
SRDP: Securing Route Discovery in DSR

Jihye Kim and Gene Tsudik
Computer Science Department
University of California, Irvine

{jihyek, gts}@ics.uci.edu

Abstract

Routing is a critical function in multi-hop mobile ad
hoc networks (MANETs). A number of MANET-oriented
routing protocols have been proposed, of which DSR is
widely considered both the simplest and the most effec-
tive. At the same time, security in MANETs – especially,
routing security – presents a number of new and inter-
esting challenges. Many security techniques geared for
MANETs have been developed, among which Ariadne is
the flagship protocol for securing DSR.

The focus of this work is on securing the Route Dis-
covery process in DSR. Our goal is to explore a range
of suitable cryptographic techniques with varying fla-
vors of security, efficiency and robustness. The Ariadne
approach, while very efficient, assumes loose time syn-
chronization among MANET nodes and does not offer
non-repudiation. If the former is not possible or the lat-
ter is desired, an alternative approach is necessary. To
this end, we construct a Secure Route Discovery proto-
col (SRDP) which allows the source to securely discover
an authenticated route to the destination using either
aggregated Message Authentication Codes (MACs) or
multi-signatures. Several concrete techniques are pre-
sented and their efficiency and security are compared
and evaluated.

1. Introduction

Multi-hop Mobile Ad Hoc Networks (MANETs)
have been studied extensively in recent years and a large
body of relevant research has been accumulated, espe-
cially pertaining to routing security.

One of the key MANET characteristics – absence of
fixed infrastructure – makes it difficult to re-use results
from more traditional wired networks. In particular,
popular IP routing protocols (used both in the Internet

and in private intranets) are not suitable for MANETs,
due mostly to node mobility. Consequently, a lot of ef-
fort has gone into developing MANET-geared routing
protocols. Most of these protocols have, for various rea-
sons, remained on paper, only a few have been imple-
mented and even fewer have made into real MANETs.

Since the focus of this paper is on security, rather
than routing, we do not review the relevant routing lit-
erature. Suffice it to say, that the most popular MANET
routing protocol is also one of the conceptually simplest,
Dynamic Source Routing (DSR), developed by Johnson
and Maltz. The centerpiece of DSR is the Route Dis-
covery (RD) protocol which uses flooding to discover
routes on-demand. (See section 2 below for a detailed
description.)

Like most network protocols, MANET routing pro-
tocols (including DSR) are often designed for non-
adversarial networks and thus forgo security features.
This follows the traditional model of first designing a
protocol and later (sometimes much later) retrofitting it
with security features.

Being a popular protocol, DSR has received a lot of
attention from the security community. The state-of-
the-art of MANET routing security is represented by
Ariadne [11] which is a DSR-specific security mecha-
nism based on the earlier TESLA protocol [17]. Ari-
adne’s security is based on Message Authentication
Codes (MACs) and loose time synchronization among
nodes is required; the latter feature is inherited from
TESLA.

The motivation for the work presented in this paper
is very similar to Ariadne’s. Our goal is to efficiently
secure the Route Discovery process in DSR.1 However,
in doing so, we aim to address the needs of MANETs
where either (or both) stronger security is necessary or
loose time synchronization is not possible. Protocol ef-

1Once a route or a set of routes is securely discovered, security of
subsequent data transmission is out of scope of this paper.

ficiency is also one of our goals, especially, the mini-
mization of communication (bandwidth) overhead. This
contrasts with Ariadne which focuses more on lowering
computation costs.

With the above goals in mind, we develop Secure
Route Discovery Protocol (SRDP). It is a generic pro-
tocol which works with a range of cryptographic prim-
itives, some based on aggregated MACs and others –
on digital signatures amenable to aggregation. (Aggre-
gation is essential as it allows us to compress authenti-
cation tags thus saving bandwidth and reduces verifica-
tion costs.) We explore five cryptographic techniques
and evaluate/analyze their respective security features
and efficiency features. One of the interesting aspects
of our work is the novel application of aggregated sig-
nature and multi-signature schemes.

Viewed from the higher-level perspective, SRDP en-
hances the functionality of DSR with the feature we term
Route Integrity. Informally, this means that all nodes in
a putative route agree on the exact sequence (order) of
nodes traversed in that route. Moreover, the source is
able to ascertain that all intermediate nodes vouch for
the integrity of the same route. (See section 4 for further
details.) However, Route Integrity does not imply viabil-
ity of the discovered route, since an adversarial node that
behaves honestly during Route Discovery may behave in
an arbitrarily malicious manner during subsequent for-
warding of data packets.
Organization: the remainder of this paper is organized
as follows: section 2 summarizes the basic operation of
DSR. Then, section 3 presents our network assumption,
attack model and defines necessary security properties.
Section 4, describes SRDP and several cryptographic
techniques. Their efficiency is discussed in section 5.
Finally, section 6 overviews relevant prior work.
Remark: due to length restrictions, this paper does not
include security proofs for the proposed cryptographic
techniques. For the same reason, the descriptions of the
schemes are quite terse and lack the ideal level of de-
tail. Also omitted is the discussion of future work and
an in-depth treatment of prior results (although section
6 provides a short summary).

2. DSR Overview

Since our work is specific to DSR, this section pro-
vides a brief re-cap of the DSR Route Discovery pro-
cess. For further details we refer to [12].

DSR is a purely on-demand ad hoc network routing
protocol. This means that a route is discovered only
when it is needed and no pre-distribution of connectivity

is performed. Since route discovery is done via flooding,
nodes do not accumulate network topology information
except for cached routes.

DSR includes two main mechanisms: Route Discov-
ery and Route Maintenance. Route Discovery is used
to discover a route from a given source to a given des-
tination, while Route Maintenance is used to manage
(cache, expire, switch among) previously discovered
routes. Since our focus is on Route Discovery, we do
not further discuss Route Maintenace.

Route Discovery is composed of two stages: Route
Request (RREQ) and Route Reply (RREP). Whenever a
source needs to communicate to a destination and does
not have a route in its Route Cache, it broadcasts a
RREQ message to find a route. Each neighbor receives
the RREQ and (if it has not already processed the same
request earlier) appends its own address to the address
list in the RREQ and re-broadcasts the packet. This pro-
cess continues until either the maximum hop counter is
exceeded (and RREQ is discarded) or the destination is
reached. In the latter case, the destination receives the
RREQ, appends its address and generates a route reply
packet (RREP) back towards the source using the reverse
of the accumulated route. Unlike RREQ, RREP perco-
lates towards the source via unicast. When the source
finally receives RREP, it stores the route in its Route
Cache.

Figure 1 illustrates an example of Route Discovery
and figure 2 shows the processing of RREQ and RREP
packets.

