To reduce interaction failures
due to unsatisfactory provider behaviour, nodes should favour
those providers they have interacted with in the past, and with
which transfers have been successful. Despite the openness
and dynamicity of the environments we are considering, we
argue that some trust knowledge can be built; this is because
of the likeliness of seasonal mobility patterns on most users
(e.g., commuters on public transport make repetitive routes at
similar times).

III. A PPROACH

In this section we describe the details of our approach. The
first few steps of content source discovery are common to
many approaches: a host looking for content emits a query,
which is propagated in the 1 hop range of the host. The hosts
receiving the request can reply to the query with a content
description message1. The requesting host waits for a specified
period of time and then examines the received replies in order
to select a device to rely upon as content provider.

The basic idea behind ourcontent provider selection process
is to filter out those sources that are either in contact for a short
time only (i.e., people just passing by) or that have not been
good providers in the past. With reference to our scenario,
when Alice begins a content search, she broadcasts a request
specifying the type of content that she would like to receive
(e.g. for music files, artist/genre/Top 40). Let us assume that
devices B, C and D have some content that matches, and that
they are willing to share it, so they each reply to A’s query.
Device E, in an attempt to push advertisements to as many
users as possible, always replies to requests positively. If Alice
receives no responses, she will wait for a short period and try
again; this is not regarded as a failure. All replying hosts are
then ranked according to Alice’s host selection policy; she
will then initiate the transfer with the preferred one. If the
connection with the source breaks, due to moving out of range,
the partially downloaded data is deleted and Alice will begin
another attempt to receive content. Failures due to a device’s

1Note that a reply is not indicative of the fact that the replying host has
the content, as hosts could lie if they can benefit from spreading content they
possess.

movement do not impact on the source’s trustworthiness,
assuming they do in fact depart. However, if Alice considers
the file inappropriate upon inspecting it, she records a negative
performance against the host that provided the file. Otherwise,
the transfer is regarded as a success, and Alice’s trust in that
provider is increased, indicating she is happy to receive more
content from them.

An abstract description of the steps performed by our source
selection algorithm can be found below. We split the reminder
of this section in two parts, in order to provide details of the
two key features of our selection algorithm.

Algorithm 1 Content download steps.
loop

Broadcast a request for content
Wait upon a timeout for replies
Score and rank replying hosts with selection policy
Perform download from host with highest score
if Data is validthen

Increase source reputation
else

Decrease source reputation
end if
Wait for short period

end loop

A. Colocation Detection

In order to disregard sources that stay colocated with a client
device for only a short period of time, our approach considers
the current length of colocation as an important measurement.
We define a threshold AGETHRESHOLD beyond which
someone is considered ‘colocated’: if this threshold is not
reached, it means that the source is still a risky choice (e.g.,
it may be a casual contact with someone traveling in the
opposite direction). The value of this parameter could be set
by the user, in order to allow them to choose the right balance
between high overall number of files downloaded (low values
of AGE THRESHOLD) and overall low number of failed
attempts (high values of AGETHRESHOLD); or be adaptive
to current conditions. This mechanism is motivated by the fact
that, in a transport environment such as the one described in
Section II, some peers are likely to be in the same relative
location for a while (e.g., they are on the same means of
transport), or they will only be colocated for a very short time
(e.g., Dave momentarily stopped next to the bus at a traffic
light).

In order to implement this idea, each host periodically
performs a Bluetooth inquiry procedure to find out which
hosts are within communication range; it then maintains a
list of ‘reachable’ hosts, together with their length of colo-
cation. Hosts that have been ‘reachable’ for longer than the
AGE THRESHOLD value, are then considered ‘colocated’.
The longer a host has been colocated, the higher the score it
gets from our selection algorithm, in the range[0, 1]. The value



asymptotically approaches 1, with each additional colocation
second adding a smaller amount to the score.

In our scenario, Alice will give Carol the highest score, as
she was already present on the bus when Alice got on board.
Bob, having got on only one stop after Alice, will have a
slightly lower score. Neither Dave or E will be ranked, as their
colocation times are shorter than the AGETHRESHOLD and
they are thus ignored.

B. Trust Selection

Content providers are also ranked based on their trust-
worthiness. In our scenario, the termmalicious is used to
indicate any data source that is not perceived as ‘beneficial’
to the receiving host. We thus classify as malicious those
hosts providing garbage data, pushing advertisements (spam),
incorrectly encoding or labeling music tracks, and the like. We
do not distinguish among these cases any further, the rationale
being that, if content supplied by a host is of no use, then the
receiver does not care about the reasons behind it, and just
wants to avoid similar problems in the future. We do not treat
failures due to broken connections as malicious, as we believe
these are not rational actions in our target scenario (e.g.,selfish
hosts cutting off the connection half-way through a download
would save more energy by initially refusing to serve the file).

