
Acceleration of Image Classification
with Caffe framework using FPGA

Dimitrios Danopoulos
Department of Electrical

and Computer Engineering
NTUA, Athens, Greece

Christoforos Kachris
Institute of Communication and

Computer Systems (ICCS/NTUA)
Athens, Greece

Dimitrios Soudris
Department of Electrical

and Computer Engineering
NTUA, Athens, Greece

Abstract—Caffe is a deep learning framework, originally de-
veloped at UC Berkeley and widely used in large-scale industrial
applications such as vision, speech, and multimedia. It supports
many different types of deep learning architectures such as
CNNs (convolutional neural networks) geared towards image
classification and image recognition. In this paper we develop
a platform for the efficient deployment and acceleration of Caffe
framework on embedded systems that are based on the Zynq
SoC. The most computational intensive part of image classifi-
cation is the processing of the convolution layers of the deep
learning algorithms and more specifically the GEMM (general
matrix multiplication) function calls. In the proposed framework,
a hardware accelerator has been implemented, validated and
optimized using Xilinx SDSoC Development Environment to
perform the GEMM function. The accelerator that was developed
achieves up to 98× speed-up compared with the simple ARM
CPU implementation. The results showed that the mapping of
Caffe on the FPGA-based Zynq takes advantage of the low-power,
customizable and programmable fabric and ultimately reduces
time and power consumption of image classification.

I. INTRODUCTION

The continuing exponential increase of media, IoTs and big
data in general requires faster and faster processing speeds
while the applications must maintain a low power cost and
keep the development time small. Many high performance
systems rely on machine learning (ML) algorithms such as
image classification, data analytics etc. which are required
for embedded and big data applications as well. In this
field, Deep Convolution Neural Networks (DNNs) have gained
significant traction due to the fact that they offer state-of-
the-art accuracies and important flexibility (e.g. by updating
the classifier). Although a serious amount of computation
is needed to analyze the large amounts of data, the use
of multicore systems [1] seems promising but the challenge
of reducing the high energy cost and the processing times
remains. FPGA implementations on the other hand have seen
great advancement as new emerging techniques exploit the
FPGA SoCs, such as the Zynq 7000 [2], taking advantage of
the high performance hardware accelerators with few power
costs while keeping the adaptability of fast prototyping. With
the utilization of hardware accelerators the total throughput
is increased due to highly parallelizable massive number of
multiply-accumulate operations (MACs) that DNN algorithms
need and also the energy consumption is decreased. Caffe deep
learning framework of UC Berkley [3] has already been offi-

cialy implemented and optimized in two different architectures
for CPU and GPU only but can be easily configured without
hard-coding. This paper presents:

• A modified version of Caffe to effortlessly port it into the
ARM (Zynq 7000 based) processor of FPGA.

• A hardware accelerator designed on Xilinx SDSoC Envi-
ronment that leverages the FPGA architecture to perform
the image classification algorithm.

• A CPU-FPGA-based system, a highly heterogeneous all-
programmable SoC that supports the Caffe framework
and utilizes the hardware accelerator achieving significant
speed and power efficiency compared to the ARM Zynq
processor.

II. BACKGROUND

A. Deep Neural Networks

A deep neural network (DNN) is a biologically-inspired
programming paradigm which can model complex non-linear
relationships like analyzing visual imagery. It behaves simi-
larly to the human brain so as to simulate its densely intercon-
nected brain cells using digital neurons that trigger when they
sense certain features. A DNN can achieve the classification
without being specifically programmed but with the process
of training which includes learning from previous examples
and modifying a set of weights from a dataset.

After training, the task is performed on new data through
a process called inference which is basically a dot product
of the features and weights (ex. Classifying an image). The
importance of such algorithms is the accurate results, the speed
of computation and the little human effort required because
there is no need to hand-craft the features of the model as this
is done automatically by the algorithm with great precision.
Some of the fundamental layers found in many models are:

• Convolutional Layer: applies a convolution operation to
the input by convolving each filter, passing the result to
the next layer in order to recognize specific features.

• Pooling Layer: combines the outputs of neuron clusters
at one layer into a single neuron in the next layer, thus
reducing the sensitivity of the filters. This process can be

This project has received funding from the European Unions Horizon
2020 research and innovation programme under grant agreement No 687628,
VINEYARD http://vineyard-h2020.eu



achieved by max pooling which uses the maximum value
from each cluster of neurons at the prior layer. Another
example is average pooling, which uses the average value
from each cluster of neurons combining their results.

• Fully Connected Layer: connects every neuron in one
layer to every neuron in another layer. They can be
visualized as one dimensional and perform the high level
reasoning in the neural network.

