
1

Design and Evaluation of a Hybrid Physical Space
Service for Pervasive Computing Applications

Nancy Miller and Peter Steenkiste
Carnegie Mellon University
{nam, prs}@cs.cmu.edu

Abstract— In this paper we present the design and implementa-
tion of a space service that gives pervasive computing applications
both a hierarchical and coordinate-based view of physical space.
The space service supports both indoor and outdoor campus
environments and, besides relational and coordinate space infor-
mation, it also gives information on how spaces are connected and
relevant properties of spaces. We also evaluate the effectiveness
of our design using a set of diverse applications, including finding
the best “walking” path between two locations, giving walking
directions to people, WiFi-based localization, and drawing and
annotating maps. We have found that all of our applications
depend on both the hierarchical and coordinate views offered
by the service, suggesting that the hybrid space model is a very
powerful paradigm.

I. INTRODUCTION

One of the more challenging problems faced by pervasive
computing researchers is that of how to support applications
that need to reason about physical space. In order to support
mobile users effectively, we need a “physical space service”
that provides space information to a wide variety of applica-
tions that are used in very diverse environments. Some ap-
plications naturally benefit from a hierarchical representation
of space that uses real-world (symbolic) place names. Such a
representation directly supports relational queries (e.g. whether
two rooms are on the same floor) and the names are easy to
interpret by users. However, a hierarchical representation lacks
precision, so it is not appropriate for applications that need
to calculate distances (e.g. walking distance to a printer). For
such applications, a coordinate-based representation is needed.

To address these challenges, the CMU Aura project devel-
oped a “hybrid” space service that provides both a hierarchical
and coordinate-based view of physical spaces in an integrated
fashion [10]. The initial research focused on the development
of the hybrid space model and on demonstrating its function-
ality and performance using simple applications. The question
of whether the hybrid space model was useful for a wide
variety of applications was not addressed. Since deploying the
hybrid space service in 2002, we have used the service for a
number of pervasive computing applications. They range from
simple applications such as finding the closest printer, to more
involved applications such as identifying the best walking path
based on user preferences. Although most of our applications
initially targeted an office environment, we have also used the
space service in museum and residential environments.

In this paper we use these applications to evaluate the
functionality offered by our hybrid space service. We have

found that the hybrid space model is a very powerful paradigm.
In fact, all the applications that use the space service benefit
from having both the hierarchical and coordinate views of
space. However, we have also learned that the hybrid space
model is not sufficient. Extensions are needed in three areas:
applications need information on connectivity between spaces
(e.g. doors, stairs, etc.); we need to support both inside and
outside spaces, since mobile users naturally move between
buildings; and finally, applications need additional informa-
tion about spaces (such as the type of space) so they can
effectively communicate with users. These extensions need
to be integrated carefully into the hybrid space model so the
information can be retrieved easily and efficiently.

The paper is organized as follows. Section II presents a
motivating application. In Sections III and IV we describe the
basic hybrid space service and our extensions. In Sections V
through VII we use a set of applications to evaluate both
the performance and functionality of the hybrid space service.
Finally we discuss related work and summarize our results.

II. PROBLEM DEFINITION AND REQUIREMENTS

Consider the following motivating scenario:
Mary, a new student, just arrived on campus. How might

a campus guide help her? As she starts her day, she first
needs to find a convenient place to eat breakfast, so she
asks the campus guide for the nearest restaurants. The guide
determines her location based on her WiFi device and offers
her a list of options. After she has selected one, the guide
gives her directions and shows her a marked up map. It
picks a path that is consistent with her preferences, which
she specified earlier. During the day, the campus guide also
gets her directions to the closest restroom, a quiet place to
study, and a nearby printer to print out her class schedule.
In the afternoon, she has her first class. The campus guide
estimates how long it will take to walk to the auditorium, and
alerts her in time so she can get a good seat. It takes into
account the fact that the elevators are busy right before class.

The campus guide in the above scenario consists of a set of
applications, described in Sections V and VI, that use space
information in a variety of ways. While the applications are
diverse, we can identify several common requirements for the
space service:

• Diverse space information. We need to be able to
express exact points (e.g., printer location), named en-

2

closed spaces (e.g. an office), ill-defined unnamed spaces
(e.g. the area covered by a wireless access point), and
collections of spaces (e.g. a floor of offices).

• Support for diverse environments. Users will naturally
move between inside and outside areas, so both must be
supported by the space service.

• Diverse uses of information. Applications use space in-
formation for deriving properties of spaces (e.g. calculate
distances), optimization (e.g. shortest walking path), and
effective communication with users (e.g. give directions).

