
Area Optimization with Non-linear Models in

Core Mapping for System-on-Chips

Jan Moritz Joseph1, Dominik Ermel1, Tobias Drewes1, Lennart
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Abstract

Linear models are regularly used for mapping cores to tiles in a chip.
System-on-Chip (SoC) design requires integration of functional units with
varying sizes, but conventional models only account for identical-sized
cores. Linear models cannot calculate the varying areas of cores in SoCs
directly and must rely on approximations. We propose using non-linear
models: Semi-definite programming (SDP) allows easy model definitions
and achieves approximately 20% reduced area and up to 80% reduced
white space. As computational time is similar to linear models, they can
be applied, practically.

Keywords: Design Models, Nonlinear Optimization, CAD

1 Introduction

A common design problem for System-on-Chips (SoCs) using mesh-based Network-
on-Chips (NoCs) is core mapping. This takes a core graph and a network graph
as input. In the core graph, nodes represent cores, edges represent communi-
cation and edge weights represent required bandwidths. In the network graph,
nodes represent tiles, each of which is a NoC router with reserved space for
a core, and edges represent links between tiles. The reserved area per core is
usually identical. The output of core mapping is an assignment of cores to
tiles. The objective function of core mapping minimizes communication costs,
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e.g. required bandwidth times hop distance. This is solved using linear models,
for instance mixed-integer linear programming (MILP), or heuristics such as
simulated annealing (SA), e.g. [1].

The aforementioned approach does not account for cores with varying sizes
due to different functionality, which is a typical characteristic of SoCs. Effi-
cient core mapping for SoCs must account for this heterogeneity. An example
for this inefficiency is depicted in Fig. 1, in which cores of different sizes (or-
ange) allocate less area than reserved (light gray). Naturally, conventional linear
models for mapping will be limited if the objective function also takes area into
consideration, since area calculations are non-linear, intrinsically.

Figure 1: Mapping of cores (orange) of varying size to a SoC with equal-sized tiles.
Whitespace is gray.

In this publication, we propose to use non-linear models for area minimiza-
tion during mapping, since these yield better area with short run time. We
demonstrate this by comparison of a linear and a non-linear model for area
optimization during core mapping: The proposed non-linear model yields bet-
ter area, since an error-inducing linearization of area is not necessary. Further,
they are cleaner than linear models and their definition is less complicated than
usually anticipated. Plus, the additional computational effort for optimization
is very small. Due to this, non-linear models are highly relevant in practical
application.

This publication is structured as follows: First, we contribute two models
for minimization of area for mapping in Sec. 2; one linear and one non-linear
model. Next, we compare the results of linear and non-linear models in Sec. 3.1.
Then, the results of a mapping algorithm using SA, which considers area using
non-linear models, are shown in Sec. 3.2 and compared to related work. Results
are discussed in Sec. 4. Finally, we conclude in Sec. 5.

2 Area for mapping on cores

We introduce two basic models, which allow optimizing the area of a SoC during
core mapping. The first model is linear and therefore approximates area. The
second is non-linear and therefore more area-efficient. These two models are the
basis, on which we compare linear and non-linear models.

The area optimization problem is formulated as follows: Assume a given
order of lk or fewer components in l rows and k columns. This represents a
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given mapping of cores to tiles. Each component has the size Fi,j , for certain
i ∈ [l] := {1, . . . l} and j ∈ [k] := {1, . . . k}. Fi,j = 0 if there is no component at
row i, column j for all pairs (i, j) ∈ [l] × [k]. The height of rows is denoted by
ri ∈ R for all i ∈ [l]. The width of columns is denoted by cj ∈ R for all j ∈ [k].
It holds that the reserved area in a tile is bigger than the size of the assigned
core:

ricj ≥ Fi,j for all i ∈ [l], j ∈ [k]. (1)

The linearized objective function throughout this paper is to minimize the side
length of a square that encloses all tiles.

max

∑
i∈[l]

ri,
∑
j∈[k]

cj

 −→ min (2)

2.1 Linear Model

The area of a rectangle Fi,j with edge length ri and cj cannot be calculated
through means of a linear model. Therefore, the area is linearized. A natural
approach is given by Lacksonen et al. [2] for a factory layout problem, which
can be applied here as well. The approach is shown in Fig. 2. Linearization is
possible, since rectangles are within an aspect ratio of η ∈ (0, 1), i. e. ri ≥ cjη and
ri ≤ cjη