Figure 1. Route Discovery example: S
broadcasts RREQ and each intermediate
node re-broadcasts only if RREQ has not
been seen before. When D RREQ, it sends
RREP back via unicast. In this example, D
replies to S with a route: <B, C, D>.
DSR Route Discovery also includes some optimiza-

tion measures: when processing a route request, an in-
termediate node can be authorized to issue a complete
route reply if it already has a valid route to the destina-
tion in its route cache. An intermediate node can also
switch its network interface into promiscuous mode, in
order to harvest routes from passing route replies. How-

RREQ S → ∗: < RREQ,S, D, Sid, () >

Broadcast B → ∗: < RREQ,S, D, Sid, (B) >

C → ∗: < RREQ,S, D, Sid, (B, C) >

RREP D → C: < RREP,D, S, Sid, (B, C, D) >

Unicast C → B: < RREP,D, S, Sid, (B, C, D) >

B → S: < RREP,D, S, Sid, (B, C, D) >

Figure 2. RREQ and RREP processing ex-
ample.

ever, in this paper, we focus on the basic Route Discov-
ery, without considering these optimizations. (In fact,
the first optimization mentioned above is incompatible
with our proposed mechanism.)

3 Security Setting

In this section, we discuss our attack model and asso-
ciated threats.

As usual, we distinguish among passive and active
adversaries. A typical passive adversary only eaves-
drops and aims to compromise communication privacy.
Since routing is not usually a private function (except in
military and other critical settings), we do not consider
passive threats in our model.

An active adversary has far stronger capabilities. It
can introduce its own packets as well as delete, delay
and modify packets before forwarding them. We focus
on protection against active adversaries.

The adversary’s power is characterized by the com-
bined coverage of compromised nodes. For example, to
affect a message at a certain point, at least one compro-
mised node needs to be present within the radio range of
that point.

We say that nodes are physically connected if they
can communicate directly, while nodes are logically
connected if they communicate indirectly, via other
nodes.

The connected adversaries can cause unavoidable at-
tacks by colluding. Specially, they can delete or add a
list of honest nodes sandwiched between them. To for-
malize it, we define feedback loop.
Definition 1. A feedback loop is an ordered sequence
of linked honest nodes where both end-points are closed
by compromised nodes to be able to communicate each
other through their physical or logical channel.

For example, figure 3 shows two compromised
nodes, A1 and A2, as the compromised end-points of a
feedback loop N3-N4. We note that feedback loop end-
points do not need to be distinct, i.e., both end-points can
be represented by the same compromised node. Also,

the same set of compromised end-points can correspond
to multiple feedback loops.

Figure 3. Feedback Loop Example.

In the context of DSR Route Discovery, controlling a
feedback loop allows the adversary to control the pres-
ence of honest nodes (within the loop) in a source route.
This, in turn, allows the adversary to create a fraudulent
route. However, the adversary cannot make the source
accept a counterfeit route which contains honest node(s)
other than feeback loops it owns. In other words, each
source(i.e. intermediate node) in the source routing pro-
tocol should be authenticated.
Definition 2. We say that Route Discovery is secure
if, given a putative route: (1) the source can securely
verify the presence of each honest node that appears in
the route, and (2) for all honest nodes appearing in the
route, their view of the route is either the same or, if not
the same, the discrepancy is unambiguously detected by
the source.

Note that the above definition implies that an honest
node can not appear in the route unless it actually took
part in Route Discovery that led to that route.

In contrast, the adversary model in Ariadne [11] is
based on the number of nodes the adversary owns in
the network as well as the number of honest nodes that
the adversary has compromised. Our model is differ-
ent since the distinction between ”owned” and ”compro-
mised” nodes does not apply to our setting. Basically,
we assume that each node has its own private/public key
pair, and once a node is compromised it will be owned
by the adversary including its key pair. Thus, there is no
difference between ”owned” and ”compromised”nodes
in our assumption.

4 Secure Route Discovery Protocol
(SRDP)

We begin by stating some environmental assumptions
and summarizing our notation.

We assume bidirectional communication on each
link: if node S is able to send a message to node D,
then node D is able to send to node S. This assumption
is justified, since many wireless MAC-layer protocols,

including IEEE 802.11, require bidirectional communi-
cation.

We do not assume that a node is aware of the exact
set of its current immediate neighbors. Some MANET
types have built-in neighbor discovery but we choose to
err on the side of flexibility. (However, secure neighbor
discovery would only serve to strengthen the security of
our techniques.)

We assume that both the source and the destination
are honest. (We use the generic terms source and desti-
nation to mean, respectively, the initiator and the target
of the Route Discovery protocol in DSR.)

The cryptographic techniques that we propose further
below fall into two categories: shared-key MACs and
public key signatures.

Although sometimes implemented with the aid of
conventional ciphers, MAC functions are often con-
structed using cryptographically suitable keyed hash
functions (e.g, SHA-2). The most common MAC con-
struct is the HMAC [3]. Clearly, any MAC function used
for authentication purposes in a MANET setting would
require O(n2) pairwise shared keys.

For schemes based on MACs, we assume the ex-
istence of a secure key distribution mechanism. For
signature-based schemes, we likewise assume an appro-
priate mechanism for the issuance, distribution and revo-
cation of public keys, i.e., a Public Key Infrastructure.

The table below summarizes the notation and formats
used in the rest of the paper.

S,D,B, C, I, J network nodes
RREQ,RREP DSR Route Request & Route Reply packets

Sid unique id assigned by S to Route Request
KIJ secret key shared between I and J

(xi, yi) node I’s private and public key pair
MACIJ (M) MAC on message M under key KIJ

δ, σ authentication tags

4.1 Forward vs Backward Authentication

Recall that the goal of the DSR Route Discovery pro-
tocol is to discover a viable route. A route is accumu-
lated incrementally via flooding until the destination is
reached, at which point, the route is confirmed by re-
visiting it by unicast in reverse order.

One natural security strategy is to perform “forward
authentication” of Route Request (RREQ) packets as
they propagate from the source to the destination. Each
node can compute and add its authentication tag to the
RREQ before re-broadcasting it.

The chief advantage of this approach is that it would
allow the destination to authenticate the accumulated
source route before it generates a RREP back towards

the source. However, there are also some drawbacks or
issues:

• First, a node that processes a RREQ packet has no
assurance of being on the eventual route. In fact, in
a large MANET, it is safe to say that many nodes
that process a given RREQ will not be part of the
route. Thus, computing an authentication tag can
be wasteful for two reasons: (1) it requires com-
putation that may wind up being unnecessary, and
(2) it costs in terms extra bandwidth since each new
authentication tag makes RREQ longer.2

• Second, even is the above is justified, the authenti-
cation tags must be eventually verified. This can be
a very expensive procedure (only if signatures are
used) since each node in the route would authen-
ticate a distinct route prefix. For example, given
an actual route: S − B − C − D, node B would
authenticate a route prefix S − B, node C would
authenticate S − B − C, and so on.

• Third, we note that, if a particular sequence of
nodes winds up forming a viable route, the destina-
tion generates a Route Reply (RREP) which then
traverses the very same sequence of nodes in the
reverse order.