B. Caffe Framework

Caffe is a deep learning framework that uses neural net-
works with multiple hidden layers between the input and out-
put layer and can solve many problems in image recognition,
speech recognition and natural language processing. The core
of the neural network computation involves going through each
layer in the network which can include many different layers
and performs the so called forward and backward passes. The
forward pass computes the output of each layer given the
input for the inference and eventually makes a prediction.
The backward pass computes the gradient given the loss for
learning. In backward, Caffe reverse-composes the gradient
of each layer to compute the gradient of the whole model
by automatic differentiation. This is back-propagation and is
needed for the training of a model where the network weights
are updated. Caffe stores, communicates and manipulates all
this information as blobs: blob is the standard array and
unified memory interface for the framework. The details of
blob describe how information is stored and communicated in
and across layers and nets. The conventional blob dimensions
for batches of image data are number N × channel K ×
height H × width W which is 4D dimensional and vary
according to the type and configuration of the layer. In order to
perform an image classification through Caffe framework for
example, we need to specify the model definition in prototxt
format, the pre-trained model with the weights in caffemodel
format, the image mean of the data in binary proto format,
the classification categories in a text file and the input image
to classify. The implementation of image classification was
performed using the C++ API of Caffe but a python and matlab
API is provided for building as well.

III. MAPPING CAFFE TO ARM

This section describes the steps to port the whole Caffe
framework into the Zynq 7000 SoC to run on the ARM core.
In order to make the Caffe run on Zynq we had to cross
compile the whole framework using the ARM cross compiler
that was included in the SDSoC Environment. SDSoC is
the IDE-based framework provided by Xilinx that allows the
development of HW/SW embedded systems for the Zynq
platform. This platform offered the ability to define, integrate
and verify the hardware accelerator that would accelerate a
specific function that will be described later and generate both
the ARM software and FPGA bitstream.

The first step was to edit the Makefile of the Caffe frame-
work and change the previous default g++ toolchain where it
appeared to the new ARM cross compiler toolchain. Moreover,

the default library search paths of Caffe were modified so as
to stop loading the x64 libraries so they were set to point on
a new custom folder where all the arm libraries that Caffe
demanded were placed. The cross compilation of the libraries
was manual, meaning that the source files of each library that
Caffe required had to be downloaded and then cross compiled
one by one using the ARM toolchain. For every library,
the appropriate configuration had to be defined (overcoming
several complications in some library installations) before
the header files and dynamic libraries were produced. These
dependencies include libraries such as opencv, boost, protobuf,
hdf5, openblas, glog, leveldb, snappy, gflags, lmdb etc. Also,
the rpath-link was manually set on the Caffe Makefile to point
in the custom library folder to make it the same path as the
general libraries. This is used because some shared objects
that were built, had encoded a wrong path to some executable
arguments and the correct shared objects needed at runtime
had to be located. Lastly, in the configuration of Makefile, a
CPU-only mode was set, the default BLAS folder was changed
to point on the custom made folder and OpenBLAS was used
which is generally supported on embedded systems.

The image classification was performed with the C++
interface using the SqueezeNet network on ImageNet data
because it’s light and can avoid memory issues with the Zynq
SoC. SqueezeNet is an 18-layer network that has 1.24 million
parameters which is only 5 MB of weights in all [4]. The
inference was achieved in 1.1 secs on average and produced
correct results. Comparing it with the inference on our host
Intel i3-3250 CPU which runs in 0.2 secs, we noticed the
expected computation time which is about 5× times slower
on Zynq as the ARM CPU clock is almost 5× times slower
(667 MHz vs 3, 5 GHz). Finally, we performed a full profiling
on Caffe framework using the included benchmarking tools.
The results showed that the large computation overhead lies
on the convolution layers of the model and several studies
have explored the acceleration of this layer using Winograd’s
convolution for example [5]. The following chart illustrates
the percentage of execution time in every layer of Caffe’s
reference model and clearly shows the large computation
overhead in the convolution layers of the network which takes
approximately 75% of the total time.

convolution 74.7%

relu 2.1%

pooling 7.4%

normalization 6.9%

fully
connected 8.9%

Fig. 1. Execution time per layer with Caffe profiling



IV. THE HARDWARE ACCELERATOR

After examining the C++ API and especially the convo-
lution layer source files, we concluded that Caffe’s strategy
for convolution is to reduce the problem to matrix-matrix
multiplication and more precisely to the GEMM function. This
function which is called in every convolution layer and fully
connected layer, is basically MAC (multiply-accumulate) float
operations and it is responsible for most computations in a
convolutional neural network.

A. Caffe’s convolution with GEMM

Caffe does convolution by turning the input from an image,
which is effectively a 3D array, into a 2D array which
combines all the corresponding patches of the input and treats
it like a matrix Im. Then each kernel is expanded consecutively
forming the filter matrix Fm.