• Scalability and efficiency. The space service must re-
spond to queries in a reasonable amount of time, even
for large spaces such as an entire campus.

Besides the above requirements for the space service, the
applications also share a number of requirements. For example,
several applications make use of user preferences or need in-
formation not related to physical spaces (e.g. class schedules),
including possibly dynamic information (e.g. when elevators
are busy). In Aura, this information is provided by the Con-
textual Information Service (CIS), which makes a variety of
information available to context-aware applications [11].

III. SPACE SERVICE

In this section, we describe the hybrid space service that
has been used in project Aura for the past four years.

A. A Hybrid Space Model

In [10], we introduced a “hybrid” space model that captures
both the hierarchical and coordinate aspects of physical space
in an integrated fashion. The motivation for the hybrid design
is that hierarchical and coordinate space models have comple-
mentary strengths and weaknesses [10]. As a result, pervasive
computing applications can benefit from having access to both
“views” of physical space. In the remainder of this section
we first introduce the hierarchical location model and then
elaborate on the hybrid space model.

The starting point for the hybrid model is the hierarchical
location model: we view the world as a hierarchy of spaces
where each level refines and subdivides the spaces of the
previous level. We augment this hierarchical model with a
coordinate view by allowing each space in the hierarchy to
define a coordinate system that can be used to specify points
or areas within that space. The coordinates allow us to define
points or areas for which there is no representation in the
hierarchical name system. Spaces may want to use their own
coordinate systems for several reasons. First, they may use
different types of coordinates (e.g. geometric versus GPS).
Second, it makes it possible to enter data and serve queries
for different spaces independently; this helps the system scale.

Locations are represented using the Aura Location Identifier
(ALI). ALIs can represent a point (e.g. location of a printer),
a physical space (e.g. a room), or an arbitrary area (e.g. the
area covered by a wireless access point). Generally, an ALI
consists of a hierarchical name, identifying a physical space.
For example, the following space identifier represents room
3115 on the 3rd floor of Wean Hall at CMU:

ali://cmu/wean-hall/floor3/3100-corridor/3115

This symbolic name is optionally followed by coordinates
identifying a point or area in that physical space. The co-
ordinates are relative to the coordinate system associated with
that physical space. For example, the following point identifier
represents the point located at (10,4,1) within the coordinate
system of room 3718:

ali://cmu/wean-hall/floor3/3700-corridor/3718#(10,4,1)

Campus

Engineering
Building

Computer
Science
Building

Humanities
Building

Floor 3Floor 1

1300-corridor 3100-corridor 3700-corridor

1315 3122 3708

.....

.....

.....

.....

.....

Fig. 1. Example Space Tree

The hybrid space model represents the physical space as a
hierarchical space tree. The structure of the tree reflects the
hierarchical aspect of the space model, while each node in the
tree includes geometric attributes and other properties. These
attributes include the shape of the space (e.g. cube, cylinder,
or any other three dimensional polygon), and the origin and
orientation of the space’s coordinate system relative to the
coordinate system of its parent. We use this information to
translate between different coordinate systems. For example,
if we have local coordinates for two points in different rooms,
we can transform them into the shared coordinate system of
the building, allowing us to calculate the distance between the
two points. Figure 1 shows an example of a partial space tree.

B. A Hybrid Space Service

The space service stores the geometric space tree in a
relational database as explained in [10], although we currently
use MySQL instead of PostgreSQL to simplify maintenance.
We populate the database using a data entry program that reads
building maps in an AutoCAD file format [1]. Spatial data can
be manipulated using operations that fall into three categories.
Relational queries, such as “contains” and “subspaces”, lever-
age the space hierarchy. Geometric queries, such as “distance”
and coordinate translation, use the coordinate representation.
Finally, we have hybrid queries that map between hierarchical
names and coordinates. For example, we can translate the
coordinates of a point in a building into the hierarchical name
of the room that contains it.

IV. MAKING THE SPACE SERVICE USEFUL

Over the past several years, we have used our hybrid space
service to support a variety of applications. As we describe
in Sections V through VII, we have learned that the hybrid
space model is very powerful, especially for more complex

3

From ali://cmu/wean-hall/floor3/3100-corridor/3115
To ali://cmu/wean-hall/floor3/3100-corridor/3117
Location ali://cmu/wean-hall/floor3#(12,35,8)
Properties extra information

Fig. 2. Key fields in the representation of a door

applications. However, we have also found that in order to
effectively support diverse applications, the service needs to
provide additional types of information. For example, many
applications need information on how spaces are connected
and need to interact with users in physical space. This infor-
mation must be properly integrated with the hierarchical space
tree so it can be accessed efficiently. Moreover, the space
service needs to cover outside areas, not just buildings. We
describe these extensions in this section.

