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Abstract

A fully connected topology is critical to many fundamental network operations in wireless ad-hoc networks.
In this paper, we consider the problem of deploying additional wireless nodes to improve the connectivity of an
existing wireless network. Specifically, given a disconnected wireless network, we investigate how to deploy as
few additional nodes as possible so that the augmented network can be connected. The problem is termed as
the Connectivity Improvement(CI) problem. We first prove that CI is NP-complete, and then present a Delaunay
Triangulation-based algorithm,Connectivity Improvement using Delaunay Triangulation(CIDT). Depending on
the priority based on which the components in a disconnected network should be chosen to connect, we devise
several different versions of CIDT. We also present two additional optimization techniques to further improve the
performance of CIDT. Finally, we verify the effectiveness of CIDT, and compare the performance of its variations
via J-Simsimulation.

I. INTRODUCTION

Network connectivity has always been a research focus in wireless mobile ad hoc networks (MANETs)
and wireless sensor networks (WSNs). It is an indispensable function for network services to be in place.
Few network services can function if the network is disconnected.

The problem of connectivity maintenance for wireless networks is extremely difficult, because the
status of wireless links (which are formed on the fly as nodes move or adjust their transmission power)
depends greatly on that of other links in the vicinity, due to wireless interference in the physical layer and
medium contention in the MAC layer. Most research efforts have been concentrated on either analyzing the
asymptotic connectivity behavior of large-scale networks [1]–[5] or devising topology control protocols to
maintain connectivity in the presence of limited mobility (see [6] for a summary). Little attention has been
paid to improving or repairing network connectivity during network operations. Given that the connectivity
of a wireless network is susceptible to node mobility (typically in MANETs), node failure (typically
because of power depletion in WSNs), and unpredictable environment influences (typically in outdoor
networks), it is important tocontinuouslymaintain the connectivity even under all these unfavorable
conditions.

In this paper, we consider the problem of deploying additional wireless nodes to improve connectivity
of an existing wireless network. Specifically, given a disconnected wireless network, we investigate how to
deploy as few additional nodes as possible, so that the augmented network can be connected. This problem
can be cast to several applications in practice. For example, a WSN can be partitioned if some sensor
nodes die because of energy depletion or hardware failure. It is important to deploy as few new sensor
nodes (or mobile nodes such as robots) as possible to reconnect the network. Another example takes place
in future combat systems [7]. In a future combat system, a hierarchical communication structure is laid
with three layers: i) ground units, including troops, vehicles and sensors that are geographically distributed
over a battlefield and form one or more ground ad-hoc networks; ii) low-altitude unmanned aerial vehicles
(UAVs) for surveillance and maintenance of connectivity of the ground ad hoc networks; and iii) satellites
that connect UAVs and some of the ground vehicles with the joint force command center. As UAVs
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are equipped with long-range radios and satellite antennas, they can communicate with both the ground
vehicles and satellites, and serve as the “relay” nodes in the case that the ad-hoc networks on the ground
are partitioned. Since UAVs are scarce resources, it is essential to dispatch as few of them to desirable
locations so as to maintain network connectivity in the battlefield. Moreover, their locations should be
continuously adjusted, subject to the connectivity status change of ground entities (due to mobility of
these ground entities and signal attenuation and path loss caused by terrains). This implies the algorithm
should be computationally inexpensive and be invoked on a regular basis to update the fly path of these
UAVs.

We first prove the NP-completeness of theConnectivity Improvementproblem, and then propose a
simple, light-weight algorithm, calledConnectivity Improvement using Delaunay Triangulation(CIDT).
As the name suggests, the algorithm constructs a Delaunay Triangulation in the disconnected network, and
selects, based on different criteria, triangles to place new nodes. We study several versions of CIDT (each
version for a different selection criterion) and prove their correctness. We also present two additional
optimization techniques to further improve the performance. Finally we evaluate CIDT, comparing its
performance against a simple, baseline heuristic,Connectivity Improvement using Minimum Spanning
Tree (CIMST) via simulation. Simulation results show that one of the CIDT variations, CIDTS , render
the best performance under various scenarios.