These issues motivate us to explore the alternative:
“backward authentication” of RREP packets.

However, we observe that, restricting authentication
to RREP packets is not sufficient for secure Route Dis-
covery. For example, consider an attack whereby two
colluding compromised nodes F and E in the actual
route: S − B − F − C − E − D present an honest
node C with prefix S − F − C in a RREQ, but, later
in a corresponding RREP, present C with a differently
prefixed route, e.g., S − B − C − E − D. Unless C
caches the route prefix (or a function thereof) received
in a RREQ, it is unable to detect this attack.3 To address
attacks of this type, we require each node that processes
and re-broadcasts a RREQ packet to compute and cache
the hash of the route prefix (together with other values
in RREQ such as S, idS , D). The added burden is truly
minimal since DSR already requires each node to cache
(for some pre-set interval) some information about each
RREQ; this is done to prevent duplicate re-broadcasting.

2Of course, RREQ is supposed to become longer as the route is ac-
cumulated, however, depending on the underlying cryptographic prim-
itive, a MAC can add at least 80 bits per hop and a signature – at least
around 320 bits.

3Although we use the term attack here, it is debatable whether this
can actually result in any real damage.

Backward authentication is conceptually very simple:
each node in the route “sees” the entire route as it pro-
cesses (via unicast) the RREP packet. It can thus easily
compute an authentication tag (MAC or signature) and
append it to the packet. Moreover, an intermediate node
can also perform a “sanity check” on the route by check-
ing for anomalies, such as loops, routes that are too long
or impossible according to its own cache, etc. When a
RREP with a route of length t finally reaches the source,
the latter can easily verify each tag and, if all tags are
verified, conclude that all nodes’ view of the route is ex-
actly the same.

Therefore, any modification of the route as it propa-
gates back in a sequence of RREP packets, is ultimately
detected by the source. Equivalently, route integrity is
guaranteed once it reaches the destination.

We claim that the combination of prefix (hash)
caching and backward authentication severely limits the
scope of possible attacks on the DSR Route Discov-
ery Protocol. The only attacks not addressed are those
caused by feedback loops (see definition 1). Two types
of attacks are possible: (1) the adversary can delete from
the route honest nodes that are “sandwiched” between a
pair of compromised nodes, or (2) the adversary can add
to the route a set of compromised nodes as long as it in-
serts them between a pair of other compromised nodes
in the route. However, the adversary is unable to manip-
ulate any honest nodes in the route that are positioned
outside any feedback loop.

4.2 Whither Tag Aggregation?

The purpose of an authentication tag is for each node
in the route to independently convince the source that its
view of the route agrees with that of all other nodes. It
is thus quite natural to assume that the source needs to
explicitly receive each authentication tag as part of the fi-
nal RREP packet. Given t nodes in the route, the source
can separately verify each corresponding authentication
tag and discard the whole route if just one verification
operation fails.

However, we assert that the verification of route in-
tegrity should ideally be an all-or-nothing operation: ei-
ther all tags are valid or at least one is invalid and the
whole route cannot be trusted. There does not seem to
be any benefit in piece-meal authentication of individual
tags.4

4One possible exception is to identify misbehaving nodes that pur-
posely compute their own invalid tags. However, it is unclear how
a distinction can be made between (1) such a misbehaving node and
(2) an honest node that is “framed” by a malicious node closer to the
source that modifies the honest node’s tag.

Another reason to re-consider the need for explicit
transmission of individual authentication tags is band-
width overhead. As alluded to in section 4.1, a MAC
costs at least 80 bits and a signature – around 320 bits
(e.g., for DSA). Especially with longer routes, this repre-
sents significant overhead, as compared to, say, an IPv4
interface address which is a mere 32 bits.

Fortunately, there are a number of techniques (vary-
ing widely in complexity) that allow aggregation of au-
thentication tags: both MACs and certain types of public
key signatures. The term aggregation means that a col-
lection of t tags can be transformed via an aggregation
function into a fixed-sized aggregated tag which can be
verified as a whole, in a single verification step. We con-
sider such techniques in more detail in section 4.5.

4.3 Signatures or MACs?

Another important aspect of our design has to do
with the choice of underlying cryptographic primitives.
Route integrity, as we defined it earlier, necessitates au-
thentication (verification) by the source of each inter-
mediate node’s view of the route. Broadly speaking,
authentication can be obtained via MACs or signatures.
The former requires a unique secret key for each distinct
pair of nodes, and the latter – a public/private key-pair
for each node in the network (plus, the public key of
each node must be somehow made globally available).

Ultimately, the choice is determined by a combina-
tion of factors, based partially on the answers to the fol-
lowing questions:
* Is pair-wise key pre-distribution (or on-demand pair-wise
key distribution) possible? If yes, MACs are ideal, unless the
answer to any of the next two questions is yes.
* Do intermediate nodes need to verify (partial) route in-
tegrity? If yes, only signatures can be used.5

* Is non-repudiation important? If yes, only signatures can
be used.
* Is there a Public Key Infrastructure? If not, either MACs
or identity-based (certificate-less) public key signatures can be
used. In either case, however, revocation is a major headache.
* Is computation overhead a major issue? If so, MACs are
clearly preferable.

4.4 Generic SRDP

We now present a high-level description of SRDP.
Figure 4 shows an example with a route of length 3.

5MACs are unsuitable since their use would dramatically increase
bandwidth consumption. It is easy to see that, if implemented naively,
roughly t2/2 separate MACs would be needed. Even an optimized
version (left as a trivial exercise) would require t MACs in each RREP
packet.

We use two types of authentication tags, δ and σ.
The former (δ) is optionally generated by the source and
placed into the Route Request. Its purpose is to offer the
intermediate nodes a chance to authenticate the origin
and the contents of the original Route Request (as pro-
duced by the source). We say “optionally” since this tag
only makes sense if the source is using public key signa-
tures to produce it.6 Even if δ is present, the decision to
verify it is left up to the individual nodes. Alternatively,
δ can be thought of as a MAC computed under KSD, a
key that the source already shares with the destination.
In that case, only the destination node would verify δ.
In any case, we consider δ to be relatively unimportant
as a security feature; it serves only as a measure to pre-
vent certain DoS attacks. We will discuss about source
authentication issues in detail in the section 4.6.

The second authentication tag σ is computed incre-
mentally by each node in the route as the Route Reply
packet propagates back to the source. We use σDCB to
denote an aggregated authentication tag of nodes D, C
and B. (As described in the next section, depending on
the cryptographic technique, the aggregated tag is either
a multi-MAC or a multi-signature.) Note that σDCB im-
plies the order of the nodes in the route indirectly, since
the authenticated “message” (i.e., the route) lists all node
names in order.