A. Capturing connectivity

The original space service did not provide information on
spatial connectivity. This was not needed for simple appli-
cations such as keeping track of where objects are located,
but navigation applications for mobile users clearly need
information on how spaces are connected.

There are many ways of adding this information to the space
service. The obvious solution is to associate the connectivity
information with the nodes in the space tree, i.e. we associate
with each node (space) a list of the nodes (spaces) that it is
connected to. This approach has the advantage that it auto-
matically captures the hierarchical nature of the connectivity
information. For example, information on doors and other
connections between spaces would be stored at the “room”
level, while elevator information would be stored at the “floor”
level. However, the disadvantage is that this combines diverse
information in the same data structure, which can complicate
applications and make queries more expensive. For example,
connectivity-oriented applications will have to search through
the space tree, which contains much more information than
they need.

Instead we opted for a representation that stores connectivity
information separately and uses ALIs to link it to the hierar-
chical space tree. Figure 2 shows how a door is represented. It
identifies the two rooms it connects (“To” and “From” fields)
and the location of the door in the coordinate system of a space
that is the shared parent of the two rooms (the floor, in this
case). Additional fields are used to represent properties (e.g.
emergency use only). The door specifies connectivity in one
direction, allowing us to represent doors that are not symmetric
(e.g. exit-only doors in a museum). Most doors will have two
entries in the table, one for each direction.

Similar data structures are used to represent connectivity
at other levels of the space hierarchy. The main difference
is that the ALIs point to different levels in the hierarchical
space tree. For example, a building typically has connectivity
at the room level (doors), floor level (elevators and stairs) and
building level (external doors). Each of these are stored in
different tables in the database. However, the tables have the
same format, thus simplifying development.

B. Representing outdoor space information

The goal of our original space service was to support
pervasive computing applications inside buildings. We chose to
work with inside spaces because of the Aura project’s focus on
office environments. Moreover, the representation of outside
spaces had already been explored very extensively [16], [15].
However, we discovered that applications need to support
users not only as they move around inside a building, but
also when they walk between buildings. Instead of using a
different representation for outside spaces, similar to that used
by applications that provide driving directions, we decided
to reuse our indoor representation for outdoor areas. The
advantage of this approach is that it simplifies applications that
work both inside and outside. The simple and natural way to
do this is to add a level at the top of the hierarchical space
tree (Figure 1). Of course, the problem is more difficult than
just extending the space tree, since outdoor spaces generally
do not look like buildings or even floors in buildings.

Fig. 3. Spaces in an outdoor area

When comparing indoor and outdoor space representations
used by pervasive computing applications, we found that
they are fundamentally different. Indoor representations tend
to view the physical world as consisting of sets of spaces,
often organized in a hierarchy. In contrast, many outdoor
representations look at the physical world as consisting of sets
of paths that provide a means of moving between two points.
Paths come in many forms, such as highways, residential
streets, and pedestrian walkways. The distinction between a
path-based versus a space-based representation is probably
the result of differences in the nature of both spaces and
applications:

• Indoor spaces typically consist of open areas in which
people can move around freely, while many outside
spaces tend to restrict the movement of most users to
specific paths.

• Most applications designed for outdoor use focus on
navigation, so paths are a natural primitive for the space
representation. In contrast, indoor pervasive computing
applications tend to be centered around rooms; they need
to know where (in what room) people and objects are
located. Indoor navigation is also of interest, but it is
typically not the predominant application.

Our focus for the outdoor space representation is on campus

4

environments, which typically consist of different areas, some
of which restrict movement to paths. Figure 3 illustrates this
using a partial map of the CMU campus; some areas are
marked with dashed lines. We decided to represent the outside
areas as spaces in the space tree, so the outside part of
the campus is handled as a floor of a building. However, it
is possible to add additional hierarchy, similar to the way
we break up large floors into separate corridors. For the
connectivity between outside spaces we use the points where
walkways cross area boundaries (stars in Figure 3). When an
outside space is directly accessible from a building, we use
an “external” connectivity table to represent the outside door.
This table is similar to the one in Figure 2, but it represents
connectivity at the top level of the hierarchical space tree.
Finally, all coordinates in the space service are 3-dimensional,
so we automatically capture relative height between areas.

In the current implementation, we assume that the mobility
model in an outside space is similar to that of a room: people
can walk in a straight line from any door/intersection to any
other door/intersection. While this works reasonably well for
our campus, in general it may be necessary to add “paths” to
the space model that specify how people can move in a space.
This may also be useful for some indoor spaces, since large
“rooms” (e.g. auditoriums, convention floors) often restrict
movement along specific paths. If we want to extend the Aura
space service to support “path centric” spaces (e.g. urban or
rural areas), we will have to consider giving paths a more
prominent role in the space representation.