Note that in this paper we are not attempting to build a
new trust system; rather, we take advantage of existing trust
approaches to improve a user’s selection. Each host holds
a trust value for other hosts that they have interacted with,
in the range[−1, 1], with −1 representing total distrust,+1
being absolute trust, and0 indicating a neutral opinion; a
bootstrapping value of0 is used to represent trust in an
unknown host. This value will then increase additively for
each successful interaction and decrease multiplicatively for
each unhelpful interaction with a host, thus favouring hosts
with whom successful transfers have been accomplished, while
severely punishing malicious ones. A more advanced trust
system could be employed, with reputation sharing or trusted
third parties, but that is out of the scope for this work. To
avoid hosts that repeatedly serve bad content, a minimum trust
level can be set to avoid attempting to download from them
in future, even if there are no other hosts available.

With reference to our target scenario, Alice has a highly
positive trust value for Bob as a consequence of a successful
history of interactions, while she has a neutral trust valuation
for Carol, as there have been no previous interactions between
them. This will neither improve nor decrease her ranking
score resulted from colocation analysis. Dave has successfully
provided a few content files to Alice before, and as such
has a slightly positive trust rating. Due to the pushing of
inappropriate content, any previous transfers with E have
resulted in a negative outcome, and its trust rating has been
decreased each time, leaving it with a negative score.

The combined analysis of colocation time and trustworthi-
ness to gauge host quality will lead to Alice selecting Bob
as the content source, as he will have the highest score. In
general, the two parameters are analysed separately and then

combined according to this formula:δ × coloc score + (1 −

δ)× trust score. The valueδ can be chosen in a range[0, 1],
in order to favour trust or colocation more.

IV. EVALUATION

In this section, we first describe our simulation settings; we
then provide a detailed analysis of the results we have obtained
to date.

A. Simulation Settings

We have used the discrete event simulator Omnet++ [9] to
model hosts attempting to download generic content files. We
assume that each host in our simulation has at least one file
that matches the request (given a storage capacity of 1000s of
content files on modern portable devices, this is not an overly
simplifying assumption). To ensure realistic results are gained,
connection logs from real life Bluetooth devices were used.
Also, synthetic mobility models are employed, in order to
experiment with parameters (e.g., host density/speed), which
we would not have the flexibility to tune when working on
real traces only.

More precisely, we have worked with four different connec-
tivity data inputs:

• Unitrans Run3 traces[10], collected on the Unitrans bus
system at University of California, Davis, USA in early
2006. Scanning devices were fixed into 33 buses giving
a trace of all the bus routes throughout a 5 day period.
The Bluetooth inquiry scan phase lasted for 5.12s, which
should allow detection of 99% of surrounding discover-
able hosts [11]. This was repeated every 2 minutes, giving
quite a fine granularity of device detection.

• Cambridge/Haggle-SR-10mins-Students traces[12], col-
lected during January 2006 in the city of Cambridge, UK.
Bluetooth sightings were recorded by 36 users, carrying
small Class 2 Bluetooth enabled devices (iMotes), for just
under 12 days, in office and conference environments.
The inquiry scan length was also 5.12s with 10 minutes
between scans, arguably a coarse granularity that will not
catch very many short colocation periods.

• Random Waypoint[13], which is probably the most
widely used mobility model in mobile simulations. Con-
trary to the characteristics of our target scenario, this
model assumes that nodes move without any correlation.
We use this model as a worst case scenario, to prove
the advantages of our approach even in unfavorable
situations. The traces were generated bysetdestfrom the
CMU Monarch project.

• Community Mobility Model[14] which is a model
founded on social network theory. It allows connections
of hosts to be grouped together in a way that is based
on social relationships between the individuals. This
grouping is then mapped to a topographical space, with
movements influenced by the strength of social ties,
that may also change with time. The properties of the
synthetically generated traces have been validated against
real traces from the Haggle project.



Bluetooth version 1.1 allows symmetric uploads and down-
loads at the highest transfer mode of DH5, that is, 433.92Kb/s
each way. However, this is just the specification throughput,
and it will usually not be achieved in real environments, dueto
interference in the 2.4GHz ISM radio band (such as from WiFi
or other Bluetooth devices). Indicative experiments between
two mobile phones in a fairly typical urban area (with some
interference from WiFi access points etc.), gave throughput as
low as 120Kb/s. We thus performed a set of experiments with
a selection of transfer rate ranges: 0-100, 100-200, 200-300,
300-400, 433.92-433.92 (uniformly randomly distributed). To
capture environments ranging from the greatest interference up
to the specification rating, unless otherwise stated the range
[200, 300] was used.

