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Abstract—Systolic Array (SA) architectures are well suited
for accelerating matrix multiplications through the use of a
pipelined array of Processing Elements (PEs) communicating
with local connections and pre-orchestrated data movements.
Even though most of the dynamic power consumption in SAs
is due to multiplications and additions, pipelined data movement
within the SA constitutes an additional important contributor.
The goal of this work is to reduce the dynamic power con-
sumption associated with the feeding of data to the SA, by
synergistically applying bus-invert coding and zero-value clock
gating. By exploiting salient attributes of state-of-the-art CNNs,
such as the value distribution of the weights, the proposed
SA applies appropriate encoding only to the data that exhibits
high switching activity. Similarly, when one of the inputs is
zero, unnecessary operations are entirely skipped. This selectively
targeted, application-aware encoding approach is demonstrated
to reduce the dynamic power consumption of data streaming in
CNN applications using Bfloat16 arithmetic by 1%–19%. This
translates to an overall dynamic power reduction of 6.2%–9.4%.

I. INTRODUCTION

Matrix multiplications are at the heart of deep learning
algorithms and – in hardware – they naturally map onto
Systolic Arrays (SA) [1]. SAs have a long history of wide
applicability [1], while, recently, their design has regained
interest due to the large volume of rapidly emerging machine
learning applications. Tensor Processing Units (TPUs) [2] and
other related architectures [3], [4], [5], [6] are characteristic
examples of newly designed SA architectures/derivatives.

The typical SA hardware structure consists of an array of
Processing Elements (PEs), as depicted in Fig. 1(a). Each PE
consists of a multiplier and an adder and necessary registers to
appropriately pipeline the streaming operation. The SA is fed
by local memory banks placed on the West and North edges
of the array, while the output results are collected on the South
edge. When the sizes of the matrices are larger than the size
of the SA, matrix multiplication is executed in tiles, where the
size of each tile (i.e., sub-matrix) matches the size of the SA.

The dataflow type employed by the SA determines the
internal structure of the PEs and how the matrix multiplication,
A × B, is executed [7]. For instance, in output-stationary
dataflow, the matrices A and B arrive synchronously from the
West and North borders of the SA, respectively, and the result
is accumulated locally within each PE. The micro-architecture
of each PE for the output-stationary dataflow type is shown in
Fig. 1(a), while the actual data flow is visualized in Fig. 1(b).
The unloading of the final result occurs separately, upon
completion of the computation phase. To increase applicability,
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Fig. 1. An output-stationary SA and its corresponding dataflow.

flexibility, and PE utilization, configurable SAs can support
various dataflow types [8], [9], [7].

The focus of this work is on the reduction of dynamic power
consumption within the SA, which is directly proportional
to the amount of activity flowing through the system. We
explore for the first time – to the best of our knowledge – the
synergistic application of established data-coding techniques
to reduce the dynamic power consumption involved in the
data-and-weight loading process. The goal is to optimally
apply data coding using a targeted approach that minimizes
data switching activity in a cost-effective manner. Overall, the
contributions of this work can be summarized as follows:

• We explore the value distribution of the weights of
modern CNNs to identify the data segments within the
weights that exhibit high switching activity. This in-
formation allows for optimal application of encoding;
data segments that exhibit low switching activity are
simply not encoded. Hence, the data switching activity
is minimized at the minimum possible hardware cost.

• The statistical analysis of the weight values constitutes
a first attempt to identify and exploit useful numerical
attributes in the new and increasingly prevalent floating-
point arithmetic formats, such as Bfloat16 [10], [11]. Re-
duced precision floating-point arithmetic is rapidly gain-
ing traction in deep learning, where sufficient inference
accuracy is not always achieved using only integers [12],
[13].

• Zero-value clock gating is selectively applied only to the
inputs of the CNN layers to exploit the presence of zero
values generated by the Rectified Linear Unit (ReLU) ac-
tivation function. Unnecessary operations involving zeros
are skipped altogether within the SA.