C. Adding semantic information

The space service described so far allows applications to
make decisions involving physical space. However, additional
information about physical spaces is often needed, especially
when applications need to interact with users. For example,
while an office and an outside space have the same internal
representation, it is useful to distinguish between them when
giving directions to users. Similarly, it is also useful to asso-
ciate additional information with “space connections” (doors,
elevators). Relevant information can include usage restrictions
(e.g. not handicapped accessible) and hints for people, such
as the color of a door, or distinctive landmarks.

We could add this information to the space service in two
ways. The first option is to embed the information into the
hierarchical space tree, by adding fields to the nodes. The alter-
native is to create a separate database or database table which
uses ALIs to link the information to the relevant spaces or
connections. The best option depends on how the information
will be used. If the information is fairly standard (e.g. type of
space) and is likely to be used by most applications, it may be
appropriate to embed it in the space tree. If the information is
more specialized (e.g. waiting times for elevators, distinctive
landmarks), storing it separately is likely to be more efficient.

Most of the information we need to store lends itself to
having one or more “data” fields associated with spaces or con-
nections. Information is currently represented using attribute-
value pairs (e.g. space-type:office). We hope to replace this
with an ontology-based representation [22] in the future.

V. WALKING DISTANCE ESTIMATION

In this section we discuss how our space service supports
the calculation of (shortest) walking paths and distances. We
first describe our design for the navigation algorithm and then
present our implementation and its performance.

A. Design

Calculating walking paths and distances using brute force
solutions such as exhaustive search are clearly not going
to scale. Instead, we achieve scalability by leveraging the
hierarchical nature of the space service. Our solution finds
paths at three different levels: Inter-building, Multi-floor, and
Single-floor. The Inter-building level deals with queries that
span multiple buildings, including outside spaces (Section IV-
B). The Multi-floor level of the hierarchy concerns a single
building where the starting and ending points of the path are
on different floors. The Single-floor case handles queries that
are contained on one floor of a single building. For each level
of the hierarchy, we build a graph consisting of the spaces and
connections at that level and we use a graph-based shortest
path algorithm to find an optimal walking path. The three
levels build on each other as is shown in Figure 4; the Inter-
Building component uses Multi-Floor component.

Single-Floor

Multi-Floor

Inter-Building
User

Preferences

Space
Database

Dijkstra

Fig. 4. Hierarchical Path Finding Algorithm

For the Single-floor case, the most obvious way to design
the graph is to use the spaces as the nodes, and the doors as the
links. However, this approach has the disadvantage that it is not
clear how to calculate the distance (or weight) for each link,
information that is needed to optimize walking distance. It is
possible to use the distance between the centers of the spaces
as the weight for the links, but this is at best an approximation,
since people will not always walk through the center of the
room. This approach also does not work well at the higher
levels of the hierarchy. Therefore, we chose to do it the other
way around: the doors are the nodes and the spaces are the
links. Moreover, the starting point (e.g. the user’s current
location) and end point (e.g. the location of a printer) of the
path are also nodes in the graph. A shortest path will consist
of the starting point, followed by a sequence of doors, and the
end point. The appropriate weight for the links in the graph
is the geographic distance between the nodes, which can be
readily calculated based on the coordinate information in the
space service database. Note that with this design, all links are
bi-directional.

The Multi-floor case uses the same design approach, except
that the “connections” are now stairs and elevators instead of

5

Floor 1

Floor 4

Floor 3

Floor 2

ElevatorsStairs Stairs

Fig. 5. Multi-floor example

doors. Specifically, the nodes in the graph include, besides
the starting and ending point, the locations where people can
enter or leave a stairwell or an elevator. Figure 5 shows an
example of a Multi-floor graph. The solid arrows represent
an elevator (on the right) and dashed arrows show stairs (in
the middle and on the left). The solid and dashed vertical
arrows are links in the graph and their endpoints are nodes.
The weight associated with those links could be based on the
user’s preferences with respect the use of stairs and elevators.
On each floor, the dotted lines represent the paths between the
stairs and elevators, as well as the paths from the starting point
and endpoint (the triangle, square, and circle) to the stairs and
elevator on that floor. They are also links in the graph and their
weight is determined by the Single-floor algorithm based on
the walking distance.