For a Bluetooth device to be able to detect surrounding
devices, and be discovered itself, it must change into the
Inquiry and Inquiry Scansubstates regularly. During these
substates, transmission/receipt of data cannot occur. Thelength
and frequency of the inquiry phase was predetermined for the
real traces being used, according to the study parameters. All
the experiments had an inquiry dwell time of 5.12s, which was
repeated every 10 minutes in the Haggle traces, and every
2 minutes for the others. We took this into account in the
experiments, by reducing the data transfer rates accordingto
the appropriate substate length and frequency. Also, while
content data is being transmitted to a client, the provider
becomes busy and unable to process any other requests for
downloads.

In terms of content files, we assume their size to be similar
to an MPEG 1 Layer 3 (MP3) audio file, with average bitrate
240Kb/s and length approximately 3 minutes. This results
in files of around 5MB. There are many other audio file
formats in popular usage (Ogg Vorbis, AAC, WMA), which
give a relatively similar file size, obviously the exact file size
will be dependent on the audio length, encoding type and
encoding program. File sizes are defined according to normal
distributions with means of 4, 5, 6, 7 and 8MBs with a standard
deviation of 1MB. This covers the range from low quality
MP3s to small videos.

In the first set of experiments we describe, all hosts are
assumed to be non-malicious. However, to analyse the impact
of the presence of malicious nodes in the ad hoc network,
nodes which exhibit non-cooperating behaviour must be in-
troduced. When testing resilience against malicious behaviour,
up to 50% of nodes were set to be malicious. A malicious
node is one thatalways serves malicious content. Though
a simplification, the reasoning for this is that spamming
hosts will blindly push advertisements, and hosts that have
their media library in an unrecognisable format will also
always serve unsuitable content. When receiving data from
a malicious host, the transfer completes as normal; it is only
after receipt of the complete file that the data is recognised
as malicious. After a node has served two malicious files to
a given client, it is blacklisted and that client will not accept
content from it in the future.

Four different selection behaviours were tested when choos-

ing which host to attempt to download from:

• RANDOM: devices make no effort to discern which
provider is best, and simply select a random one out of
the current available neighbours. This provides a lower
bound, useful for analysing the improvements from our
algorithm;

• COLOCATION: only the colocation-aware aspect of
our protocol is used to choose a provider, with
AGE THRESHOLD equal to 0.15. This ignores connec-
tions newer than 140 seconds (two inquiry scans in the
Unitrans experiment);

• TRUST: only the trust rating of nodes is used to rank and
select a content source;

• TRUST+COLOC: both metrics are used to score the
providers, and are given equal weight when computing
the final score (i.e.,δ = 0.5). Hosts that are not ‘colo-
cated’ or trustworthy enough are still ignored.

B. Results

In this section, we analyse some of the results obtained
during our simulations. In particular, for each of our four
traces (Unitrans, Haggle, Random Waypoint and Community
Mobility Model), we compare the content download success
rate of the selection techniques listed above, when varying
parameters:transfer rate, file sizeandmalicious rate. The suc-
cess rate is computed as the number of successfully completed
downloads, over number of attempts; ignoring requests that
were not satisfied due to no neighbours being present, as no
selection methodology could overcome this problem.

1) Transfer Rate:Fig. 2 shows the effect of the wireless
connection throughput upon the success rate. The file size
parameter was set at 5MB, with no malicious hosts. Each
source of trace input is represented, showing the success
percentage of attempted downloads when using the RANDOM
and COLOCATION selection schemes (given that there are
no malicious nodes in this case, we are not considering trust-
based selection schemes). As the graph shows, the success rate
dramatically increases when using colocation reasoning, in all
four traces. Unitrans experiences an improvement of around
25%. The Haggle traces already have a high success rate when
using RANDOM; however, when using COLOCATION the
improvement is still over 10% across all transfer rates. Quite
surprisingly, RWP benefits reasonably from COLOCATION,
despite hosts moving at random. As expected, CMM shows
a huge improvement, going from below 30% to always over
80% success rate.