S: generate RREQ =< RREQ, S,D,Sid, δ >
S −→ ∗: RREQ0 =< RREQ, (.) >
B: cache RREQ0

B −→ ∗: RREQ1 =< RREQ, (B) >
C: cache RREQ1

C −→ ∗: RREQ2 =< RREQ, (BC) >
D: optionally verify δ

cache RREQ2

generate RREP =< RREP,D,S, Sid, (B, C, D) >
compute σD

D −→ C: RREP0 =< RREP,σD >
C: fetch RREQ1, verify route prefix

optionally verify σD

compute σDC

C −→ B: RREP1 =< RREP,σDC >
B: fetch RREQ0, verify route prefix

optionally verify σDC

compute σDCB

B −→ S: RREP2 =< RREP,σDCB >
S: verify σDCB

Figure 4. Generic SRDP Example.

6Since the route is unknown a priori, δ clearly cannot be computed
using conventional cryptography, unless: (1) the source computes a
distinct δ for each node in the network, or (2) all nodes in the network
share the same key. We consider both cases to be unrealistic.

4.5 Cryptographic Techniques

SRDP can be used with either multi-MAC or multi-
signature schemes. Both types of schemes allow us to
generate fixed-size authentication tags (regardless of the
number of signers) and facilitate all-or-nothing verifica-
tion at the source.

Informally, a multi-MAC scheme is method of com-
bining multiple MACs into a single fixed-size aggre-
gated MAC is such a way that the aggregated MAC can
be verified as a whole.

In a multi-signature scheme [14], a set of users sign
the same message and the result is a single fixed-size
multi-signature. The signing cost (for each signer) is
the same as in a single-signer scheme. One benefit of
multi-signature schemes is that the verification time is
only slightly greater than that for a single-signer scheme.
Thus, multi-signature schemes are very suitable for our
purposes.

4.5.1 Conventional MACs

We illustrate this very simple scheme by an exam-
ple. Assuming, as in figure 4, a route of length three:
S − B − C − D, the scheme operates as follows:
When D generates the first RREP packet, it computes:
σD = MACDS(RREP) and composes RREP0

which it sends to C. In turn, C computes: σDC =
MACCS(RREP0), composes RREP1 and sends it to
B. Next, B computes: σDCB = MACBS(RREP1),
composes RREP2 and sends it to S. Finally, S re-
ceives RREP2, extracts RREP, and verifies σDCB by
re-computing:

MACSB(RREP, MACSC(RREP, MACSD(RREP)))

Although the size of the multi-MAC stays constant, the
verification cost increases with the route length. How-
ever, this is not a problem since MACs are very efficient,
especially, when based on keyed hash constructs, such
as HMAC [3]. The only problem is the assumed pre-
distribution of the the pair-wise shared keys. While in
some MANETs this is a reasonable assumption, it is im-
possible in others. For this reason, we consider another
MAC-like scheme based on on-the-fly Diffie-Hellman
key agreement.

4.5.2 MACs based on Diffie-Hellman (DH)

In this scheme each node is assumed to have its
own public/private key-pair (x, y = gx) and any two
nodes, S and D can compute a shared key on-the-fly

as: KSD=gxSxD (mod p) by simply exchanging each
other’s public keys, yS and yD. One modular exponen-
tiation is needed to compute each key [8]. Once a shared
key is established, it can be used for conventional cryp-
tography, i.e., encryption and MACs. We slightly mod-
ify the DH key agreement scheme for MAC in RREP :
KSD=ghxSxD (mod p), where h = H(RREP) and
H() is a hash function that yields elements of Z∗

p .
Continuing with our example, we assume that all

nodes on the route either (1) possess the source’s pub-
lic key yS or (2) that yS is distributed as part of
RREQ (and copied into RREP). Thus, upon receiving
RREP , each node can compute a shared key with the
source. However, all shared keys are computed modulo
(p − 1), instead of modulo p.

To minimize verification costs for the source, we take
advantage of the following “trick”: each node computes
its MAC (in RREP) by exponentiating the MAC com-
puted by the previous node with the Diffie-Hellman key
it now shares with the source. This is best illustrated by
an example.

Before generating the initial RREP , D computes
KSD = yS

hxD and σD = gKsd , where h is com-
puted as h = H(RREP). The next node, C computes
KSC = yS

hxC and σDC = (σD)KSC , and so on. When
RREP2 is received by the source, it contains:

σDCB = gghxSxD ghxSxC ghxS xB

= g(gxD+xC+xB)hxS

Note that in order to recompute the quantity in the expo-
nent: (gxD+xC+xB)hxS , the source needs to only multi-
ply public keys of all intermediate nodes (which is very
inexpensive) and exponentiate the result with the mul-
tiplication result of its own private key and the hash of
RREP . Thus, to verify (re-compute) σDCB , the source
needs to perform two exponentiations and t + 1 mul-
tiplications (assuming t intermediate nodes). This is
significantly cheaper than computing a pair-wise Diffie-
Hellman key with each node in the route.

4.5.3 Accountable-Subgroup Multi-signatures
(ASM)

Micali, et al. [14] recently proposed an elegant con-
struction for multi-signatures based on the well-known
Shnorr signature scheme. The resulting scheme – called
Accountable-Subgroup Multi-signatures (ASM) – has
been proven secure in the Random Oracle Model under
the assumption that Schnorr signature scheme is secure.
In an ASM scheme, three rounds of communication are
required for signing:
Round 1. Each signer sends its commitment to a distin-
guished player D

Round 2. D computes the joint commitment and broad-
casts it to all signers
Round 3. Each signer computes a partial signature (us-
ing the joint commitment) and sends it to D

Finally, D computes a multi-signature from the col-
lected partial signatures.

In our setting, we can reduce the number of rounds to
two by distributing the role of D to each signer (inter-
mediate node) as follows: (1) each signer computes the
joint commitment incrementally by multiplying its com-
mitment with the previous joint commitment and sends
it to the next signer until the last signer is reached, (2)
The last signer completes the joint commitment, com-
putes a partial multi-signature and sends the joint com-
mitment and a partial multi-signature back to the previ-
ous signer. In other words, the instead of using broad-
cast, the partial signature is accumulated hop-by-hop as
the set of signers is traversed in the reverse order. Each
signer thus updates the multi-signature. The first signer
(last to update the multi-signature) computes the final
verifiable multi-signature.

The two stages of the ASM scheme are a perfect fit
for DSR Route Discovery. Joint commitments can be
collected as part of the RREQ stage the multi-signature
can be accumulated during RREP processing.

In our example with a 3-hop route, the scheme oper-
ates as follows:
RREQ stage:

1. B: compute tB = grB for a random rB

2. C: compute tBC = tBgrC for random rC

3. D: compute tBCD = tBCgrD for random rD

RREP stage:

1. D: compute e = h(RREP) and σD = rD + exD

2. C: compute e = h(RREP) and σDC = σD +rC +exC

3. B: compute e = h(RREP) and σDCB = σDC + rB +
exB

4. S: compute y =
Q

I∈{B,C,D} yI

and check gσDCB =? = tBCDye (mod p)

As in the DH-based scheme, each node is assumed to
have a private/public key-pair (x, y = gx). Unlike oth-
ers, this scheme requires additional overhead to gradu-
ally compute the joint commitment during the RREQ
stage. This might seem wasteful since we argued earlier
that computation during RREQ stage should be mini-
mized in section 4.2. In general, a node that receives a
RREQ packet has no idea whether it will wind up being

on the route. But, we point out that, for an intermedi-
ate node I , the bulk of the computation required during
RREQ stage is: (1) generating a random exponent rI

and (2) computing grI . (The rest amounts to a single
multiplication.)