Extensive evaluations using complete CNN applications
driven with test images from the ImageNet database [14]
demonstrate the efficacy and efficiency of the proposed ar-
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chitecture. The switching activity is reduced by 29%, on
average, as compared to SAs with unencoded data values,
which translates into total dynamic power savings of 9.4%,
on average, in ASIC hardware implementations.

II. DYNAMIC POWER CONSUMPTION IN SAS

Overall, the dynamic power consumption of a systolic array
when computing a matrix multiplication consists of three main
components:

Data and weight loading: This involves the loading of
data and weights in the horizontal and vertical directions,
respectively. In output-stationary dataflow, the data loading
occurs in parallel to the actual computation, from the West and
the North side of the SA, in an orchestrated manner. The cost
of data loading involves the power expended in the clocked
elements (pipeline registers) and the wires that connect them,
and it is directly related to the switching-activity profile of the
incoming data.

Computation power: The dynamic power consumed for
the actual computation, i.e., multiplication and addition. This
part is the major power consumer and depends mainly on
the size and the arithmetic format of the processed data and
the complexity of the datapath logic. Quantization for Deep
Neural Networks (DNNs) retains the inference-time model
quality using integer-only arithmetic. State-of-the-art Machine
Learning (ML) models, such as transformers, still require
floating-point arithmetic, even if this refers to low-precision
8-/16-bit formats [12].

Sum accumulation/unloading: The power cost of moving
the partial or final sums. In output-stationary dataflow, this
occurs only once, at the end of the computation phase. The
dynamic power associated with the movement of partial sums
involves the power consumed in pipeline registers and the
wires that connect them.

This work tackles the first of the aforementioned compo-
nents; namely, the consumption attributed to the loading of the
data and weights. The subsequent experimental evaluation will
demonstrate that, even though we do not focus on the major
consumer of power (i.e., computation), the reaped overall
savings are still quite substantial.

III. LOW-POWER DATA LOADING AND MOVEMENT

To decrease the dynamic power consumption due to data
movement, the ultimate goal is to minimize the switching
activity within the horizontal and vertical register pipelines of
the array. While there is a wealth of proposed approaches in
the literature to lower switching activity, this work is the first –
to the best of our knowledge – to apply such techniques within
the SA context and quantitatively assess their effectiveness
when executing real CNN applications.

A. Reduction of switching activity
The three most relevant techniques are: (a) data-driven clock

gating, (b) bus-invert coding, and (c) zero-value clock gating.
The first one is the most fine-grained mechanism for clock

gating, since it is deployed in flip-flops at the gate level. The
clock signal driving a flip-flop is disabled (gated) if the flip-
flop state would remain unchanged in the next clock cycle [15].
To reduce overhead, several flip-flops may be grouped together
and driven by the same clock gating logic generated by ORing
the enabling signals of the individual flip-flops. Of course, this

coarser granularity tends to lower the disabling effectiveness.
Therefore, it is beneficial to group flip-flops whose switching
activities are highly correlated. This constraint renders this
approach infeasible for CNN applications, because it is very
difficult to find groups of bits that remain the same. Conse-
quently, the aggressive bit-level application of this technique
would incur undue overhead, whereas the coarser group-level
implementation would not be effective for CNNs.

Hence, we focus on the remaining two techniques that are
well suited for a systolic array setting.

(1) Bus-Invert Coding (BIC): This well-known tech-
nique [16] lowers the bus activity by reducing the number of
bit transitions. The algorithm computes the hamming distance
between the present and next bus values, i.e., the number of
bits in which they differ. If this number is more than half
of the bus width, then the complement of the next datum
is transmitted instead. Alongside the transmitted data, the
BIC scheme also transmits a single bit (‘inv-bit’), indicating
whether the transmitted data is inverted or not. A variant of the
BIC technique, called Segmented Bus-Invert Coding, can be
applied to different segments of the bus separately [17]. For
instance, BIC could be applied to the mantissa (fraction) and
the exponent fields of a floating-point number independently.
Other more elaborate coding techniques that are useful when
driving large buses are not considered [18], [19], since their
encoding/decoding overhead diminishes any savings in switch-
ing activity at the PE level.