An appropriate path can now be determined by applying a
shortest path algorithm to the graph. For example, suppose the
triangle and square are the starting point and end point in in
Figure 5. Assuming no preference between stairs and elevators
(i.e. they have equal weight), the shortest path would use the
left stairwell to go to the second floor and then the central
stairwell to go back to the right part of the third floor. However,
if the user indicates a strong preference for using elevators, the
algorithm would return a path that uses the elevators to travel
from the second to the third floor (assuming walking down
stairs gets a lower weight than walking up stairs).

The graph for the Inter-Building case is constructed in a
manner similar to the Multi-Floor case. The nodes include the
external doors of buildings, the connections between outdoor
spaces, and the starting point and the end point. The weights
of the links are calculated recursively using the Multi-Floor
and Single-Floor algorithms.

The above algorithm uses and depends on both the hier-
archical and coordinate aspects of the space service. The hi-
erarchical information, including the hierarchical connectivity
information, is used to structure the multi-level algorithm and
to build the graphs at each level. The coordinate information
is used to calculate the weights of the links.

B. Implementation

When it receives a query, the applications first determines
which level of the hierarchy it needs to start from (Figure 4),

that is, whether the start and end locations are on the same
floor, on different floors of a building, or in different buildings
(including outside spaces). It then builds the relevant graph for
that level. This requires only connectivity information for that
level, which, as we explained in Section IV-A, which is stored
separately from the space tree so it can be accessed efficiently.
We also need to add links for the starting and ending locations.
In the multi-floor case, it may be necessary add additional
links for some buildings. For example, when not all stairs and
elevators reach all floors, as in Figure 5, we may also need
to include links between stairs and elevators on intermediate
floors.

Once the graphs have been built, weights are applied to
the links. As described above, in the Single-floor case, the
weights are distances, which can be calculated using the
coordinate information. In the Multi-Floor (Multi-Building)
case, weights are calculated by calling the Single-Floor (Multi-
Floor) algorithm. It is also possible to adjust the weights
to account for crowded rooms or user preferences. Once
the graphs have been built and weighted, we use Dijkstra’s
Algorithm [7] to determine the shortest path.

This basic implementation can be improved substantially
using some simple optimizations. First, when we build the
Single-Floor graph, we can prune the graph by leaving out
the doors that are the only entrance to spaces that are not
involved in our query (these would be leaf nodes in the graph).
Since many rooms have only one door, this can reduce the size
of the graph substantially. For example, for buildings on the
CMU campus, this pruning optimization reduces the size of
the graph by about 75%. We can further improve efficiency
using caching. Entire graphs, especially at the Multi-Floor and
Inter-Building level, are likely to be the same for many queries,
so they can cached. Similarly, assuming the weights of edges
are the same, the results of queries can often be cached. For
example, the paths and distances between external doors of
buildings (for a Multi-Building query) and between stairs and
elevators (Multi-Floor query) can be reused.

C. Performance Results

In this section we will present the results of some exper-
iments run to test our walking path calculation. Our space
service is implemented in Java (jdk 1.5) and uses MySQL as
the database for storing space information. For these experi-
ments, both were running on a 1.5GHz Intel processor with
256MB of memory.

We ran three types of experiments, one to test each level
of the hierarchy: Inter-building, Multi-floor, and Single-floor.
For each experiment, we ran the same query in four different
configurations to show the effect of our optimizations: with
and without pruning and with and without caching. The Inter-
building query was run using a data set that contained two
buildings, and the starting and ending points were on the
same floor as the door connecting the buildings. The Single-
floor and Multi-floor queries were run on a data set that
consisted of two adjacent floors with three stairwells and one
elevator connecting them. Each floor had about 120 rooms and
corridors, and included multiple cycles.

6

0

500

1000

1500

2000

2500

Single Floor 1 Single Floor 2 Multi Floor 1 Multi Floor 2 Multi Floor 3 Multi Building

R
un

ni
ng

 T
im

e
(m

s)

Without Pruning, Not Cached With Pruning, Not Cached Without Pruning, Cached With Pruning, Cached

Fig. 6. Experimental Results

Figure 6 shows the running times for these queries in
milliseconds. The fully optimized case took about 200-300 ms
to answer each of our queries, which is a reasonable response
time. As expected, both pruning and caching have a significant
effect on the running time of the query, but caching clearly
pays off the most. Pruning reduced the running time by about
30% on average, and caching reduced it by an average of 73%.

VI. OTHER APPLICATIONS

In this section we give an overview of several other appli-
cations that use the space service, focusing on how they use
the hierarchical and coordinate views of the space service.