First, we note that both values can be pre-computed
as they are not dependent on the specific RREQ. Thus,
a pair (rI , grI) does not have to be generated on-the-
fly. Each node can compute random pairs during its idle
time and store them to its cache for the future use.

Second, the effort a node I invests to generate rI and
grI is not wasted, since even if a corresponding RREP
never materializes, the very same (rI ,grI) pair can be
re-used in the context of another RREQ. (This is per-
fectly safe as long as the same ri is never used twice in
updating σ.)

For the re-usability, each node needs to store more
information in its cache. Note that the basic DSR pro-
tocol requires a node to add an entry of the identifica-
tion value and destination address into its cache for the
source from RREQ to avoid loops. In the integration
of DSR and ASM, to save computation overhead, each
node additionally keeps the (rI , grI) pair with a global
time-out period after it uses it to process RREQ. The
global time-out period determines if a node can safely
re-use a random pair. (The time-out period should be
long enough so that no RREP for the RREQ will not
be generated by the destination after the time-out ex-
pires.) When the time-out in a random pair terminates,
the random pair becomes availble for another RREQ
and the node saves the computation of generating a ran-
dom pair by re-using the available one. Consequently,
we consider the computation overhead in the RREQ
stage as rather negligible.

Overall, the ASM-based scheme is efficient in both
generation and verification of the aggregated authenti-
cation tag σ. Computation overhead at each intermedi-
ate node is very low and the computation at the source is
nearly equivalent to verifying a single Schnorr signature,
regardless of the route length.

The ASM-based scheme is provably secure and, un-
like the MAC schemes, provides non-repudiation in ad-
dition to authentication. Our version of this scheme is
slightly different from the that in [14] since the group of
signers in [14] is fixed in advance, while in our case it
is determined as part of the signing process, i.e., during
the RREQ stage. This requires some adjustments to the
security proof.

4.5.4 Multi-signatures based on Gap Diffie-
Hellman (GDH) Groups

Another interesting multi-signature scheme was recently
proposed by Boldyreva [4]. This scheme is based on
an earlier Gap Diffie-Hellman (GDH) group signature
scheme [6]. (A more general version was presented by
Boneh, et al. in [5].) GDH groups are algebraic groups
where the Computational Diffie-Hellman (CDH) prob-
lem is hard but the Decisional Diffie-Hellman (DDH)
problem is easy.

A single-signer scheme can be obtained from such
groups as follows: Each node has its own private and
public key pair (x, y = gx). The signature on a mes-
sage M is computed as σ = H(M)x, where H is a
cryptographic hash function. The validity of a signa-
ture σ on M under public key y is tested by checking if
(y, H(m), σ) is a valid DDH triple.7

When this basic scheme is extended to the multi-
signature scheme, the salient property is that the prod-
uct of two signatures on the same message M under
two different public keys y1, y2 yields a signature of
M under the combined public key y = y1y2, since
H(M)x1H(M)x2 = H(M)x1+x2 . The following ex-
ample illustrates the scheme:
RREP stage:

1. D: compute σD = H(RREP)xD

2. C: compute σDC = σDH(RREP)xC

3. B: compute σDCB = σDCH(RREP)xB

4. S: compute ỹ =
Q

I∈{B,C,D} yI =
Q

I∈{B,C,D} gxI

and check if (ỹ, H(RREP), σDCB) is a valid DDH
triple (the latter required a pairing operation)

Unlike the ASM-based scheme, this scheme does not
require any additional communication rounds and no
pre-computation during the RREQ stage. During the
RREP stage, the authentication tag σ is updated by
each intermediate node using the BLS signature algo-
rithm [6]. The source verifies the validity of σ under the
combined public key of all nodes in the route.

The GDH multi-signature scheme is much more ef-
ficient than t instantiations of its single-signer counter-
part. This is because the number of operations required
for the verification of a multi-signature is almost same
as in the single-signer scheme.

As mentioned earlier, this scheme works in very spe-
cial algebraic settings, e.g., certain elliptic-curve groups,
whereas, the Schnorr-based scheme works in a much

7Informally, (a, b, c) is a valid DDH triple iff logg(c) =
logg(a)logg(b).

wider range of groups where the Discrete Logarithm
Problem (DLP) is intractable. Basic operations in GDH,
such as scalar multiplication and Tate pairing, are much
more expensive then those in ASM-based signatures.
However, like ASM, the GDH-based scheme is a signa-
ture scheme, and thus provides non-repudiation. Also, it
offers provable security, as shown in [4].

4.5.5 Sequential Aggregate Signatures (SAS)

Shacham [19] developed a scheme for sequential aggre-
gate signatures (SAS) based on homomorphic trapdoor
permutations. In this scheme, each signer takes turns to
(sequentially) add its signature to the current aggregate
signature. Thus, the set of signers is explicitly ordered
in the sequentially aggregate signature and the signers
must communicate with each other during the aggrega-
tion process.

Unlike other aggregate signatures by Boneh, et al.
[5], aggregation and signing are combined in a SAS
scheme and both are performed incrementally by indi-
vidual signers. Sequential aggregate signatures work as
follows: signer 1 signs M1 to obtain σ1; signer 2 then
combines σ1 and M2 to obtain σ2, and so on. The final
signature σt binds each signer i to Mi for all i = 1, ..., t.

Any SAS scheme can be easily applied to DSR Route
Discovery since the route reply packet sequentially tra-
verses every node in the route. We illustrate the concept
with a SAS scheme based on RSA (as the trapdoor per-
mutation).

Shacham presented two concrete SAS approaches
based on RSA [19]. We only consider one of their ap-
proaches since the other assumes that the signers’ RSA
modulii are arranged in increasing order sequentially:
n1 < n2 < ... < nn. This is clearly unrealistic in
an unpredictable MANET route. In the other approach,
the only requirement is for all modulii to be of roughly
the same length. The signature expands by t bits b1...bt,
where t is the total number of signers for a given aggre-
gate signature.

During signing, if i-th signature σi ≥ ni+1, set bi =
1, otherwise, set bi = 0. During verification, if bi = 1,
add ni+1 to σi before proceeding with the verification of
σi.