The rest of the paper is organized as follows. After summarizing the related work in Section II, we
formulate the connectivity improvement problem and prove its NP-completeness in Section III. We then
propose CIDT and optimization techniques in Section IV. Following that, we evaluate the performance
of CIDT in Section V. Finally, we conclude the paper in Section VI.

II. RELATED WORK

In the section, we briefly review previous work that pertains to the connectivity issue in wireless
networks. Most of the works model the wireless networks asUnit Disk Graphs(UDGs) [8].

Gupta and Kumar showed in [1] that the critical common rangern for connectivity ofn independently
and uniformly distributed wireless nodes in a disk of unit area satisfies that, ifπr2

n = ln n+c(n)
n

, then
the resulting network is asymptotically connected with probability 1 if and only ifc(n) → ∞. In an
independent effort, Penrose showed in [2] thatMn, the length of the longest edge in the minimum spanning
tree ofn points randomly and uniformly distributed in a unit area square satisfies thatlimn→∞Pr(nπM2

n−
ln n ≤ α) = e−e−α

. This result is strong than that in [1] in the sense that it gives the exact expression of
the probability of the connectivity.

For k-connectivity of a geometric random graph with a transmission ranger, Penrose [4] proved that
the minimum value ofr with which the graph isk-connected is equal to the minimum value ofr with
which the graph has the minimum degree ofk, with probability 1 asn goes to infinity. Li et al. [5]
extended Penrose’s work and gave the lower and upper bounds of the minimum value ofr at which the
graph isk-connected.

Xue and Kumar [3] studied the relationship between connectivity and node degree from another angle.
They assumed the same number of nearest neighbors are maintained for each node, and showed that (i)
the network is asymptotically disconnected with probability 1 asn increases, if each node is connected to
less than0.074 log n nearest neighbors; and (ii) the network is asymptotically connected with probability
1 as n increases, if each node is connected to more than5.1774 logn nearest neighbors. Wan and Yi
[9] further studied the critical number of neighbors fork-connectivity and found the upper bound to be
αe log n, whereα > 1 is a real number ande ' 2.718 is the natural base.

Khuller [10] studied theConnectivity Augmentationproblem and determined a set of edges of minimum
weight to be inserted so that the resulting graph isλ-vertex(edge)-connected. The problem is NP-hard for
λ > 1. Khuller does not, however, consider the possibility of adding new vertices into the graph.

Ausiello et al. [11] considered theMinimum Geometric Disk Cover(MGDC) problem. Given a set of
points P in the Euclidean plane and a rational numberr > 0, they intend to find the set of centersC
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with the minimum cardinality, such that every point inP is covered by a disk of radiusr that is centered
at one of the points inC. This problem can be considered as a special case of a more general problem,
the Facility Location problem [12]. It is proved to be NP-complete [13]–[16], and a polynomial-time
approximation algorithm is presented in [17].

Yannakakis [18] studied the general node (edge) deletion problem in which the minimum number of
nodes (edges) is sought whose deletion results in a subgraph satisfying propertyπ, whereπ belongs to
a broad class of nontrivial properties that are hereditary on induced subgraphs. The problem is shown to
be NP-complete. Letπ be the property of “disconnectivity”, then the problem is related to the problem
we study in this paper. As Yannakakis approaches the problem from a very different angle, it is not clear
whether the results in [18] can also be applied to UDG.

III. PROBLEM STATEMENT

In this section, we define the problem ofConnectivity Improvement(CI) in wireless networks and
prove its NP-completeness. Let the initial network topology be represented by an undirected simple graph
G = (V, E) in the plane, whereV = {v1, v2, . . . , vn} is the set of nodes (vertices) with the common
transmission ranger1, andE = {(u, v) : d(u, v) ≤ r1, u, v ∈ V } is the set of links (edges), whered(u, v)
is the Euclidean distance betweenu andv. We assume there exists a monitoring system that provides the
coordinates of all nodes to the algorithm. In the example of FCSs, the UAVs may collect and provide
the position information of ground vehicles to the command center (or one of the UAVs that act as the
coordinator).