The different gains are due to features of the traces them-
selves, in particular, average colocation duration among any
two hosts. If hosts are generally colocated for long periodsof
time, then selection is less important and downloads should
be initiated as early as possible. On the contrary, if there
are many transient connections constantly appearing, these
must be ignored, in order to reduce failure rates, even at the
expense of delaying the beginning of a download. We have
measured the average colocation duration and, as expected,
the lower this value, the higher the benefit of COLOCATION
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Figure 2. Transfer rate impact.

versus RANDOM. Haggle, for example, has a mean colocation
duration of 1178 seconds, which is long enough to transfer a
5MB file at 35Kb/s, so that even RANDOM gives good results.
The Unitrans hosts were only colocated for a mean duration
of 400 seconds, and so a 5MB transfer would need just over
100Kb/s throughput. CMM hosts were only colocated for a
mean of 302 seconds, which would require at least 140Kb/s
to transfer 5MB in time, thus the higher reduction in failures
when using COLOCATION. All traces show a quick decline
under 150Kb/s mean throughput, due to many colocations
being too short to complete the (slow) file transfers.

2) File Size: When using the generic concept ofcontent,
the size of files being transferred could vary significantly.Fig.
3 shows the results from different file sizes with a medium
transfer rate of[200−300]Kb/s and no malicious nodes. As be-
fore, we compare two source selection techniques: RANDOM
and COLOCATION. The results obtained are similar to those
gathered when varying transfer rate: in particular, huge gains
are obtained when using COLOCATION over RANDOM, and
again this is especially so when the average colocation duration
is low. As the graph shows, the download success rate can be
kept above 60% for all traces, even when the content being
shared is much larger than standard music files, and starting
to enter the range of video-clip file sizes.

The dramatic reduction in failed downloads comes at a
cost. In fact, in an attempt to filter out sources which may
not be stably colocated with us, some false negatives occur,
that is, some sources are rejected when they would have
provided successful transfers. If such sources are the onlyones
colocated with a device, the download is not attempted at all,
thus reducing the overall number of files downloaded. In other
words, less downloads are attempted, but the success rate of
these attempts increases. Fig. 4 shows the percentage of files
that are downloaded using COLOCATION, with respect to
those that have been downloaded using RANDOM selection.
The Haggle traces only show a small reduction in the number
of downloads, again as a consequence of high average contact
time (i.e., it is often the case that a stable node is available to
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perform a file transfer). The reduction in downloaded files for
Unitrans and RWP is smaller, but still perfectly acceptable,
given the gain obtained in reducing incomplete transfers. The
biggest reduction occurs for the CMM traces, where only
around half the files that RANDOM would have procured are
being received. This indicates that the AGETHRESHOLD
was set too high, causing too many connections that would
have eventually succeeded being ignored. Note that, as the size
of the files increases, the relative throughput of the various
traces improves, as the RANDOM selection performance
deteriorates.

3) Malicious Rate: Fig. 5 shows the impact of the pres-
ence of malicious nodes serving inappropriate data upon
performance. Three selection policies are compared here:
RANDOM, TRUST and TRUST+COLOC. Unitrans, RWP
and CMM all show a small but consistent improvement
when using TRUST rather than RANDOM, whereas with
Haggle the improvement increases as the malicious rate
does. Quite interesting is the difference between TRUST and
TRUST+COLOC: even with a very high proportion of nodes
serving malicious content, it is still colocation reasoning that
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improves the success rate the most, with at least a 20%
gain when COLOCATION is added to the selection process.
This indicates that, even in mobile networks with malicious
agents, it is usually disconnections that cause most failures,
not inappropriate content being served. The only exception
to this is with Haggle and larger malicious rates, when pure
TRUST performs better than TRUST+COLOC.

When reasoning about trust, a major restriction of the actual
user traces is their limited duration: a matter of days is not
enough to build a reliable reputation store. In the Unitrans
traces, hosts only meet a mean of 5.9 times, and with the
Haggle traces just 3.7. Note that this is not the average number
of times a pair of hosts interact, but purely the number of times
they have met, so the actual chances for building an accurate
trust valuation from completed downloads is very low. To
approximate cyclic patterns of movement, we tried repeating
the Unitrans traces two and three times over, while caching
the collected trust valuations from one iteration to the next.
Though this will change some of the subtler features of the
data, the result of ‘training’ the system is akin to having some
history from a previous week of commuting. Fig. 6 shows the
benefit of using TRUST selection when repeating the data set.
The benefits are greater when the proportion of malicious hosts
increases, as having past information about nodes’ behaviour
becomes essential; also, as expected, the benefits are higher
when increasing the number of repetitions, as more knowledge
is built. In particular, using three repetitions and a large
proportion of malicious hosts, the TRUST approach gives
an 8.8% improvement. The RANDOM selection approach
obviously gives similar results no matter how many repetitions
there are, as no historical information is used.