−1. This is shown in Fig. 2a. The area rici of a tile i, j must be larger
than its core with size Fi,j , i. e. Fi,j ≤ rici. The hyperbola for equal area is the
lower left bound for the solution space of the optimization. Further, the solution
space is limited by any given maximum edge length of the tile, i. e. cj ≤ ymax and
ri ≤ xmax. The solution space is further reduced in size by the line equations for
the aspect ratio η. Since the hyperbola is non-linear, it is approximated by a line
equation given by the intersections between the lines for the aspect ratios and
the maximum edge length. The resulting linearization error is plotted in green
in Fig. 2a. It is possible to reduce this error by including more equally-spaced
knots as shown in Fig. 2b. Each linear equation connecting two adjacent knots
intersected with the iso-area-hyperbola (ricj = Fi,j) is called a 1-spline. Please
note that more 1-splines reduce the error but increase the model complexity,
since integer inequalities are required to determine the current spline. There
are at least three additional integer inequalities per supporting point. Naturally,
this has a large performance impact.

For a given mapping, the optimization is subject to

ri ≥ ηcj ∀i ∈ [l],∀j ∈ [k] (3)

cj ≥ ηri ∀i ∈ [l],∀j ∈ [k] (4)

ri + cj ≥
√
Fi,jη +

√
Fi,j/η ∀i ∈ [l],∀j ∈ [k] (5)

with the minimum tile aspect ratio η ∈ (0, 1). The linearization of Eq. 1 is now
Eq. 5, following the approach presented using only a single linear approximation
(cf. Fig. 2a).
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2.2 Non-Linear Model

Since linear models introduce a significant error, we use a semi-definite model to
optimize the problem without this linearization error, because the red hyperbola
in Fig. 2 is modeled. We set k l variables Xk(i−1)+j such that

Xk(i−1)+j =

[
ri

√
Fi,j√

Fi,j cj

]
� 0, ∀i ∈ [l], ∀j ∈ [k] (6)

These matrices are premised to be positive semidefinite (i. e. ”� 0”); thus each
principal minor is greater or equal to 0:

det
(
Xk(i−1)+j

)
≥ 0 (7)

⇔ ricj − Fi,j ≥ 0 (8)

⇔ ricj ≥ Fi,j , ∀i ∈ [l], ∀j ∈ [k] (9)

We formulate a semi-definite programming (SDP) problem. The objective func-
tion minimizes a variable x ≥ max{

∑
ri,
∑
ci} subject to:

We assign the corresponding area values to each matrix using the Frobenius
inner product:

2
√
Fij ≤

〈[
0 1
1 0

]
, Xk(i−1)+j

〉
≤ 2

√
Fij , ∀i ∈ [l],∀j ∈ [k]

(10)

For each i ∈ [l], the upper left entry of the matrices Xk(i−1)+j has the same
value for all j ∈ [k] (this models ri):

0 ≤
〈[

1 0
0 0

]
, Xk(i−1)+1

〉
+〈[

−1 0
0 0

]
, Xk(i−1)+j

〉
≤ 0

(11)

For each j ∈ [k], the lower right entry of the matrices Xk(i−1)+j has the same
value for all i ∈ [l] (this models cj):

0 ≤
〈[

0 0
0 1

]
, Xj

〉
+〈[

0 0
0 −1

]
, Xk(i−1)+j

〉
≤ 0

(12)

We model the maximum variable x for the objective function (this models x ≥∑
ri and x ≥

∑
ci):

0 ≤ x+

l∑
i=1

〈[
−1 0
0 0

]
, Xk(i−1)+1

〉
(13)

0 ≤ x+

k∑
j=1

〈[
0 0
0 −1

]
, Xj

〉
(14)
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Again, areas of tiles are constrained by an aspect ratio η. Note, that this aspect
ratio is not violated by the relation between ri and cj . Rather, a component can
find a rectangle inside the bounding box given by ricj . This rectangle has the
size of the core. The aspect ratio of its edges is greater than η. We formulate
for all i ∈ [l] and for all j ∈ [k]:

√
ηFi,j ≤

〈[
1 0
0 0

]
, Xk(i−1)+1

〉
(15)

√
ηFi,j ≤

〈[
0 0
0 1

]
, Xj

〉
(16)

3 Results

We first compare the provided linear and non-linear model using theoretical
benchmarks to quantify advantages for area and analyze additional effort in
computational time in Sec. 3.1. Then, we apply the non-linear model to mapping
of cores with different sizes in a SoC and compare the results to the related work
in Sec. 3.2.