A. Giving directions

Once we have identified the shortest path between two
points and estimated the walking distance and time, we
may want to give the user directions on how to reach the
destination. We developed an application that provides written
directions on how to reach the destination [3], and also
overlays the path as a set of red arrows on top of a map, as
is described in the next section. In this section we sketch the
algorithm that is used for generating directions and highlight
the role of the hybrid space service.

The starting point for this application is a path consisting
of a list of ALIs as returned by the Walking Path application
(Section V). The ALIs contain the coordinates of connection
points (doors or hallway intersections) and, if needed, the stairs
or elevators that lie along the path from the source to the
destination. For each step, the application compares the x,y
coordinates of the current step on the path to the next one
to determine whether the user should turn left, right, or go
straight. The expected orientation of the user is also maintained
for each step, with the assumption that the user starts by facing
in the direction of the first door on the path and turns only
when prompted to by the instructions. Finally, when presenting
the directions to the user, the coordinates are translated into
human-understandable names for the spaces, e.g. “Turn left in
the corridor and walk for 15 yards.”

The hybrid nature of our space service is very important
for this application. The symbolic naming hierarchy allows
us to make the directions easier to interpret for users. For
example, most people would find the following instructions

cryptic: “start at (3,56,21) then walk 10 yards to (8,25,21).”
However, the symbolic names can easily be translated into
human-readable forms, either by using the semantic informa-
tion (Section IV-C) or (if needed) by parsing the symbolic
name. Information about the type of space also enables the
application to give more helpful instructions, e.g. “start in
Office 8202 and walk 10 yards down the corridor to Office
8209.” The coordinate-based representation is important as
well, as it is used to give distance information for each
“segment” of the path and to provide directional information,
such as whether a user should turn and if so, whether it is a
left or right turn.

Fig. 7. Map application example

B. Drawing and annotating maps

We also use our space service to draw a visual map of an
area and to annotate the map (Figure 7). The Map application
traverses the hierarchical space tree and uses the coordinates
of the polygon points that define each space to draw it on
the map. This application relies on both the hierarchical and
coordinate aspects of the hybrid space model. The traversal of
the hierarchical space tree is an efficient way of identifying
spaces that need to be shown on the map (e.g. a floor or
corridor). The hierarchical space view also forms the basis
for the “zoom” feature. For instance, if a user asks for a
map of a small area, the application will present a very
detailed map. When the user zooms out to view the entire
floor, the same level of detail would result in a very cluttered
image. Instead, the Map application “drops” one or more
levels from the bottom of the space hierarchy to reduce the
amount of detail, such as only showing major corridors but
not individual offices. This is a very effective and simple
approach to keep the generated maps readable and useful. The
coordinate information in the space service is used to draw the
spaces to scale.

Maps can also be annotated to highlight a location with a
symbol or identify a path using a sequence of arrows. This part
of the applications relies primarily on the coordinate view of
the space to precisely position symbols and path annotations.
However, it also needs the hierarchical view to translate the
coordinates to the highest level of the hierarchy shown on the
map.

7

C. Localization

Localization, or determining the location of a user, is a
critical part of many pervasive computing applications. Many
projects have explored localization based on triangulation in
802.11 wireless networks. While it is clearly possible to im-
plement a standalone triangulation-based localization system,
our WiFi localization system gains significant benefits from
using the hybrid space service.

Our localization service is based on the system described
in [4], which combines two techniques. The first technique
creates a vector of signal strengths of nearby access points
and tries to match it to the signal strength vectors of known
locations in a database. A good match in the database typically
results in an accurate location. If there is no good match,
the system uses triangulation based on the signal strength of
nearby access points with known locations. This crude esti-
mate of the user’s location is then given to the user, who can
correct it. The corrected location, together with the measured
signal strength vector, is then entered into the database. Over
time, the system gradually accumulates accurate localization
information for locations that are of interest to the user.

The triangulation component of the localization application
uses both the coordinate and hierarchical views of the space
service. The locations of the wireless access points are stored
using geometric coordinates relative to the building’s coordi-
nate system. This allows us to easily calculate a coordinate-
based position using triangulation. Next, the system uses
the hybrid space service to translate the coordinates into a
semantic name that can be used for interactions with the user.
Sometimes triangulation can result in “impossible” locations,
e.g. on the 7th floor outside of the boundaries of the building.
The system detects this using the polygon information stored
in the nodes of the hierarchical space tree. When this happens,
it moves the result to the nearest location inside the building.

D. Nearest X

The “Nearest X” application was the first application we
developed for the hybrid space service. It uses a simple
iterative algorithm the find the device (e.g. printer) or location
(e.g. restroom) of a certain type that is closest to the user. The
algorithm uses the space hierarchy to search spaces that are
increasingly further away from the user. For example, it first
searches the user’s corridor, then the floor, then adjacent floors,
etc. At each level, the original application used euclidean
distance (based on coordinates) to pick the nearest X. Clearly
this is a very rough approximation and using the Walking Path
application described in Section V would result in selections
that are more convenient for the user.