We would like to find a set of nodesU = {u1, u2, . . . , uk} with the minimum cardinality, such that
the augmented graphG∗ = (V ∗, E∗) is connected, whereV ∗ = V ∪ U and E∗ = {(u, v) : d(u, v) ≤
min{r1, r2}, u, v ∈ V ∗}, wherer2 is the transmission range of nodes inU . For clarity of presentation,
we assume thatr1 = r2 = r. However, the proposed algorithm CIDT can be easily adapted (with little
modification) to the case wherer1 6= r2. Nodes inV and U are termed asclients and connectors,
respectively.

Another closely related problem relates to connectivity improvement in the case that the number of
connectors is limited. Given the initial network topologyG = (V, E) and an integerm > 0 indicating
the number of available connectors, we intend to find a set of nodesU = {u1, u2, . . . , um} such that the
graphG∗ = (V ∗, E∗) is connected as much as possible. Here theconnectednessof a graphG is defined
as the percentage of nodes that are in the largest component ofG. This problem is termed asConnectivity
Improvement with Limited Connectors (CILC).

One point is worthy of mentioning. The CI problem is quite different from the MGDC problem. First,
if the inserted disks in MGDS are viewed as wireless nodes with certain transmission ranges, then the
augmented network in MGDS may not necessarily be connected; while the augmented network in CI
is connected. Second, in the MGDS problem,everynode has to be covered by a disk, while in the CI
problem, only a small number of nodes in a component have to be covered by a connector.

Now we prove the NP-completeness of a restricted version of CI wherer1 = r2 = 1. We use strings
of constant lengths to encode the coordinates of all client nodes and connector nodes, so that a compact
encoding with reasonable precision can be achieved.

Definition 1: CONNECTIVITY-IMPROVEMENT (CI)
INSTANCE:A graphG = (V, E) and an integerm > 0.
QUESTION:Is there aconnectorsetU of sizem or less such that the augmented graphG∗ = (V ∪U, E∗)
is connected?

Theorem 1:The CI problem is NP-complete.
Proof: It is easy to see CI∈NP since a nondeterministic algorithm needs only to guess the positions

of m connectors and check in polynomial-time whether the augmented graphG∗ is connected. To prove
that CI is NP-hard, we transform the 3-SAT problem [19] to the CI problem in polynomial-time, using a
technique similar to that in [16]. The 3-SAT problem is defined as follows:
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Fig. 1. The transformation scheme

Definition 2: 3-SATISFIABILITY (3SAT) [19]
INSTANCE:A set C = {c1, c2, . . . , cM} of clauses on a finite setX of variables, where|ci| = 3 for
1 ≤ i ≤ M .
QUESTION:Is there a truth assignment forX that satisfies all the clauses inC?

Let C = {c1, c2, . . . , cM} (where |ci| = 3 for 1 ≤ i ≤ M) be a set of clauses on a finite setX =
{x1, x2, . . . , xN} of variables making up an arbitrary instance of 3-SAT. We construct in polynomial time
an instance of CI that can be connected byk connectors if and only ifC is satisfiable.

The transformation scheme is illustrated in Figure 1. In Figure 1(a), an example is shown for an instance
of 3-SAT C = {{x1, x2, xN}, {x1, x3, xN}, . . . , {x1, x2, x3}}, where the wriggles near the clause nodes
for c1 andc2 represent negated literals. Each of the curved lines in Figure 1(a) is awire (Figure 1(b)) —
a set of nodes so arranged that (1) the distance between any two consecutive nodes is always less than1;
and (2) a node can only communicate with its two immediate neighbor nodes. At the crossover, the two
wires share one node, as shown in Figure 1(c).

As shown in Figures 1(d), each variablexi ∈ X corresponds to a set ofvariable nodes. This set of
variable nodes includes a closed loop of wire and an extra node for each clause it participates. These
nodes are so arranged thatd(v1, v3) = d(v2, v3) = 2 (or extremely close to2 depending on the encoding
scheme we used). To connectv3 to the wire, at least one connector has to be be added. There are two
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possible ways to connectv3 to the wire with the use of only one connector: Figure 1(e) illustrates the
position of the connectoru when the literal corresponding tou is true, and Figure 1(f) illustrates the
position ofu when the corresponding literal is false.