3.1 Linear vs. non-linear model

We compare the results of linear and non-linear models using the proposed LP
and SDP. The models are implemented in MATLAB R2018a. LPs are optimized
using IBM CPLEX 12.8.0 [3]. SDPs are optimized using Mosek 8.1 [4].

We generate three input benchmarks. The cores are equal-sized to provide
a fair comparison against conventional approaches. The benchmarks are:

1. A 3D SoC with 2 layers and 5 tiles, of which three tiles are in layer 1 and
two tiles are in layer 2.

2. A 3D SoC with 4 layers and 10 tiles per layer connected by a 2×5 mesh
NoC.

3. A 3D SoC with 4 layers and 20 tiles per layer connected by a 4×5 mesh
NoC.

Cores are 10 A large. Routers with 5 ports require 1 A. The router area is
linearly proportional to port count depending on the position of the router
in the network. TSV arrays, which vertically connect routers, are 2 A large.
The aspect ratio is limited by η = 0.1. We run the optimization 50 times to
average run time on an Intel Core i7-6700 (4 physical cores at 3.4 GHz with
hyper threading) using Windows 10.

Both models require approximately the same amount of memory in MAT-
LAB. The area and runtime results are reported in Table 1. In benchmark
1), the summed chip area is 68.7 A from the LP and 59.8 A from the SDP. In
benchmark 2), the summed chip area is 832 A from the LP and 695 A from the
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Table 1: Area, runtime, inequality count and variable count comparison between linear
and non-linear model to optimize a homogeneous 3D SoC with 5, 40 and 80 homoge-
neous cores including TSV areas (runtime average of 50 reruns).

L
a
y
e
r Area [A] and Difference

5 PEs 40 PEs 80 PEs
LP SDP ∆ LP SDP ∆ LP SDP ∆

1 43.0 36.8 -14.4% 211 178 -15.6% 364 301 -17.4%
2 25.7 23.0 -10.5% 222 180 -18.9% 379 313 -17.4%
3 — — — 214 183 -14.5% 378 313 -17.2%
4 — — — 185 154 -16.8% 316 261 -17.4%

Average Area
Reduction -12.5% -16.5% -17.3%

Average runtime [s]

0.4 2.9 +625% 3.9 7.5 +92.3% 12.2 16.0 +31.1%

Inequality count

16 31 +94% 88 436 +395% 168 1644 +879%

Variable count and Difference [%]

9 21 +133% 32 112 +250% 40 200 +400%

SDP. In benchmark 3), the summed chip area is 1272 A from the LP and 1188 A
from the SDP. Since in the lowest layer there is no TSV area required (there
are no keep-out-zones using via-middle-process-flow), this layer is smaller. The
difference in run time between LP and SDP is smaller for larger input sets.

The linear model requires 2kl + 2 inequalities and k + l + 1 variables. The
non-linear model requires (kl)2 + k + l + 2 inequalities and kl + 1 variables.

3.2 Mapping with linear vs. non-linear models

Quadratic-shaped cores of a different size are mapped in a 2D mesh NoC in [1]
using a linear model and a heuristic for larger input sets. Their objective func-
tion does not target low area but minimizes transmission energy. We compare
the results from our non-linear model with results from linear models from [1]
using the three benchmarks provided (see Table 2). The data streams for the
benchmarks are taken from [5] and the cores’ area from [1].

We implement a simple SA for mapping: The neighbor function randomly
changes the position of one core in the mapping. If the position is already taken
by another core, both will be switched. We extend the objective function from [1]
to include chip area. The initial solution for our SA places cores decreasingly
ordered by size, such that white space is minimized and communication is not
accounted for.

The results for area and network performance are given in Table 2. The sum
of all tiles’ sizes gives the total area (including whitespace). The network perfor-
mance is measured by accumulated link load (measuring delay) and maximum
link load (measuring throughput). Four data sets are given per benchmark:
First, the baseline from [1] for a 2D mesh NoC. Second, the first configuration
is optimized using the proposed non-linear model without changing the map-
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Table 2: Area and network performance comparison of mapping to a 2D-mesh NoC
with [1]. The SA is executed with 20 reruns, an initial temperature of 30, cooling of
0.98 and 15,000 iterations. The aspect ratio is limited by η = 0.1.