D0 D1 D2

D3 D4 D5

D6 D7 D8

D0 D1 D2

D3 D4 D5

D6 D7 D8

D0 D1 D2

D3 D4 D5

D6 D7 D8

D4 D5 D7 D8

D3 D4 D6 D7

D1 D2 D4 D5

D0 D1 D3 D4

D4 D5 D7 D8

D3 D4 D6 D7

D1 D2 D4 D5

D0 D1 D3 D4

D4 D5 D7 D8

D3 D4 D6 D7

D1 D2 D4 D5

D0 D1 D3 D4

F0 F1 F0 F1 F0 F1

F2 F3 F2 F3 F2 F3

G0 G1 G0 G1 G0 G1

G2 G3 G2 G3 G2 G3

F0 F1 F2 F3 F0 F1 F2 F3 F0 F1 F2 F3

G0 G1 G2 G3 G0 G1 G2 G3 G0 G1 G2 G3

Image Data

Filter Data

Im

Fm Output

Fig. 2. Convolution lowering to matrix multiplication

As shown in the figure above, many pixels that are included
in overlapping kernels will be duplicated in the matrix Im
which seems inefficient, though large matrix to matrix multi-
plications are highly optimizable and parallelizable [6]. This
linear algebra computation in Caffe is done using the GEMM
function which is highly-tuned in BLAS libraries. Several
studies have examined these optimizations as for example the
study on OpenCL GEMM version on FPGA [7].

B. Design of the hardware accelerator

In this section, we present the hardware accelerator that
was developed to run on FPGA, implemented with efficiency
and speed in mind, aiming to outperform the Caffe’s BLAS
GEMM function which is done on CPU. In order to accelerate
the GEMM function which is basically the matrix equation
C = aAB+bC within the PL (Programmable Logic), we had
to implement the MAC operations on hardware. We designed
a blocked-matrix multiplication algorithm in order to calculate
the large matrices throughout the layers of the network which
originally could not fit into the FPGA fabric. Our function

behaves just like a GEMM function call by calculating a block
each time and adding it to the final output. Two kernels were
developed, the first was responsible to do the MAC operations
of each block (mmult accel) and the second to add each
temporary block to the result block that would be finally added
to the output matrix (madd accel).

C. Optimization strategies

• Data Access Optimization: The first set of optimizations
that can be made to a hardware function is to improve
memory accesses and data transfer rates between the PS
and PL. We allocated the matrix blocks in physically
contiguous memory so that the compiler could use the
most efficient data movers, hence to guarantee a fast
streaming communication. What’s more, we utilized the
block RAM on the FPGA which is physically located
near the computation by copying the transferred block
matrices on temporary arrays that could fit into the PL on-
chip memory, thus allowing one-cycle reads and writes.

• Pipeline Optimization: In order to achieve large
throughput we had to enable a high degree of fine-grained
parallelism in application execution within the PL fabric.
We avoided data dependencies and increased the level
of parallelism in the hardware implementation of the
algorithms of the two kernels. Using appropriate SDSoC
pragmas such as the pipeline directive, we constructed
a highly parallel and pipelined architecture with mini-
mum latency that performed the MAC operations very
efficiently.

• Dataflow Optimization: This design technique is ex-
pressed at a coarse-grain level. We placed our kernel
function calls one after the other so that SDSoC identifies
the interactions between the output from the mmult accel
kernel and the input from the madd accel kernel which
are shared. SDSoC ensured the output of the second
hardware function started operation as soon as data was
available from the first function’s output.

• Cache Optimization: In order to calculate each subma-
trix we had to load from DDR memory to the CPU cache
the appropriate blocks from matrix A and B each time.
With the use of the processor’s cache unit we minimized
the memory communication overhead by attaching the
kernels to the fast cache of ARM CPU.

D. Integration with Caffe

In order to integrate the hardware accelerator with the Caffe
framework and port it into the Zynq SoC we had to create
it as a shared library instead of an application binary and
then link it with the rest of the Caffe framework. Through
the SDSoC Development Environment we were able not only
to create the dynamic library but also the SD card boot image
that our board would boot from. Then all we had to do was
replace the Caffe’s GEMM function call that runs on CPU
with our GEMM function that is accelerated though the PL
of the FPGA and run the Makefile with ARM toolchain in
order to link the new shared library. As shown in Figure 3,



the whole process starts from the Caffe framework where the
user runs the classification command on the host CPU of
Zynq SoC. Then, whenever Caffe needs to make a GEMM
call, it does not load the previous BLAS GEMM call which
would run on CPU but instead it loads our new function
(my gemm). Following, whenever our function needs to speed
up MAC operations, it communicates through AXI stream
with our kernels (mmult accel, madd accel) passing each time
the blocked matrices on the PL and sends back the result
blocks. So, we efficiently send back and forth information any
time needed within the PS and PL in a streaming manner. At
the end, Caffe retrieves all the information from our GEMM
function which returns the entire calculated array (array C).