Associated with each of theM clauses inC is a set of 10 clause nodes located in a region in which
all 3 variable loops corresponding to the literals in the clause come into close proximity. By properly
arranging the variable nodes, it can be ensured that we only need to consider 3 nodes from each variable.
An example of such an arrangement for clausecM (Figure 1(a)) is shown in Figure 2: the round nodes are
variable nodes and the square nodes are clause nodes corresponding to the clausecM . The clause nodes
corresponding to the same clause are so arranged that (1) they belong to the same component, i.e., they
are connected to each other; (2) none of them can communicate with any variable node.

The variable nodes (round nodes) are arranged so that the clause nodes (square nodes) can be connected
to one of the loops for “free” if at least one of the three literals is true. For example in Figure 2, ifx1

is true, a connector should be added in the middle of the line segmentv1v2, which also connectsp and
v1. If none of the 3 literals is true, an extra connector is needed to connect the clause nodes to a loop.
Therefore, the graph consisting all the variable nodes and clause nodes can be connected by adding3M
connectors if and only ifC is satisfiable.

To see that this transformation can be performed in polynomial time, it suffices to observing that the
number of nodes in the graph is bounded byO(M × N). Hence the size of the CI instance is bounded
by a polynomial function of the size of the 3-SAT instance. In addition, every operations involved is
straightforward and can be finished in polynomial time.

IV. PROPOSEDALGORITHMS

Given that CI is NP-complete, we have to resort to heuristic algorithms to solve the problem unless
P=NP. In this section, we first describe a simple, baseline heuristic, calledConnectivity Improvement using
Minimum Spanning Tree(CIMST). Then we elaborate on several versions of the proposed algorithm,
CIDT, and prove their correctness. Finally, we present two optimization techniques to further improve the
performance of CIDT.
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Fig. 3. An example of CIMST

A. Connectivity Improvement using MST

To solve the CI problem, a straightforward solution is to first group the client nodes into connected
components, and then add connectors to merge the components. This can be implemented using the
Minimum Spanning Tree (MST). We first build the MST,T , of the node setV . Then for each edge
e ∈ T that is not inE (or equivalently,|e| > r), we add some connectors alonge to connect the two
end-nodes. In particular, the number of the connectors added to connect edgee is d |e|

r
e-1. It is obvious

that the resulting augmented network is connected. An example is given in Figure 3, where the solid lines
are used to indicate links inE, and dashed lines links that are incident at connectors. The description of
the CIMST algorithm is given in Figure 4.

The time complexity of building the MST varies fromO(e logn) (the original Prim’s algorithm [20])
to almost linear ofe (the optimal algorithm [21]), wheren is the number of vertices ande is the number
of edges. The time complexity of the rest of the algorithm isO(e). Therefore, the time complexity of
CIMST is the same as that of MST.

CIMST will be used as baseline algorithm for comparison. Its shortcoming is, however, that each
connector can only be used to connect at most two components. As shown in Figure 5, CIMST would
have placed 2 connectors to connect all three components, while in fact one (placed at the position ofu1)
is sufficient.

B. Connectivity Improvement using DT

To devise a better algorithm, we re-inspect Figure 5. LetD be the disk bounded by the circumcircle
of 4v2v4v5, andu1 D’s center. A disk cancover a component if it can cover at least one node in the
component. IfD is the minimum disk that can cover all three components, then there can be no nodes
insideD other thanv2, v4 and v5. Therefore,4v2v4v5 is a triangle of the Delaunay Triangulation (DT)
of the node setV . This observation leads to a DT-based connectivity improvement algorithm, CIDT.

The description of CIDT is given in Figure 6. Conceptually, triangles in the Delaunay Triangulation
are selected, one by one, with respect to certain criterion, and a connector is inserted into the selected
triangle. The process repeats until the augmented network is connected. In what follows, we elaborate on
several of the key operations (i.e., which triangle is selected, and where to place the connector inside the
triangle) in CIDT.