We assume that node i’s private key is (xi) and
its public key pair is (ni, yi), where xiyi = 1
(mod φ(ni)). Upon receiving a RREP packet each
node combines its signature with a previous signature.
We continue with our 3-hop example:

RREP stage:

1. D: compute hD = H(RREP, (nD, yD)) and σD =
(hD)xD (mod nD)

2. C: If σD ≥ nC set σD = σD − nC and b1 = 1, else set
b1 = 0
compute hC = H(RREP, (nC , yC)) and σCD =
(σD + hC)xC (mod nC)

3. B: If σCD ≥ nb set σCD = σCD − nB and b2 = 1, else
b2 = 0
compute hB = H(RREP, (nB , yB)) and σCDB =
(σCD + hB)xB (mod nB)

4. S: compute hB = H(RREP, (nB , yB)),
σ′

CD = σ
yB

CDB − hB (mod nB),
σCD = σ′

CD + b2nB , hC = H(RREP, (nC , yC)),
σ′

D = σ
yC

CD − hC (mod nC),
σD = σ′

D + b1nC , hD = H(RREP, (nd, yd)),
and finally check if σ

yd

D (mod nd) equals hD

Since the SAS-based scheme is based on plain RSA,
its per-signer signature Generation cost is equivalent to
that of a plain RSA signature, whereas, the verification
cost increases linearly in the number of signers. In other
words, the number of exponentiations computed by the
source (verifier) is determined by the number of nodes
in the route. However, this cost can be minimized by
using very small public exponents (e.g., 3). Such small
exponents can speed up verification by factor of ten or
more. Thus, the SAS-based scheme can be made quite
practical considering that most MANETs rarely exceed
5-6 hops in diameter.

4.6 Source Authentication

The SRDP scheme to authenticate the route list is de-
signed for the source assuming that the source is hon-
est. However, it is possible for a compromised node
to originate RREQ. The goal of this attacker is to con-
sume network resources such as bandwidth, or node re-
sources such as computation power and cache memory.
This attack is called a Denial-of-Service (DoS) attack.
Specially, this DoS attack may cause a serious problem
of node resources in a secure route discovery setting,
where security is overhead. In case that the same node
generates a lot of fake RREQs, the intermediate nodes
computation power will be easily run out.

The main reason that the DoS attack by a source is
possible is that the intermediate nodes do not authenti-
cate RREQ. To prevent the DoS attack, we need to add
an authentication mechanism of RREQ. When we con-
sider possible authentication mechanisms, the signature
scheme is the only solution since the source does not
know who will authenticate RREQ before it broadcasts

the message. In the signature scheme as a source au-
thentication, the generation cost of signature should be
more expensive than the verification. This is because
we intend to give more work to the source and minimize
additional overhead of intermediate nodes.

RSA signature scheme is perfect for RREQ authenti-
cation algorithm. Basically, the source cannot imperson-
ate other honest nodes and intermediate nodes can ver-
ify that a received RREQ has origianted from the correct
source. One of benefits in RSA is its cheap verification
cost. Only two multiplications are required to verify a
signature with a small exponent e = 3. Also, Compar-
atively high generation cost of RSA limits the attacker
power to flood a lot of RREQs.

An interesting issue is when a node verifies a RSA
signature. Verfication itself is an overhead although it
mitigates DoS attacks. To maximize the performance,
a node verifies the signature on the way back for two
reasons: (1) the source verification is meaningful only if
it is included in the eventual route, and (2) it needs to do
a lot of work to perform security algorithms for RREP
in SRDP.

Most algorithms in SRDP add security overheads for
rewinded packets. If a node checks the signautre before
starting a security algorithm, it will not lose its expen-
sive computations through comparatively cheap verifi-
cation. Only ASM scheme has to compute one expo-
nentication to process a forwarded RREQ packet. Thus,
it is better to verify the signature first before each node
generates a (rI , grI) pair in ASM. In case that the source
is flooding a lot of fake RREQs this will help to abbrevi-
ate the RREQ processing cost. However, the verification
cost will be unnecessary if the node is not contained in
the eventual route. To rescue more computations, we
consider expired random pairs as we discussed in ASM.
Each node verifies the RSA signature only if it has to
generate a new random pair,i.e., there is no available
random pair. Note that if we are concerning more on
memory resource in each node, the verification should
be done all the time before each node stores RREQ in-
formation to its route request table cache.

The authentication of RREQ is necessary to prevent
the attacker from flooding RREQ packets and mitigate
unprofitable computations in intermediate nodes. RSA
is a good solution of RREQ authentication because its
generation cost is comparatively high, while its verifica-
tion cost is very cheap.

5 Performance Assessment

We now assess the efficiency of the schemes de-
scribed above; first from the conceptual perspective and
then, in section 5.2, based on experimental results.

5.1 Cost Analysis

We compare the schemes in terms of computation
overhead since communication overhead is more-or-
less8 constant. For each scheme (except conventional
MAC), table 1 shows the exponent size (in bits), the
number of modular exponentiations and the number
scalar multiplications (for GDH only) required to gen-
erate an authentication tag.

The ASM-based scheme is the most efficient in gen-
eration costs, requiring only one modular exponentiation
with exponent of size |q|. The SAS-based scheme also
requires one exponentiation, but, with a larger exponent
of size |n|. For roughly equivalent security, the size of
q is much smaller than that of n, e.g., a 160-bit q corre-
sponds to a 1024-bit n. In ASM, the exponentiation op-
eration for an RREQ broadcast message becomes over-
head when the node computing the exponentiation does
not belong to a route path. The exponentiation overhead
of ASM on the RREQ is able to be optimized by prepar-
ing a list that contains pairs of a random number and its
exponentiation values statically, and choosing one pair
among the list. The DH scheme needs two exponentia-
tions with the exponent of size |p|. This causes its costs
to be about twice that of SAS since the size p in DH is
same to the size n in SAS for the same level of secu-
rity. (In reality, the gap between DH and SAS is actu-
ally greater as discussed in the next section.) The GDH
scheme requires one scalar (elliptic curve) multiplica-
tion, which is a more expensive operation than a regular
modular exponentiation.

Table 2 shows verification costs for all four schemes
assuming t intermediate nodes. The same parameters
are used here, except in case of GDH, which, instead of
scalar multiplications, requires two Tate pairing opera-
tions. ASM exhibits the lowest costs: two exponentia-
tions with the exponent of size |q|. To verify the tag, the
source computes gσ and tye. The length of each σ and
e is 160 bits (to match the size of the hash function out-
put, e.g., SHA). However, in practice, SAS is far more
efficient than ASM especially for short routes (i.e., few
signers). This is because SAS (like the RSA scheme it is
built upon) can utilize very small public exponents. We

8Strictly speaking, the size of RREP in the SAS-based scheme
grows by one bit at each hop.

also note that verification in GDH is very expensive in
practice due to the high cost of Tate pairings.

operation type DH ASM GDH SAS
exponentiations 2 1 0 1

scalar mult-s 0 0 1 0
exponent size |p| for both |q| |n|

Table 1. Authentication Tag Generation
Cost for intermediate nodes.

operation type DH ASM GDH SAS
exponentiations 2 2 0 t

tate pairings 0 0 2 0
exponent size |p| for both |q| & 160 |n|

Table 2. Authentication Tag Verification
Cost for the source.