CaffeFramework

Shared Library

Wrapper
Function

AXI Stream

Hardware
Kernels

void my gemm (int TA, int TB, int M,
int N, int K, float alpha, float *A,
int lda, float *B, int ldb,
float beta, float *C, int ldc)

mmult accel madd accel

void mmult accel(
float A[],
float B[],
float C[],
float alpha)

void madd accel(
float A[],
float B[],
float C[])

PS

PL
A B alpha C A B C

Fig. 3. Execution time per layer with Caffe profiling

V. PERFORMANCE EVALUATION

Our GEMM function was validated and passed several tests
on multiple matrix sizes with irregular dimensions and sup-
ports alpha and beta scalars to be specified if desired. Also the
classification accuracy was tested on Caffe using the CIFAR10
[8] validation set (10000 images) and remained intact at 76%.
Moreover, it’s worth mentioning that similar studies have
explored the use of GPUs with the Caffe framework achieving
significant results [9]. Below is the resource utilization of our
GEMM function in the FPGA fabric.

TABLE I
RESOURCE UTILIZATION FOR HW FUNCTIONS

Resource Used Total %Utilization
DSP 162 220 73.64
RAM 32 140 22.86
LUT 38816 53200 72.96
FF 20048 106400 18.84

Also the performance of our hardware accelerator was
evaluated on Xilinx ZC702 Board compared with the naive

implementation of GEMM on ARM. Additionally we com-
pared along with that, the performance of the simple GEMM
approach on i3 CPU and the GEMM BLAS function on ARM.

32 64 128 256 512 1024 2048
1

20

40

60

80

100

Matrix Size

Sp
ee

d-
up

FPGA (blocked)
ARM (OpenBlas)
i3 CPU (naive)

Fig. 4. GEMM function speed-up compared to the ARM version

The actual execution time was tested by measuring the
numbers of cycles of the external clock of Zynq 7000 SoC
which runs on 667 MHz and we found that our blocked
GEMM hardware call reached up to 98× with 128×128 block
size on 100 MHz kernel clock.

VI. CONCLUSION

In this work we presented a framework for implementing
DNNs using FPGAs based on the Caffe framework. Hardware
accelerators can improve significantly the performance and
the energy efficiency of machine learning applications such
as image classification. We described a novel scheme for
the seamless utilization of the FPGA and the integration
of the hardware accelerator with the Caffe Deep Learning
framework and obtained successful results in terms of speed
and power efficiency. FPGAs may become the platform of
choice for accelerating next-generation DNNs and more and
more developers are encouraged to take advantage of their
benefits.

REFERENCES

[1] Vivienne Sze, Yu-Hsin Chen, Joel Emer, Amr Suleiman and Zhengdong
Zhang. Hardware for Machine Learning: Challenges and Opportunities.
In IEEE Custom Integrated Circuits Conference, 2017

[2] Zynq-7000 All Programmable SoC. Technical Reference Manual, 2017
[3] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, S.

Guadarrama and T. Darrell. Caffe: Convolutional Architecture for Fast
Feature Embedding. arXiv preprint arXiv:1408.5093, 2014

[4] Forrest N. Iandola, Song Han, Matthew W. Moskewicz, Khalid Ashraf,
William J. Dally and Kurt Keutzer. SqueezeNet: AlexNet-level accuracy
with 50x fewer parameters and <0.5MB model size. arXiv preprint
arXiv:1602.07360, 2016

[5] Roberto DiCecco, Griffin Lacey, Jasmina Vasiljevic, Paul Chow, Graham
Taylor and Shawki Areibi, Caffeinated FPGAs: FPGA Framework For
Convolutional Neural Networks, In Distributed, Parallel, and Cluster
Computing (cs.DC), 2016

[6] N. Dave, K. Fleming, M. King, M. Pellauer and M. Vijayaraghavan,
Hardware Acceleration of Matrix Multiplication on a Xilinx FPGA, In
Formal Methods and Models for Codesign, May 2007

[7] C. Nugteren. CLBlast: A Tuned OpenCL BLAS Library. arXiv preprint
arXiv:1705.05249, 2017

[8] Alex Krizhevsky, ”Learning Multiple Layers of Features from Tiny
Images”, 2017

[9] Sharan Chetlur, Cliff Woolley, Philippe Vandermersch, Jonathan Cohen,
John Tran, Bryan Catanzaro and Evan Shelhamer. cuDNN: Efficient
Primitives for Deep Learning. arXiv preprint arXiv:1410.0759, 2014