1) Choosing Candidate Triangles (line 4):Not every triangle in the Delaunay Triangulation is a good
candidate for placing a connector. For example, if all three nodes of the triangle are already in the same
component, there is no need to place a connector inside the triangle. To select appropriate candidates,
we first identify all the connected components in the network by using breadth-first or depth-first search,
which can be done inO(n + e) time [22]. Let Comp(u) be the component that nodeu belongs to, and
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Procedure: CIMST(G, r)
Input: G(V, E), a simple graph;
Output: U , a set of connector;
begin
1: U := ∅;
2: Let T := (VT , ET ) be the MST ofG;
3: for each edge(u, v) ∈ ET do
4: if (d(u, v) > r) then
5: L := dd(u,v)

r
e;

6: for i = 1 to L− 1
7: px := (1− i/L) · ux + i/L · vx;
8: py := (1− i/L) · uy + i/L · vy;
9: U := U ∪ {p};

10: end
11: end
12: end
end

Fig. 4. CIMST algorithm
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Fig. 5. CIMST is not optimal

Comp(t) be the set of different components that nodes int belong to, i.e.,Comp(t) = {Comp(u) : u ∈ t},
wheret is a triangle. We select a trianglet as a candidate only if|Comp(t)| > 1, i.e., all three nodes of
t are not in the same component. An example is given in Figure 7.

2) Find the Best Candidate (line 5):Since only one connector is added in each step, it should be placed
inside the “best” candidate triangle. There exist many different criteria that can be used to select the best
candidate. We present several different criteria (each of which leads to a specific version of CIDT). we
will compare the performance of the various versions of CIDT in Section V.

Without loss of generality, given a candidate triangle, we assume that|e1| ≥ |e2| ≥ |e3|, wheree1 =
(v2, v3), e2 = (v1, v3) ande3 = (v1, v2). Let ro(t) be defined as the radius of the minimum disk that can
cover t. Consider the following two cases:

• t is acute:ro(t) is the radius of the circumcircle oft (Figure 9(a));
• t is not acute:ro(t) is half of the length of the longest edge int, i.e., ro(t) = |e1|/2 (Figure 9(b)).
Let D(u, r) be the disk of radiusr centered at nodeu. A disk D(u, r) is said toconnecta trianglet
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Procedure: CIDT(G, r)
Input: G(V, E), a simple graph;
Output: U , a set of connectors;
begin
1: U := ∅;
2: while G∗ is not connecteddo
3: Let DT := (VD, ED) be the DT of the network

topology constructed by nodes inV andU ;
4: Select the candidate setCD ⊆ DT ;
5: Select the best trianglet0 ∈ CD;
6: p := P lacement(t0);
7: U := U ∪ {p};
8: end
end

Fig. 6. CIDT algorithm
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(a) The initial network topology
v1

v2
v3

v4

v5

v6

(b) Candidates:4v2v3v4, 4v1v3v4, and
4v1v4v5

Fig. 7. Candidates triangles from DT
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v3

e1

e2

e3

Fig. 8. Illustration of a triangle.

if all three nodes oft are in the same component after adding a connector atu. Let rc(t) be defined as
the radius of the minimum disk that canconnectt. Sincet is a candidate triangle, all three nodes oft
cannot be in the same component. Consider the following two cases:

• |Comp(t)| = 2: SupposeComp(v1) = Comp(v2) and Comp(v1) 6= Comp(v3), then rc(t) =
min{|e1|, |e2|}/2 = |e2|/2.

• |Comp(t)| = 3: rc(t) = ro(t).
Let SC(t) be the set of components inComp(t) that can be possibly merged into one by adding one
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Fig. 9. The definition ofro(t)

connector intot, andSS(t) the set of nodes in the components that can be possibly merged into one by
adding one connector intot. Specifically,SC(t) = 0 and SR(t) = 0 if |Comp(t)| = 1. We consider the
following criteria for selecting candidate trianglest0 (summarized in Table I):

• CIDTR: t0 = arg mint∈DT
{rc(t)}, i.e., the triangle with the minimum connecting disk is selected.

• CIDTS: t0 = arg maxt∈DT
{|SS(t)|}, i.e., the triangle is selected such that adding a connector into it

can connect the largest number of nodes. If two or more candidates have the same|SS(t)|, the one
with the minimum connecting disk is selected.