5.2 Experimental Results

In this section, we show measured (experimental) re-
sults for the four public key-based schemes. We do not
include the conventional MAC scheme since it is clearly
much more efficient and offers a very type of security.
As before, only computation overhead is taken into ac-
count.

SAS, ACM and DH schemes were implemented us-
ing the popular OpenSSL library [2] and the GDH
scheme – using the Miracl [1] library (geared for pair-
ing and other special elliptic curve operations). Each
implementation was measured in a Linux environment
on PIV-2.66GHz workstation with 768 MB of RAM. All
measurements are in msecs.

key size Generation
p or n (bits) q (bits) DH ASM GDH SAS

1024 160 20.08 2.13 7.14 4.29
2048 224 131.53 10.25 22.78 26.10

key size Verification
p or n (bits) q (bits) DH ASM GDH SAS

1024 160 20.00 4.47 89.00 2.53
2048 224 132.97 17.96 256.30 7.92

Table 3. Generation & verification costs for
route of length 10.

Our experimental results are summarized in table 3.
All measurements assume a route of length 10. Note
that GDH key size is half of that for other schemes’ for
the same security level, e.g., a 512-bit p in GDH corre-
sponds to a 1024-bit p in SAS. Generation is the cost for
each intermediate node and verification is the cost for

the source, assuming a 10-hop route. For a given key
size, the cost of verification in all schemes (except SAS)
is the same regardless of the route length. Verification
cost in SAS increases linearly with the number of nodes
(each extra signer costs an extra exponentiation for the
source, albeit with a very small exponent.)

In terms of generation costs, ASM outperforms all
other schemes. It is at least 10 times faster than DH and
2 times faster than GDH and SAS. The speed gap be-
tween DH and ASM increases as the size of p grows. For
example, ASM is 10 times faster than DH with 1024-
bit keys, but 13 times faster with 2048-bit keys. One
reason is due to the exponent in ASM being restricted
to the size of q, as described in section 5.1. Another
reason is that ASM uses the Montgomery exponentia-
tion algorithm [15] which improves the performance by
40%. This algorithm (in OpenSSL) can be used only
if the modulus is odd. Thus, we cannot apply Mont-
gomery algorithm to one modular exponentiation in DH
since it is based on modulo p−1 which is even. Instead,
we use the reciprocal-based remaindering algorithm for
DH, but that only yields a modest improvement of about
5%. SAS showed better performance with a 1024-bit p
than GDH with a 512-bit p, however, GDH was faster
with longer key sizes. Also, the speed difference be-
tween DH and SAS was notably greater in the experi-
ments than anticipated in section 5.1. This is because
SAS takes advantage of the Chinese Remainder Theo-
rem (CRT) which cuts its time roughly in half.

In terms of verification costs, SAS exhibits the best
performance even for long routes mainly because it (like
plain RSA) uses relatively small exponents, e.g., e = 3.
Thus, the SAS-based scheme represents a fairly practi-
cal solution in a typical MANET where routes sizes are
at most 4-6 hops. DH verification cost shows the same
trend as DH generation cost since both operations re-
quire two full-blown exponentiations with the same size
exponents. ASM still has relatively good performance
in verification, and GDH is the slowest due to the high
cost of Tate pairing operations, as discussed in section
5.1.

6 Related Work

In this section, we briefly overview relevant prior
work. The most related prior work is the Ariadne
scheme by Hu, et al. [11]. Ariadne is based on TESLA
– an earlier broadcast authentication scheme. Ariadne is
very efficient since it uses MACs and reduces the setup
cost of pair-wise shared keys by using TESLA. Also,
Ariadne offers some protection against DoS attacks by

requiring the destination to authenticate the source.
Ariadne inherits from TESLA the requirement for

loose time synchronization among all nodes. In addi-
tion, each node generates (and appends) a MAC using a
yet-unpublished shared secret key in the defined TESLA
time unit during RREQ broadcast. This increases over-
head, since it is done regardless of whether or not the
node is actually part of the eventual route. Also, in addi-
tion to accumulating the source route, the size of RREQ
grows due to the accumulation of MACs. Furthermore,
Ariadne does not offer non-repudiation which is attained
in our schemes based on signatures.

Papadimitratos and Haas [16] proposed Secure Rout-
ing Protocol (SRP) that can be adapted to existing rout-
ing protocols such as DSR or ZRP in order to secure the
route discovery mechanism. SRP, unlike Ariadne [11],
requires only the two communicating end-nodes to form
a security association. Neither the source nor the desti-
nation authenticates each intermediate’s node presence
in the route. This makes SRP vulnerable to attacks that
involve adding (or deleting) honest nodes to (or from)
the route.

To alleviate DoS attacks in MANETs, Hu, et al. pro-
posed two protection mechanisms [9, 10] against worm-
hole and rushing attacks, respectively. These two types
of attacks aim to disrupt data transmission after the ad-
versary manipulates route discovery procedure to get it-
self included in the route. However, it is quite hard to
detect nodes behaving honestly during route discovery
but becoming adversarial later, during the transmission
of data packets. Moreover, it is also hard to distinguish
among adversarial actions and link failures. The work
in [9] tries to detect possible adversarial behavior via
packet leashes which, in turn, rely on loosely synchro-
nized time across all MANET nodes. However, as with
Ariadne, time synchronization is not a realistic assump-
tion for all types of MANETs. In a so-called blackhole
attack (based on a wormhole) the adversary creates a
routing blackhole, with which it attracts and then drops
data packets. Watchdog and Pathrater [13] proposed by
Marti et al. can also mitigate blackhole attacks since
each node is required to monitor whether its neighbors
are forwarding their packets.

References

[1] Miracl project:http://indigo.ie/ mscott.
[2] Openssl project:http://www.openssl.org.
[3] M. Bellare, R. Canetti, and H. Krawczyk. Keying hash

functions for message authentication. Lecture Notes in
Computer Science, 1109, 1996.

[4] A. Boldyreva. Efficient threshold signature, multisigna-
ture and blind signature schemes based on the gap-diffie-
hellman-group signature scheme.

[5] D. Boneh, C. Gentry, H. Shacham, and B. Lynn. Ag-
gregate and verifiably encrypted signatures from bilinear
maps, 2003.

[6] D. Boneh, B. Lynn, and H. Shacham. Short signatures
from the Weil pairing. Lecture Notes in Computer Sci-
ence, 2248, 2001.

[7] C. Castelluccia, S. Jarecki, J. Kim, and . Gene Tsudik.
Verifiable and secure acknowledgement aggregation. In
Communication Networks Security, 2004.

[8] W. Diffie and M. E. Hellman. New directions in
cryptography. IEEE Trans. Inform. Theory, pages IT–
22:644?654, 1976.