VII. DISCUSSION

Table I summarizes how the applications use the hybrid
space service, focusing on key operations. The hierarchical
view of the space service is used to help structure the
application (Walking, Map, Nearest X), to identify relevant
data (Map, Nearest X), and to obtain symbolic names so
space information can be looked up efficiently (Directions,
Localization). The coordinate information is used to calculate

Application Hierarchy Coordinates Conn. Inf.
Walking Structure algorithm Calculate distance Yes Yes

Scalability,efficiency
Directions Get symbolic names Calculate distance Yes Yes

Identify direction
Map Scoping of spaces Draw to scale Yes Yes

Level of detail Redraw
Localization Get symbolic names Triangulation No Yes

Points in building
Nearest X Scope search Calculate distance No No

TABLE I

USE OF HYBRID SPACE SERVICE FEATURES BY APPLICATIONS

distances (Walking, Directions, Map, Nearest X), but also
for localization (Localization) and to determine directional
information (Directions). The last two columns show which
applications use the space connectivity and semantic informa-
tion.

VIII. RELATED WORK

Several projects have addressed issues surrounding the rep-
resentation of physical space. Space clearly plays a critical role
in tourist information systems such as Cyberguide [13], Deep
Map [14], GUIDE [6], and the PinPoint Tourist Guide [18].
However, those projects have a greater focus on user interface
design and are designed to be standalone systems. In contrast,
our space service is designed as a lower level service upon
on which a guide (or other pervasive computing applications)
can be built.

Several projects have used hierarchical space representa-
tions. For example, Microsoft’s Semantic Spaces project [5]
represents the physical environment as a hierarchy of spaces. It
provides support for queries about where people and objects
are by corellating locations to physical spaces. However, it
lacks a physical coordinate-based representation of spaces and
objects, and thus is unable to compute distances or represent
locations precisely. In [21], the author presents a location
model based on geographic containment in which nodes in
the hierarchy can be executable. This offers a very flexible
and dynamic design that can be managed in a distributed
fashion and link directly to computing devices. The Nexus
project [2], [8] introduces an object oriented “augmented world
model” that stores information about objects and people as
well as spaces. Although the project defines a hierarchical
representation of space, the focus of the project is not so much
on this representation, but on how multiple heterogeneous
“augmented” areas can be linked and on how applications
interact with the augmented world.

Early space models that used both symbolic and geomet-
ric coordinates were developed by Leonhardt [12] and later
formalized and extended by Narayanan [17]. However, the
coordinate and hierarchical aspects of space in these projects
are not as tightly integrated as in our space service.

Nimbus [19], [20] presents a formal representation of se-
mantic names for spaces as well as a hierarchical structure
that allows for operations similar to our subspace/superspace
and pinpoint relations. Although Nimbus provides a way to
translate spatial coordinates into symbolic names, the two

8

representations are kept separate. Links between spaces are
logical rather than physical, i.e., the model does not contain
specific connecting points or ”doors” that provide a way to
move from one space to another. Dynamic changes in the
environment are also not supported.

The system presented in [9] is similar to our space service
in that it represents spaces as a symbolic hierarchy coupled
with location information for each space. Furthermore, spaces
are associated with ”exits” that connect them to other spaces.
This spatial connectivity information is organized as an ”exit
hierarchy” that parallels the symbolic hierarchy, with distances
between exits on each level of the hierarchy pre-computed and
stored. Paths are computed by walking through the exit tree
and adding up the distances. However, since the graph that
is used to calculate paths is a tree rather than a graph, the
system does not account for spaces that are connected in more
than one way. Because of this, the algorithm does not always
give the correct shortest path. Furthermore, since distances
(and, in effect, paths) are pre-computed, the model does not
deal with dynamic changes in the environment (e.g. crowds
or temporarily unpassable areas), nor is there an opportunity
to take into account personal preferences, such as elevators
vs. stairs. Also the spaces are stored as a logical tree without
information on how they relate to each other in physical space,
so there is little support for applications such as Localization,
Mapping or Giving Directions.

IX. CONCLUSION

In this paper we discussed the design and implementation
of a hybrid space service that presents pervasive computing
applications with an integrated hierarchical and coordinate-
based view of physical space. The same space service is used
for both inside and outside space, which is important since
users move between buildings. Finally, we described how we
can efficiently integrate additional information into the hybrid
space service, such as how spaces are connected and what they
look like to people.