• CIDTSR: t0 = arg maxt∈DT
{|SS(t)|/rc(t)}, i.e., the triangle with the largest ratio of the number of

connected nodes over the radius of the minimum connecting disk is selected.
• CIDTC : t0 = arg maxt∈DT

{|SC(t)|}, i.e., the triangle is selected such that adding a connector into
it can connect the largest number of components. If two or more candidates have the same|SC(t)|,
the one with the minimum connecting disk is selected.

• CIDTCR: t0 = arg maxt∈DT
{|SR(t)|/rc(t)}, i.e., the triangle with the largest ratio of the number of

connected components over the radius of the minimum connecting disk is selected.

TABLE I

SUMMARY OF CRITERIA FOR SELECTING CANDIDATE TRIANGLES

Algorithm Criterion Order

CIDTR rc(t) min
CIDTS |SS(t)|, then -rc(t) max
CIDTSR |SS(t)|/rc(t) max
CIDTC |SC(t)|, then -rc(t) max
CIDTCR |SC(t)|/rc(t) max

3) Connector Placement (line 6):After the best candidatet0 is selected, a connectorp will be placed
inside the triangle. The objective is to havep cover as many nodes int0 as possible. LetEd(t) be the
set of edges int whose two end-nodes are in different components, i.e.,Ed(t) = {(u, v) : Comp(u) 6=
Comp(v), u, v ∈ t}. Given thatt0 is a candidate, we have2 ≤ |Ed(t0)| ≤ 3. We consider the following
two cases (a complete description of procedureP lacement(t) can be found in Figure 18 in Appendix I):

(a) |Ed(t0)| = 2: Find the longest edgee ∈ Ed(t0) such thatr > |e|/2. Put p in the middle ofe (as
shown in Figure 10(a)). If there is no such edge, putp on the shortest edgeemin = (u, v) in Ed(t)
such that eitherdist(p, u) = r or dist(p, v) = r (as shown in Figure 10(b)).

(b) |Ed(t0)| = 3: If a disk of radiusr can covert0, put p at the center oft0’s circumcircle (as shown
in Figure 10(c)); otherwise, attempt to locatep to cover some edge as in (a).

4) Correctness Proof and Complexity Analysis:



10

p

v2

v1

v3
(a)

p

v3

v1

v2
(b)

p
v3

v1

v2

(c)

Fig. 10. Placement of connectors inside a candidate triangle

Correctness proof::To prove the correctness of CIDT, we only need to show that it terminates in
finite steps. Indeed in each step, the two steps (a) and (b) in Section IV-B.3 (or equivalently procedure
P lacement(t)) either reduce the number of components inG∗ by at least one by connecting an edge or
a triangle, or reduce the size oft by a constant portion. The latter is important since the condition that
the length of every edge in the Delaunay Triangulation is less than or equal tor is a sufficient condition
for connectivity of the network. By reducing the size of candidate triangles step by step, the two steps
(a) and (b) in Section IV-B.3 (P lacement(t)) can make the network connected and terminate the CIDT
algorithm in finite time.
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(c) Candidate triangles just beforeu3 is
added

u1

u2

u3

v1

v2

v3

v4

v5

v6

v7v8

(d) The augmented network topology

Fig. 11. An example of CIDT. The initial topology is the same as that in Figure 3(a).
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Example:: An example of CIDT is given in Figure 11, where the initial network topology is the
same as that in Figure 3(a).

Time complexity::Now we analyze the time complexity of the CIDT algorithm. It takesO(n+e) time
to identify all connected components in the initial network topology, andO(n) in each step thereafter.
The Delaunay Triangulation can be calculated inO(n logn) time, by using a randomized incremental
algorithm [23]. After the initial construction, it takesO(log n) to insert each additional node. The time
complexity of line 4 in the algorithm isO(n), since the number of triangles in the Delaunay Triangulation
is O(n). Line 5 takesO(n) time and line 6 takesO(1) time in each step. In line 7, the topology update
takesO(n) time in each step. With all the above considered, we conclude that the time complexity of
CIDT is O(n logn + mn + e), wheren = |V | andm = |U |.

Recall that the time complexity of CIMST is the same as that of MST. The MST can be constructed in
O(n log n) time by first building the Delaunay Triangulation. Therefore, the time complexity of CIMST
and CIDT is approximately the same, ifm = o(log n) ande = o(n log n).