(2) Zero-Value Clock Gating: This technique can be used
when the input or/and the weight have zero value. Since
the result of any multiplication involving at least one zero
value is zero, there is no need to perform the multiplication.
Therefore, upon detecting a zero input value, the pipeline is
‘frozen’ (amounting to inserting a bubble) and an ‘is-zero’
bit is asserted. This bit is subsequently used to clock-gate the
registers and to bypass the result of the multiplication, which
is known a priori to be equal to zero.

B. Systolic Arrays with Selective Coding and Clock Gating

To cost-effectively apply the above two techniques within an
SA, it is imperative to identify, and account for, some nuances
of CNNs, which constitute our primary target applications.

For instance, in CNNs, the weights of each layer are
determined during training and remain unchanged throughout
the inference phase. The weights encountered in CNNs have
some interesting attributes that can be exploited by the BIC
technique. In an attempt to identify useful – in terms of
encoding potential – numerical attributes exhibited by the
weights of modern CNN applications, we perform a detailed
statistical analysis of the observed value distributions when
using the widely utilized Bfloat16 floating-point format. Fig. 2
illustrates the value distributions of the weights of all layers of
two state-of-the-art CNNs: ResNet50 [20] and MobileNet [21].
Specifically, the histogram of the weight values is further
analyzed into the distributions of the exponent and mantissa
values. These weight values are bounded to the range [−1, 1]
from the training step.

As shown in Fig. 2, the weight values are highly concen-
trated around zero, i.e., their absolute values are very small. As
a result, when the weights are represented as Bfloat16 num-
bers, their exponent values are highly concentrated close to the



Fig. 2. The observed value distributions of the weights of all layers of
the ResNet50 [20] and MobileNet [21] CNNs. The exponent values of the
corresponding Bfloat16 numbers are highly concentrated, while the mantissa
values are almost uniformly distributed in the entire available dynamic range.

bias value. This high concentration implies that consecutive
exponent values have very few bits that are different, thereby
rendering the BIC technique non-beneficial for the exponents.
On the other hand, the values of the mantissa field of the
CNN weights are almost uniformly distributed, thus making
them amenable to BIC. Hence, for the weights, we use BIC
targeting only the mantissa field.

On the other hand, the input data is different for each
input image and is highly dependent on the selected activation
function. Therefore, there is no clear statistical attribute that
can be exploited for the inputs, other than the abundant zero
values generated by the ReLU activation function in each layer.
Hence, the zero-value clock gating technique need only be
applied to the inputs of the CNN layers. This ensures that
no power is wasted on redundant operations. Note that the
abundance of zeros can be artificially increased in the weights,
too, by enabling weight pruning techniques. However, such
approaches are out of the scope of this work.

The proposed SA architecture, which effectively combines
the BIC and zero-value clock gating techniques, is shown in
Fig. 3. As compared to a baseline SA (i.e., without power-
saving functionality), the additional new logic – shown in color
blue – is primarily found on the North and West edges of the
SA within the Encoding (‘ENC’) modules and the zero-value
checkers, respectively. As illustrated in Fig. 3, each Encoding
module implements the BIC technique only on the mantissas
of the weights, as previously explained. This targeted/selective
BIC approach reduces the incurred area overhead and avoids
redundant power consumption. In the proposed architecture,

Fig. 3. The proposed low-power SA architecture that combines two power-
saving techniques to reduce the switching activity as data flows through the
array of PEs. The inputs pass through zero-detection logic at the West edge
of the SA. The weights are encoded at the North edge, prior to entering the
array, and the actual values are recovered within each PE for the ensuing
calculations.

there is also some lightweight new logic within each PE.
Specifically, XOR gates are added to recover the original value
of the mantissa of each weight, if it was inverted by the
BIC technique. Clock-gating logic is also added in the input
datapath, which is triggered by the ‘is-zero’ bit. The latter
is also used to data-gate the multiplier, in order to eliminate
wasted power in multiplications with zero.