V. D ISCUSSION

Overall our results show how a host may choose to drasti-
cally reduce the amount of failed attempts at content transfers
if they are willing to sacrifice some of the resulting throughput
of files in the system. The value of the AGETHRESHOLD
parameter (used to identify transient connections) is of key
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Figure 6. Unitrans malicious host impact when repeated.

importance, and the optimum point of failure reduction while
still receiving enough files is dependent on the underlying pat-
terns of connections. When applied to the Unitrans traces (file
size=5MB, transfer rate=[200,300]Kb/s, no maliciousness) we
only had 26% of the disconnections while still receiving 75%
of the files. The other real trace set, Haggle, suffered just 29%
of the disconnections with receipt of 91% of files. Hosts can
therefore choose to reduce the amount of network contention
they cause, and battery power they expend while sharing
content; important factors for small mobile devices. Making
the threshold adapt to the current environment’s average
colocation length would ensure flexibility of the system. The
experiments showed that different traces have very different
performances when attempting automated Bluetooth content
sharing. This would apply equally to actual deployments in
different environments, and on different user’s devices. Our
attempts to estimate the colocation and suitability of content
from a provider showed very promising results, with large
increases in the success of attempted downloads.

The inclusion of artificial history information for the Uni-
trans traces (by re-running the traces twice or three times)
increased the benefit of using a trust based system. This
indicates the presence of familiar nodes in the surrounding
area provides a means to overcome some of the unreliability
of mobile ubiquitous communications.

There are however limitations related to all the traces we
used: Unitrans are traces of the sightings made by particular
buses, and although useful and interesting, do not represent
the exact interaction patterns an individual person would face
(except maybe a bus driver). The Cambridge/Haggle traces
were from a small city, and the subjects in the study were also
students with less regularity than 9−5 to their movements, and
a lot of colocation with their own devices during night-time.
So although providing appropriate data they are not entirely
representative of the particular scenarios we are envisioning.
Namely, an environment of a large city with a high density of
nodes and group movement such as on public transport. In this
kind of environment the approach should behave even better



than what we have already seen here.

VI. RELATED WORK

Much work has focused on the challenges of achieving
services, including multi-hop routing, in mobile ad hoc net-
works (MANETs) [15]. There has been a focus on developing
multi-hop protocols for dissemination of service queries and
replies in pervasive settings [16], [17]. With respect to these
works, our approach takes a different perspective; in particular,
we have stated that there exist many classes of pervasive
computing applications (such as the public transport scenario
we have focused in this paper) for which it is important that the
requester and the provider are traveling together, in orderfor
a service provision to successfully complete. In this paperwe
do not assume any transitivity in the service provided, which
is allowed to happen strictly between two hosts.

In terms of Bluetooth network exploitation for service
provision, Bluespots [18] is a public transport based content
distribution system. Communication is based on an interaction
pattern of users connecting to a hub installed in a bus, rather
than peer-to-peer. Content that is deemed to be popular (e.g.,
music, news sites) is hosted on the hubs and is made available
to the public. This centralisation not only causes network
contention issues, but also restricts the flexibility of what data
can be shared. Furthermore, this work does not consider the
effect of peoples movement or the serving of inappropriate
content and has single points of failure. Bluetorrent [19] is a
peer-to-peer file sharing system using Bluetooth. It is similar
to the operation of Bittorrent, where files are split into small
pieces then downloaded and shared by clients. The main
focus in this work is to overcome the problem of many short
connections that occur between independently moving hosts,
without considering group movement. APs are used to seed
and spread selected content, requiring the creation of this
infrastructure and management of the injection of content into
the system. This work relies on enough people serving the
same version of a file to gain the advantage ofswarming.

VII. C ONCLUSIONS

We have presented an approach to content exchange for
opportunistic networks and described a public transport
scenario in which the approach could be applied. We have
used Bluetooth traces and realistic mobility models to
evaluate the approach. To further our exploration of ad hoc
content sharing, we plan to perform our own data collection.
Specifically of Bluetooth traces from consumer electronic
devices, focusing on traveling on a mass transport system.
We wish to gain traces over longer periods to investigate
whether sufficiently useful trust values can be accumulatedto
improve the amount of content made available to users. We
also plan to implement the content sharing system in a Java
MIDlet and Python script, to ensure deployability on a wide
enough selection of devices.
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