C. Optimizations

In this section, we introduce two optimization techniques,Shrink and Merge, to further improve the
performance.

1) Shrink: Shrinkaims to remove unnecessary connectors inU . The description of the algorithm is
given in Figure 12, and an example is shown in Figures 13(a) and 13(b). Line 5 of the algorithm takes
O(n + m + e) time, and hence the worst case time complexity ofShrink is O((n + m)2(n + m + e)). As
we will see in Section V, however, the number of connectors that can be removed is quite small under
most cases. Therefore, the time complexity could be much lower.

Procedure: Shrink(U)
Input: U , a set of connectors;
Output: s, the number of connectors removed;
begin
1: finish:=false;s := 0;
2: while (!finish) do
3: finish:=true;
4: for each nodeu ∈ U do
5: if (G∗ − {u} is connected)then
6: U := U − {u};G∗ := G∗ − {u};
7: s := s + 1;
8: finish:=false;
9: break;

10: end
11: end
12: end
end

Fig. 12. Shrink algorithm

2) Merge: Mergeaims to remove unnecessary connectors by replacing two or more connectors with
one. The optimization procedure essentially executes CIDT onGM = (U, EM), the network of connectors,
whereEM = {(u, v) : d(u, v) ≤ r, u, v ∈ U}. As exemplified in Figure 14, two or more connectors{ui}
can be replaced by a new connectoru only if the diskD(u, r) can cover every diskD(ui, rui

), whererui

is the minimum radius forui to connect an edge or a triangle in theConnector Placementphase of CIDT
(Section IV-B.3). As discussed in Section IV-B, the time complexity ofMerge is O(m logm + ml + eM),
wherel is the number of merging actions andeM = |EM |.
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(b) u1 is removed byShrink

u1
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(c) Result of CIDT

u1 u3

(d) u1 and u2 are merged into one by
Merge

Fig. 13. Optimizations:ShrinkandMerge

u3

u1

u2

u

Fig. 14. u1, u2 andu3 can be replaced withu only if D(u, r) can coverD(u1, ru1), D(u2, ru2), andD(u3, ru3)

The correctness of bothShrinkandMergeare self-evident, since a connector can be removed or replaced
only if it does not affect the connectivity of the network.

V. PERFORMANCE EVALUATION

In this section, we evaluate the performance of the various versions of CIDT using theJ-Simsimulator
[24]. In the simulation study, all client nodes are uniformly distributed in a square region, and the connector
nodes are added as required by various algorithms. Each data point is the average of 1000 simulation
runs.

In the first set of simulations, we consider a WSN scenario. The transmission range of both client
sensors and connector sensors is25m. The size of the region is fixed at200m × 200m. We vary the
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number of clients in the region from50 to 100. Figures 15(a) and 15(b) show the average connectors
needed by the various algorithms to solve the CI problem. The algorithm with a star (*) is the corresponding
optimized version. For example,CIMST is the version without use of the two optimization techniques
andCIMST ∗ is the version with both (ShrinkandMerge) applied.

For the sake of comparison, results are normalized with respect to those of the baseline heuristic
CIMST . We divide the algorithms into two groups. The results of the algorithms in the first group
are shown in Figure 15(a).CIMST performs the worst in terms of connectors added, andCIDTR and
CIDTSR are approximately the same. The performance ofCIDTCR is notably better compared to others
in the same group. The optimization techniques do reduce the number of connectors needed, in particular,
by 1% for CIMST , by 5%− 8% for CIDTR andCIDTSR, and by2% for CIDTCR. The results of the
algorithms in the second group are shown in Figure 15(b).CIDTS andCIDTC performs much better than
those in the first group.CIDTC performs better since it is less “greedy” thanCIDTS. The optimization
techniques help to some extent, but not significantly.

We also apply aforementioned algorithms to solve theConnectivity Improvement with Limited Connec-
tors (CILC) problem. Suppose there are only 3 connectors. We compare the connectedness of the resulting
network in Figure 15(c).CIDTS is clearly the best, andCIMST the worst. Since we fixed the number
of connectors, no optimization technique is applied.