It should be noted that the zero-value clock gating mech-
anism has been applied to SAs in the past [22]. However, in
this work, we use it in conjunction with BIC to reap the extra
benefits of the synergistic effect of both techniques operating
in tandem. More importantly, the employed targeted encoding
approach selectively applies the most appropriate scheme to
each data type (inputs vs. weights) to reap the most power
savings with the minimum hardware cost.

IV. EXPERIMENTAL RESULTS

In this section, we demonstrate the effectiveness of the pro-
posed SA architecture in reducing the data switching activity
and, consequently, the overall power consumption. The new
design, which selectively applies the BIC and zero-value clock
gating techniques, is compared to a conventional SA, i.e., one
with no power-saving features.

Both architectures under comparison were implemented in
C++ and synthesized to Verilog RTL using Catapult HLS
driven by a commercial-grade 45-nm standard-cell library.
Both SA designs have an array size of 16×16 PEs. Bfloat16
multiply and add operators were implemented using Catapult’s
built in floating point datatypes. Final timing/area results
are derived from the Oasys logic synthesis tool. Power was
estimated after synthesis using the PowerPro power analysis
and optimization tool.

The hardware area overhead incurred by the extra logic
in the proposed design is 5.7%. It is important to note that
this percentage overhead will, in fact, decrease with larger
SA sizes, because the number of additional encoders scales



Fig. 4. The per-layer power consumption and the percentage of zero-value inputs for the ResNet50 [20] CNN.

Fig. 5. The per-layer power consumption and the percentage of zero-value
inputs for the MobileNet [21] CNN.

linearly with the size of the SA, whereas the number of
additional PEs scales quadratically.

In any case, the small area overhead is fully amortized by
the larger reaped power savings, as illustrated in Figs. 4 and 5.
These figures report the per-layer power consumption in two
state-of-the-art CNNs: ResNet50 [20] and MobileNet [21]. The
percentage of input values that are zeros is also included for
each layer. The power consumption numbers and the zero-
value percentages are the average of 100 randomly picked
images from the ImageNet database [14]. As shown in Figs. 4
and 5, the proposed architecture yields 1%–19% per-layer
power savings, as compared to the conventional SA. These
per-layer savings translate to an overall power reduction of
9.4% for ResNet50 [20] and 6.2% for MobileNet [21].

It can be observed in Figs. 4 and 5 that, in the layers
where the percentage of zero-value inputs is high, the power
consumption in the proposed design is – in most cases – much
lower than in the conventional SA, due to the extensive use of
the zero-value clock gating technique. Nevertheless, when the
number of zero values becomes very high, there are more cases
of multiple consecutive zero inputs. Naturally, these cases also
benefit the power consumption of the conventional SA design.
Overall, the synergistic application of the BIC and zero-value
clock gating techniques in the proposed architecture yields
consistent power savings in all the layers of the two CNNs.

V. CONCLUSIONS

Even though data- and weight-loading constitute only a
portion of the total power consumed in a systolic array,
a reduction in switching activity while traversing the array
still yields significant overall power savings. The proposed
SA architecture reduces the overall power consumption by
appropriately encoding the data flowing through the array to
reduce the switching activity. By exploiting key attributes of
modern CNNs, such as the value distribution of the weights
and the prevalence of zero values in the inputs, the new design
applies the most appropriate scheme to each data type to
maximize the power savings with the minimum hardware cost.
This targeted, application-aware encoding yields overall power
savings of 6.2%–9.4% in state-of-the-art CNN applications.
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