Area [A] Communication [Bits*Hops] Bandwidth [Bits]
mean std ratio mean std ratio mean std ratio

H
2
5
6
d
e
c

m
p
3
d
e
c Baseline

[1]
11301 — — 19858 — — 4060 — —

Baseline
with
SDP

10178 — -9.94% 19858 — 0.0% 4060 — 0.0%

initial
so-
lu-
tion

7902 — -30.1% 33707 — +69.7% 7994 — +96.9%

SA
with
SDP

8244 505 -27.1% 21280 624 +7.16% 4452 674 +9.66%

H
2
6
3
e
n
c

m
p
3
d
e
c Baseline

[1]
12535 — — 255324 — — 84884 — —

Baseline
with
SDP

10178 — -18.8% 255324 — 0.0% 84884 — 0.0%

initial
so-
lu-
tion

6993 — -44.2% 525537 — +106% 85244 — +0.42%

SA
with
SDP

10474 2148 -16.4% 250187 14763 -2.0% 73161 17497 -13.8%

m
p
3
e
n
c

m
p
3
d
e
c Baseline

[1]
8568 — — 17546 — — 4085 — —

Baseline
with
SDP

8091 — -5.57% 17546 — 0.0% 4085 — 0.0%

initial
so-
lu-
tion

7281 — -15.0% 39171 — +123.3% 6560 — +60.1%

SA
with
SDP

8516 796 -0.61% 17572 487 +0.15% 4974 902 +21.8%

ping. This quantifies the potential of non-linearity. Third, the initial solution for
the SA is given, which is area-efficient and communication-inefficient. Fourth,
our SA is executed 20 times with 15,000 iterations, an initial temperature of
30 and a cooling of 0.98. The aspect ratio is limited by η = 0.1 The results of
all runs are averaged and the standard deviation is calculated. We balance the
weights in the cost function and prioritize neither area nor communication. A
single run of the SA terminates after approximately 17 minutes on a Windows
10 workstation using an Intel i7-7740X processor (4 physical cores at 4.3 GHz
with hyper threading).
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4 Discussion

4.0.1 Area

The area of non-linear models is better, as expected. The theoretical bench-
marks, see Table 1, show their clear advantage in terms of area minimization.
Area is reduced between 10.5% and 18.9%. The results for the real-world based
benchmarks further support this because the area of the mapping is reduced by
5.57% to 18.8% in comparison to the solution from [1], see Table 2. If declined
communication efficiency is acceptable, the area can further be reduced. For
instance, the H256 dec mp3 dec can be mapped with 27.1% area reductions at
the expense of 7.16% worse communication costs and 9.66% worse bandwidth
over baseline. The other two benchmarks show similar results. Summing up,
non-linear models enable area reductions of up to 27% in our benchmarks.

4.0.2 Model definition

The proposed model definition supports, that non-linear models are cleaner
than linear models: First, error-prone linearization is not required. Second, the
SDP directly models the area multiplication, which increases readability and
allows for easier understanding of the problem. Therefore, the model is less
complicated. Further, the effort to define a non-linear model is small. The
whole model is given by 10 inequalities.

4.0.3 Optimization run time

Higher expected run time is a common reason to reject non-linear models. Our
results do not support this. Of course, the run time of the non-linear model is
slightly worse than the linear model. But the SDP only requires 16 seconds to
find an optimal solution even for the large example with 80 cores. The variable
count grows fast for the non-linear model (SDP: Ω((kl)2) vs. LP: Ω(k + l))
but this does not have a negative impact on performance. The number of
inequalities grows similar for both at the rate of Ω(nm) and the optimizer for
the SDP handles this better. The run time of the SA in the real-world based
benchmarks of 17 minutes is reasonable for daily usage. This demonstrates that
non-linear models are applicable in practice.

5 Conclusion

In this paper we show that using non-linear models for area optimization in
core mapping yields better area with better-structured model definitions than
conventional linear models. We contribute both a linear model (LP) and a non-
linear model (SDP) to reduce the amount of white space in reserved areas for
cores. Comparison of the two models shows that area can be reduced by up
to 27%. Since the non-linear model does not require area approximation, the
model definition is cleaner. A small set of inequalities directly describes the
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problem completely. For a large benchmark example with 80 cores, an optimal
solution is found within 16 seconds.
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ri cj = Fi,j
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ri = cjη
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using aspect ratio η 
and upper bound xmax

(a) Simple approximation with single linear equation.
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ri cj = Fi,j
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ri = cjη
-1

ri = cjη
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linearization 
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linearization of product with 
multiple sampling points
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(b) Reduced error through multiple linear approximations.

Figure 2: Area linearization.
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