In the second set of simulations, we consider a FCS scenario. For ease of exhibition, the transmission
range of both ground vehicles (clients) and UAVs (connectors) is250m. The number of vehicles is fixed
at 50. We vary the size of the square from1500m× 1500m to 2000m× 2000m. The average number of
UAVs (normalized) and the average connectedness are shown in Figure 16. Conclusions similar to those
in the first set of simulation results can be drawn from this set of results. We have also included the
CIDTS algorithm to solve the CILC problem in simulating a FCS inJ-Sim. The simulation is conducted
based on the real-life traces of ground vehicles provided by SAIC, Inc and with all the path loss and
signal attenuation effects caused by the terrain considered. The number of UAVs is limited to 3 in the
scenario. Figure 17 gives a snapshot of the FCS simulation.

Fig. 17. A snapshot of the FCS simulation in J-Sim. TheCIDTS algorithm is included to determine the fly path of the three UAVs in the
(imaginary) battlefield in San Diego, CA. The simulation is conducted based on the real-life traces of ground vehicles provided by SAIC
and with the path loss effect due to the real terrain considered. Each circle denotes the coverage area of an UAV.
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In summary, all the simulation results suggest thatCIDTS is a better solution algorithm to solving
both CI and CILC problems.

VI. CONCLUSIONS

In this paper, we have considered the problem of improving connectivity in wireless networks, i.e., how
to deploy a set of additional wireless nodes to improve the connectivity of an existing wireless network.
The simulation results show that the proposed Delaunay Triangulation based algorithm,CIDTS renders
the best performance in solving the problem.

We are currently investigating several related problems. First, we are studying whether or not there
exists any polynomial-time algorithm that can approximate the CI/CILC problems within a constant factor?
Second, in wireless mobile ad-hoc networks, the positions of wireless nodes are changing continuously. It
is important that the connectors can adjust their positions accordingly, so that the augmented network is
kept connected continuously. This problem is not trivial, because (i) the optimal number of connectors may
vary with time; and (ii) the speed of the connectors may be too small to keep up with the position trajectory
(i.e., the curve that connects all the positions rendered by consecutive invocations of the algorithm). Third,
we are investigating the issue of adding connectors so that the network can bek-connected.
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APPENDIX I
CONNECTOR PLACEMENT

Procedure: Insert(u, v, rt)
Input: u andv, two vertices of a triangle;

rt, a real number in[0, 1].
Output: p = (px, py);
begin

px := rt× ux + (1− rt)vx; py := rt× uy + (1− rt)vy;
end

Procedure: P lacement(t)
Input: t = (v1, v2, v3), a candidate triangle;
Output: p = (px, py);
begin
1: if Comp(v2) = Comp(v3)
2: if (r ≥ |e2|/2) then p :=Insert(v1, v3, 0.5);
3: elseif (r ≥ |e3|/2) then p :=Insert(v1, v2, 0.5);
4: elsep :=Insert(v2, v1, r/|e3|);
5: elseif Comp(v1) = Comp(v3)
6: if (r ≥ |e1|/2) then p :=Insert(v2, v3, 0.5);
7: elseif (r ≥ |e3|/2) then p :=Insert(v1, v2, 0.5);
8: elsep :=Insert(v1, v2, r/|e3|);
9: elseif Comp(v1) = Comp(v2)

10: if (r ≥ |e1|/2) then p :=Insert(v2, v3, 0.5);
11: elseif (r ≥ |e2|/2) p :=Insert(v1, v3, 0.5);
12: elsep :=Insert(v1, v3, r/|e2|);
13: else/* |Comp(t)| = 3 */
14: if (r ≥ ro(t)) then
15: if (t is obtuse)then p :=Insert(v2, v3, 0.5)
16: elsep :=the center oft’s circumcircle;
17: else
18: if (r ≥ |e1|/2) then p :=Insert(v2, v3, 0.5);
19: elseif (r ≥ |e2|/2) then p :=Insert(v1, v3, 0.5);
20: elseif (r ≥ |e3|/2) then p :=Insert(v1, v2, 0.5);
21: elsep :=Insert(v1, v2, r/|e3|);
22: end
23: end
end

Fig. 18. Connector placement algorithm