[9] Y.-C. Hu, A. Perrig, , and D. B. Johnson. Packet leashes:
A defense against wormhole attacks in wireless ad hoc
networks. Tech report, Dep. Of Computer Science, Rice
University, 2001.

[10] Y.-C. Hu, A. Perrig, , and D. B. Johnson. Rushing at-
tacks and defense in wireless ad hoc network routing
protocols. Tech Report TR01-384, Dep. Of Computer
Science, Rice University, 2002.

[11] Y.-C. Hu, A. Perrig, and D. B. Johnson. Ariadne : A
secure on-demand routing protocol for ad hoc networks.
In MOBICOM, 2002.

[12] D. B. Johnson and D. A. Maltz. Dynamic source rout-
ing in ad hoc wireless networks. In Mobile Computing,
1996.

[13] S. Marti, T. Giuli, K. Lai, and M. Baker. Mitigating
routing misbehaviour in mobile ad hoc networks. In
IEEE/ACM International Conference on Mobile Com-
puting and Networking (MobiCom 2000), 2000.

[14] S. Micali, K. Ohta, , and L. Reyzin. Accountable-
subgroup multisignatures. In ACM Conference on Com-
puter and Communications Security, 2001.

[15] P. Montgomery. Modular multiplication without trial di-
vision. In Mathematics of Computation, number Vol.
44:519?521, 1985.

[16] P. Papadimitratos and Z. Haas. Secure routing for mo-
bile ad hoc networks. In SCS Communication Networks
and Distributed Systems Modelling Simulation Confer-
ence CNDS, 2002.

[17] A. Perrig, R. Canetti, J. D. Tygar, and D. X. Song. Ef-
ficient authentication and signing of multicast streams
over lossy channels. In IEEE Symposium on Security
and Privacy, pages 56–73, 2000.

[18] D. Pointcheval and J. Stern. Security proofs for sig-
nature schemes. Lecture Notes in Computer Science,
1070:387+, 1996.

[19] H. Shacham. Sequential aggregate signatures from trap-
door homomorphic permutations, 2003.

A Security Analysis

The proposed schemes are secure against the adver-
sary who adds honest nodes to the route and delete them

from the route, except in case of non-adjacent compro-
mised nodes on the route, where the adversary can delete
feedback loops as we discussed in section 3. A secure
scheme implies that no honest node has been added or
deleted by the adversary, i.e., each honest node really
appeared in the route but was not forged.

A.1 Security of DH-based scheme

Theorem 1. Under the Computational Diffie-
Hellman (CDH) assumption, the multi-MAC scheme
based on DH key agreement described in section 4.5 is
secure against existential forgery.

Proof (sketch). There is an adaptive chosen message
attack adversary A which queries MACs to a simula-
tor S. The A can compute a new MAC, gghx1x2 from a
polynomial number of n MACs queried. Suppose A′ us-
ing A which queries additionally ggh1x1x2 ,, gghlx1x2 ,
where hi is a l-bit string and only ith bit is 1. For exam-
ple, h1=(000...01). Let h the hash of a message on which
A forges a MAC. Since any h = hi1 + hi2 + ... + hik

for some k,

gghx1x2

= g(g
hi1

x1x2)(g
hi2

x1x2)...(g
hik

x1x2)

Therefore, we can solve a CDH problem of
(g, gg

hi1
x1x2

, gg
hi2

x1x2

, ..., gg
hik

x1x2

) by using the
adversary A′.

A.2 Security of ASM-based scheme

We consider an adversary F with the following ca-
pabilities: (1) F can fully control all packets exchanged
in the network, i.e., it can read, modify or discard any
packet as well as inject its own packets, (2) F can mount
an adaptive chosen-message attack against any honest
node I by requesting that I sign a message of F ’s choos-
ing.

Definition (adapted from [14]): A multi-signature
scheme is secure if every polynomial-time adversary F
has a negligible chance of outputting a triple (σ, M, S)
such that (1) σ is a valid multi-signature on message M
by the subgroup S of players, and (2) there exists an
honest player P ∈ S who has never been asked by A to
sign M in the context of S.

Theorem 2. The multi-signature scheme (based on
the Schnorr signature scheme) described in 4.5 is secure
in the Random Oracle Model, under the Discrete Loga-
rithm Assumption.

Proof (sketch). In case of adaptive chosen message
attack, the adversary F uses the signer as an oracle.

We construct a simulator A which does not know the
signer’s secret key but can simulate the signer. Together
with A, F can break the underlying signature scheme
and solve the discrete logarithm.

Suppose that A is given a DLP instance: < p, g, y >
and is asked to compute x such that gx = y mod p.
We assume that all nodes – except the source and the
sole honest node I – are corrupt and F can forge many
multi-signatures on some message M without asking I
to sign. A assigns yi = y as the public key of I , while it
selects all other nodes’ private keys at random.

For F to forge a multi-signature, A needs to simulate
I’s response. This is done in a manner very similar to
the security proof of the Schnorr signature scheme in
[18]. The only difference is that A needs to rewind F
to answer a signature query to I on M as in the security
proof of the multi-signature scheme [14, 7], based on the
Schnorr signature scheme.

Assume that F asks qh hash queries and the answers
to all hash queries are picked in advance and at random:
e1,, eqh

To answer a signature query to I on M, A
selects e at random from hash values which are picked
in advance at random and σ ∈ [0, q − 1] at random,
computes ti = y−e

i gσ mode p and sends ti to F as the
response to the first round of the query. Upon receiving
t̃ from F , A verifies if e = (t̃, M). If so, A outputs σ.
Otherwise, rewinds F and repeats picking e. Note that
A will eventually succeed in expected number of at most
qh times, which degrades the simulation algorithm with
a polynomial factor.

A then runs F , answering its queries as described
above. Suppose that F outputs a forgery (t̃, σ̃) of the
signature on a message M with a subgroup SG and the
forgery was based on the j-th hash query. Following the
“forking lemma” technique in [18], A resets F with the
same random tape as the first time and reruns F from
the point of the j-th hash query, answering with a new
random number e′. As in the above description, A might
need to rewind at most qh times again.

In case A does not need to rewind (since the random
tape and answers to all hash queris – up to j-th – are the
same) we are assured that j-th hash query to the hash
function will also be the same but with a different answer
with a different subgroup SG′: e′ = (t̃, M). Let ỹ =∏

k∈SG−{i} yk and ỹ′ =
∏

k∈SG′−{i} yk and let x̃ =
∑

k∈SG−{i} xk and x̃′ =
∑

k∈SG′−{i} xk

So, if F again forges a signature (t̃, σ̃′), and forgery
is based on j-th hash query, then: gσ̃ = t̃(ỹy)e

(mod p), gσ̃′

= t̃(ỹ′y)e′

(mod p). Thus, σ̃ − σ̃′ =
(x̃+x)e− (x̃′ +x)e′ (mod q). So, x = (σ̃− σ̃′− x̃e+
x̃′e′)/(e − e′) (mod q). Thus x = DLg(y) is solved.