We also leverage our experience with the space service to
evaluate the effectiveness of the hybrid space model for a
variety of applications. We found that all applications used in a
campus guide benefit from both the hierarchical and coordinate
views offered by the service, suggesting that the hybrid space
model is a very powerful paradigm.

REFERENCES

[1] AutoCAD developed by Autodesk, Inc., http://www.autodesk.com.
[2] BAUER, M., BECKER, C., AND ROTHERMEL, K. Location models

from the perspective of context-aware applications and mobile ad hoc
networks. In Workshop on Location Modeling for Ubiquitous Computing
(2001).

[3] BELUR, K. An Interactive Context-aware Navigation Applications. MS
thesis, Information Networking Insititute, Carnegie Mellon University,
May 2005.

[4] BHASKER, E., BROWN, S., AND GRISWOLD, W. Employing user feed-
back for fast, accurate, low-maintenance geolocationing. In Proceedings
of the Second IEEE International Conference on Pervasive Computing
and Communications (PerCom 2004) (March 2004), IEEE Computer
Society.

[5] BRUMITT, B., AND SHAFER, S. Topological world modeling using
semantic spaces. In Workshop on Location Modeling for Ubiquitous
Computing (2001).

[6] CHEVERST, K., DAVIES, N., MITCHELL, K., FRIDAY, A., AND EFS-
TRATIOU, C. Developing a context-aware electronic tourist guide: Some
issues and experiences. In Proceedings of CHI’00 (2000), ACM Press.

[7] DIJKSTRA, E. W. A note on two problems in connexion with graphs.
In Numerische Mathematik (1959), vol. 1, pp. 269–271.

[8] HOHL, F., U.KUBACH, A.LEONHARDI, ROTHERMEL, K., AND

SCHWEHM, M. Nexus - an open global infrastructure for spatial-aware
applications. In Proceedings of MobiCom (Seattle, USA, 1999).

[9] HU, H., AND LEE, D.-L. Semantic location modeling for location
navigation in mobile environment. In Proceedings of the 2004 IEEE
International Conference on Mobile Data Management (2004).

[10] JIANG, C., AND STEENKISTE, P. A hybrid location model with a
computable location identifier for ubiquitous computing. In The Fourth
International Conference on Ubiquitous Computing (UBICOMP 2002)
(Goteborg, Sweden, September 2002), vol. Lecture Notes in Computer
Science 2498, Springer, pp. 246–263.

[11] JUDD, G., AND STEENKISTE, P. Providing Contextual Information to
Pervasive Computing Applications. In IEEE International Conference
on Pervasive Computing (PERCOM) (March 2003), IEEE.

[12] LEONHARDT, U. Supporting location-awareness in open distributed
systems, 1998. PhD Thesis, Department of Computing, Imperial College
London.

[13] LONG, S., KOOPER, R., ABOWD, G. D., AND ATKESON, C. Rapid
prototyping of mobile context-aware applications: The cyberguide case
study. In Proceedings of the Second Annual International Conference
on Mobile Computing and Networking (1996), ACM Press, pp. 97–107.

[14] MALAKA, R., AND ZIPF, A. Deep map - challenging it research
in the framework of a tourist information system. In Information
and Communication Technologies in Tourism (2000), Springer-Verlag,
pp. 15–27.

[15] Mapquest Home Page, http://www.mapquest.com.
[16] Microsoft Streets & Trips, http://www.microsoft.com/streets/.
[17] NARAYANAN, A. K. Realms and states: a framework for loaction aware

mobile computing. In Proceedings of the First International Workshop
on Mobile Commerce (2001).

[18] ROTH, J. Context-aware web applications using the pinpoint infras-
tructure. In IADIS International Conference WWW/Internet (Lisbon,
Portugal, Nov 2002), IADIS Press, pp. 3–10.

[19] ROTH, J. Accessing location data in mobile environments – the nimbus
location model. In Mobile HCI 03 Workshop on Mobile and Ubiquitous
Information Access (Sep 2003), Springer-Verlag, pp. 256–270.

[20] ROTH, J. Flexible positioning for location-based services. In IADIS
Journal on WWW/Internet (Dec 2003), vol. I(2), IADIS Press, pp. 18–
32.

[21] SATOH, I. A location model for pervasive computing environments. In
Proceedings of the Third IEEE International Conference on Pervasive
Computing and Communications (PerCom 2005) (March 2005), IEEE
Computer Society.

[22] W3C. OWL Web Ontology Language Reference. Working Draft, 31
March 2003, http://www.w3.org/TR/owl-ref/, March 2003.

